
Accurate particle-based reaction algorithms for
fixed timestep simulators

Stuart T. Johnston, Christopher N. Angstmann, Satya N.V. Arjunan, Casper H.L.
Beentjes, Adrien Coulier, Samuel A. Isaacson, Ash A. Khan, Karen Lipkow, and
Steven S. Andrews*

Abstract Particle-based simulators are widely used to study biochemical systems
involving spatial transport and chemical reactions on sub-cellular length scales.
Fixed time step methods can often offer good performance even when simulat-
ing complex many-particle systems. However, current reaction algorithms approxi-
mate more detailed molecular dynamics models either inaccurately or slowly. Here,
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we present new reaction algorithms that better approximate microscopic molecular
dynamics models while maintaining good computational efficiency. A “Brownian
bridge” algorithm samples reactions using reactant positions both before and after
each diffusive step; its simulated dynamics exactly match those of appropriate un-
derlying idealised models. Simpler but less accurate “RDF-matching” algorithms
sample reactions by only using reactant positions after diffusive steps; they accu-
rately reproduce the steady-state radial distribution function of the underlying ide-
alised model. These algorithms can accurately approximate both commonly used
reaction models and more realistic models that account for intermolecular poten-
tials.

1 Introduction

Nearly all biochemical systems within cells, from metabolism to signalling, rely
in part on chemical reactions between pairs of diffusing molecules. Algorithms for
simulating these reactions are thus essential to biochemical modelling software. The
approaches that have been developed over the past several decades work at varying
levels of detail [16, 23]. Some treat molecular species as well-mixed chemical con-
centrations [2, 31], others capture spatial heterogeneity or the stochastic effects that
arise from the statistics of single molecules [8, 10, 18, 20, 30], and yet others ex-
plicitly model the movement of every individual atom or molecule in response to
applied forces [21]. In general, increasing the level of simulated detail yields more
accurate results but at the expense of increasing the time needed to run simulations.

This raises the question of how one can mitigate the trade-off between simula-
tion accuracy and computational efficiency. Hybrid simulation techniques address
this by representing the simulated system at multiple levels of detail at once, using
more detail for portions of the system that are of particular interest and less detail
for portions that are of less interest [17, 25, 26]. Another approach focuses computa-
tional effort on simulation times that are of greatest interest, either by using adaptive
time steps [3, 22, 32] or by selectively repeating simulations of interesting events
[15]. Yet a third approach is to develop new reaction algorithms that offer improved
accuracy but with minimal sacrifice of computational efficiency [9, 19, 29]. Here, we
follow this last approach. We began developing these methods at the 2018 MATRIX
workshop on “Spatio-temporal stochastic systems in biology”, held in Creswick,
Victoria, Australia.

This work focuses on particle-based simulation methods that use fixed simulation
time steps [6, 27]. Particle-based methods represent every individual molecule of
interest as either a point-like or spherical particle in three-dimensional continuous
space. These molecules diffuse, may interact with membranes or other surfaces, and
undergo chemical reactions when two reactant molecules collide with each other,
often at some reaction rate. Representing simulated time with fixed length steps
introduces approximations because it approximates physically continuous processes
with discrete intervals. However, these methods can be reasonably efficient and, if
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designed well, can always be made more accurate by reducing the time step size.
The algorithms described here would be straightforward to implement in software,
such as Smoldyn [7, 4, 5].

2 Assumptions and Definitions

Consider the generic irreversible bimolecular reaction A + B → C, where all three
chemical species are composed of spherical molecules that undergo ideal diffusion
and only interact with each other through this reaction. We ignore any potential
volume exclusion interactions between pairs of A molecules or pairs of B molecules.

Assume that there are many more B molecules than A molecules so that we can
work in the reference frame of a single A molecule. In this reference frame, an A
molecule is at the origin and effectively stationary, surrounded by many diffusing
B molecules. These B molecules diffuse with the sum of the physical A and B dif-
fusion coefficients, which is called the mutual diffusion coefficient and denoted by
D [24]. As in the classical Smoluchowski diffusion-limited reaction model and the
more physically realistic Collins-Kimball model (described below), the A molecule
is not removed from the system upon reaction, but acts as a permanent absorbing
sink for B molecules [13, 24, 28]. In effect, we observe a single A molecule until it
reacts, transfer the coordinates to some other A molecule and observe it until it re-
acts, and so on. We define the “binding radius”, σb, as the centre-to-centre distance
between A and B molecules where they start to interact with each other. It is easiest
to assign this entire binding radius to the A molecule, effectively making it a sphere
of radius σb and the B molecules simple points. The left panel of Figure 1 illustrates
this model.

A 

B 

σb 

r 

g(r) 

σb 

Smoluchowski 

Doi 

Collins and 
Kimball 

Fig. 1 (Left) Cartoon of the reaction model assumptions. (Right) Example steady-state radial dis-
tribution functions for the Smoluchowski, Collins and Kimball, and Doi reaction models.

The radial distribution function (RDF), g(r, t), characterises the mean spatial dis-
tribution of B molecules about A molecules and is normalised so that limr→∞ g(r, t)=
1. Because we assumed ideal diffusion, the RDF evolves according to the diffusion
equation; under the further assumption of three-dimensional rotational symmetry, it
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is given by
∂g(r, t)

∂ t
=

D
r2

∂
∂ r

[
r2 ∂g(r, t)

∂ r

]
. (1)

The new algorithms described here were designed to work with a variety of
different reaction models so that the most appropriate one can be chosen for any
particular system. Nevertheless, a few standard models are of particular interest.
The Smoluchowski model assumes that reactants react immediately upon contact
[24, 28], implying a Dirichlet boundary condition,

g(σb, t) = 0 (Smoluchowski) (2)

(blue curve in the right panel of Figure 1). The Collins and Kimball model replaces
the assumption of immediate reactions with the more realistic assumption that reac-
tants can either react or reflect off of each other [13, 24]. This is modelled through
the use of a radiation or Robin boundary condition,

∂g(r, t)
∂ r

∣∣∣∣
r=σ+

b

=
g(σb, t)

γ
(Collins and Kimball) (3)

(red curve in right panel of Figure 1). Here, γ is a reactivity term that approaches
0 in the Smoluchowski model limit and infinity in the non-reactive limit. Finally,
the Doi model allows reactants to physically overlap each other, meaning that their
centre-to-centre separations are less than the binding radius, at which point they
react with an “intrinsic reaction” rate constant, λ [1, 14]. Both the RDF and its
first spatial derivative are continuous at σb, because there is no abrupt change of
behaviour there, so the resulting RDF is smooth and increases monotonically with
r (green curve in right panel of Figure 1). B molecules are only consumed at the
binding radius for the first two models, so the net inward flux of their RDFs at the
binding radius represents the chemical reaction rate coefficient,

k(t) =−4πr2D
∂g(r, t)

∂ r

∣∣∣∣
r=σ+

b

. (4)

This is the time-dependent chemical reaction rate per molecule of A and per unit
concentration of B. This coefficient asymptotically approaches a constant value as
the system evolves toward its steady state, where the constant value is then called the
reaction rate constant and written as k. The Doi model is a little more complicated
because B molecules can cross the binding radius without reacting, but equation 4
still approaches the steady-state reaction rate constant and is often a close approxi-
mation for transient behaviour.

Typically, a modeler would specify a reaction rate constant, the reaction model,
and any necessary reaction model parameters, such as the sum of the physical
molecule radii, the Collins and Kimball γ value, or the Doi model λ value. They
would also specify the reactant diffusion coefficients, which combine to give D, and
the simulation time step, ∆ t. From these, the simulation software needs to compute
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simulation algorithm parameters, such as the binding radius and any reaction proba-
bilities. When it then simulates the reaction system using those parameters, it should
replicate the model results as closely as possible.

When comparing simulation and model results, it helps to think of time as pro-
gressing continuously in the simulation but with the algorithms only reporting their
results as discrete snapshots at the end of each time step. We now discuss several
new numerical methods that approximate these continuous-time models at fixed
time steps reasonably well. They are called “exact” if their results are statistically
identical with solutions of the appropriate continuous-time model.

3 Results

3.1 Brownian bridge method, two-step algorithm

The first new algorithm, which we call a Brownian bridge method, considers
molecule positions both before and after diffusing. Working in the A molecule
frame of reference, this algorithm is based on the idea that any of the continuous-
time models can be solved exactly for any initial B molecule position, ri, to give
both the probability of reaction during the time step, Pmodel(react|ri) and the re-
maining probability density of the B molecule position at the end of the time step,
pmodel(r f |ri). This probability density does not integrate to 1, but integrates to the
probability that the molecule survives the time step; in other words, it integrates to
1−Pmodel(react|ri). Assume for now that both functions are known. The goal of the
algorithm is to replicate this behaviour.

The algorithm involves two steps. The first is to diffuse all B molecules us-
ing random Gaussian-distributed displacements, as in current algorithms [9, 19].
Here, an individual B molecule diffuses from its initial location, ri, to a nearby
point, r f , which is chosen from a Gaussian probability density, pdi f f (r f |ri). As-
suming this density is everywhere larger than the model probability density, mean-
ing pdi f f (r f |ri) ≥ pmodel(r f |ri), then the second step is that the simulator ab-
sorbs, meaning reacts, B molecules where there is excess probability density. B
molecules that don’t react are not moved. Quantitatively, the desired probability
density, pmodel(r f |ri), is achieved if the simulator retains molecules with probability
pmodel(r f |ri)/pdi f f (r f |ri). This means that molecules should react with probability

P(react|ri,r f ) = 1−
pmodel(r f |ri)

pdi f f (r f |ri)
. (5)

As an example, this Brownian bridge algorithm has been solved for a one-
dimensional version of this system that has an absorbing boundary at x = 0 [9, 12].
Solving the diffusion equation for a molecule that starts at xi (assuming xi > 0) and
that is subject to the absorbing boundary at x = 0 shows that its probability density
after the end of one time step is equal to
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pmodel(x f |xi) =

{
0 x f ≤ 0

Gs(x f − xi)−Gs(x f + xi) x f > 0

}
(6)

where Gs(x) is a normalised Gaussian with mean 0 and standard deviation s, s is the
rms step length which is equal to s =

√
2D∆ t, and ∆ t is the time step length (Figure

2). Again, this probability density does not integrate to 1 due to the probability
of the molecule being absorbed at the boundary. In the first step of the algorithm,
the simulator diffuses the molecule from its initial location, xi, using a Gaussian-
distributed displacement. This causes its probability density after diffusion to be

pdi f f (x f |xi) = Gs(x f − xi). (7)

Comparing these two probability densities shows that pdi f f (x f |xi) ≥ pmodel(x f |xi)
for all x f values, so it is possible to recover the desired probability density by
simply absorbing the molecule with the appropriate probability. Substituting these
pmodel(x f |xi) and pdi f f (x f |xi) solutions into eq. 5 and simplifying gives

P(react|xi,x f ) =

{
1 x ≤ 0

exp
(
− 2xix f

s2

)
x > 0

}
. (8)

Thus, the algorithm for this one-dimensional case is that diffusion occurs with stan-
dard Gaussian-distributed displacements, going from xi to x f , and then absorption
occurs with probability 1 if x f ≤ 0 or with probability exp(− 2xix f

s2 ) if x f > 0. The
results from this algorithm are statistically identical to those for the continuous-time
model, making it an exact algorithm.

xf 

pdiff(xf|xi) pmodel(xf|xi) 

xf 

P(react|xi,xf) 

Fig. 2 Illustration of the Brownian bridge algorithm in 1 dimension for a Smoluchowski boundary
condition at x = 0, for a molecule starting at xi = 1 with an rms step length of s = 0.7. The left
panel shows the model (black) and diffused (blue) probability densities; the region between the
two represents the probability that molecules should react. The right panel shows the reaction
probability as a function of position for the same parameters.

The formalism is the same when extending this algorithm to three dimensions.
The numerator and denominator of eq. 5 are Green’s functions with and without
the model boundary conditions. The denominator is just a three-dimensional Gaus-
sian. The numerator would be straightforward as well if radial symmetry could be
assumed (the Green’s function equations are in [9, 11]) but it cannot. To see this,
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consider an A molecule at the origin and a B molecule that starts along the positive
z-axis above the origin and ends at either the same location or equally far along the
negative z-axis, below the origin. Both possibilities have the same initial and final
distances from the origin, but the latter trajectory is much more likely to go close to
the origin at some point along its path, and hence to undergo a reaction.

When accounting for the fact that the reference frame can be translated, rotated,
and scaled as needed, the two vectors that are needed for computing the Brownian
bridge absorption probability, ri and r f , simplify to three values: the reduced initial
separation between the two molecules, r̃i, the reduced final separation, r̃ f , and the
internal angle between the initial and final B molecule vectors, θ . The two reduced
parameters were defined by dividing by the binding radius, so r̃i = |ri|/σb and r̃ f =
|r f |/σb. Additional inputs to the probability calculation are constant over the course
of the simulation; they are the reduced rms step length, s̃, which equals s/σb, and
any model parameters, such as γ for the Collins and Kimball model and λ for the
Doi model.

In the special case of the Smoluchowski model, the Green’s function necessary
for the numerator of eq. 5 has been solved (section 14.16 part III in ref. [11]). It is

pmodel(r f |ri) =
1

4π
√

r̃ir̃ f

∞

∑
n=0

(2n+1)Pn(cosθ)
∫ ∞

0

Cn+ 1
2
(ur̃i)Cn+ 1

2
(ur̃ f )

J2
n+ 1

2
(u)+Y 2

n+ 1
2
(u)

e−Du2tudu

(9)
where

Cn+ 1
2
(z) = Jn+ 1

2
(z)Yn+ 1

2
(u)−Yn+ 1

2
(z)Jn+ 1

2
(u),

and Pn functions are Legendre polynomials, Jn+ 1
2

functions are Bessel functions,
and Yn+ 1

2
functions are spherical harmonics. Evaluating this Green’s function during

the simulation for every possible individual molecule interaction in a simulation
would be impractical. A better approach would be to tabulate these results in a four
dimensional table (r̃i, r̃ f , θ , and s̃), enabling much quicker lookup. However, this
would still incur significant computational costs, especially when a separate lookup,
ideally with interpolation, would be needed for every possible molecule interaction
at every time step.

The Doi model could also be simulated exactly with this Brownian bridge
method. The sole change is that the pmodel(r f |ri) term in eq. 5 would need to be
the Doi model Green’s function. It is undoubtedly even more complicated than the
one in eq. 9 but could be computed numerically. The resulting lookup table would
be as computationally intensive as the one for the Smoluchowski model.

3.2 Brownian bridge method, three-step algorithm

The two-step Brownian bridge method would not work for the Collins and Kimball
model because the requirement that pmodel(r f |ri) ≤ pdi f f (r f |ri) for all r f values
does not hold for some parameter values. To see this, consider the limit of low
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reactivity (γ →∞), in which B molecules simply reflect off of A molecules and never
react. In the model, the B molecule probability density would be relatively high just
outside of the surface of the A molecules due to the reflecting boundary. However,
the B molecule probability density would have a substantially lower value here after
the algorithm’s diffusion step because this step ignores the A molecule boundary,
letting A and B molecules overlap instead. As a result, the model probability density
could not be attained by simply removing particular B molecules.

A simple solution to this problem is to add a reflection step to the middle of the
previous two-step algorithm structure to yield the following three-step algorithm:

1. Diffuse molecules with Gaussian distributed displacements with rms step length
s.

2. Reflect A and B molecules off of each other to account for their excluded vol-
umes. The previously described “overlap algorithm” and “reflection algorithm”
would suffice, of which the latter agrees very closely with exact results [5].

3. Evaluate pairs of molecules to see whether they should react; if so, remove them
from the simulation and replace them with products, as before. Simple generali-
sation of eq. 5 shows that the reaction probability should be

P(react|ri,r f ) = 1−
pmodel(r f |ri)

pd,r(r f |ri)
(10)

where pd,r(r f |ri) is the probability density that a molecule ends at r f after being
moved by both the algorithm’s diffusion and reflection steps.

The Green’s function equations in eq. 10 are complicated (see section 14.16 part IV
of ref. [11] for the denominator) but, again, could be calculated numerically. The
resulting reaction probability lookup table would have the same input parameters as
before, r̃i, r̃ f , θ , and s̃, plus any additional model-specific parameters, such as γ for
the Collins and Kimball model.

This three-step version of the Brownian bridge algorithm would work for the
Smoluchowski or Collins and Kimball models, but not for models that allow
molecules to overlap, such as the Doi model. This is because pd,r(r f |ri) = 0 for
|r f | < σb, again violating the requirement that the simulated probability density
must be at least as large as the model probability density.

3.3 RDF-matching, two-step

A different set of new algorithms, which we call RDF-matching methods, only con-
siders molecule positions after diffusion (or after diffusion and reflection), r f . Ig-
noring the initial molecule positions, ri, necessarily makes these algorithms inexact,
but they are still more accurate than existing algorithms; in particular, their simu-
lated RDFs exactly match those of the models when at steady state. In essence, the
RDF-matching algorithms react or reflect molecules as needed so that their simu-
lated steady-state RDFs match the appropriate model RDFs.
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Radial symmetry can be assumed now because only one B molecule position is
used. Define gmodel(r) as the steady-state model RDF and gdi f f (r) as the RDF after
one round of the algorithm’s diffusion step after starting from the steady-state model
RDF (we dropped the f subscript from r f for simplicity because only final positions
are considered here). This latter RDF is

gdi f f (r) =
∫ ∞

0
4πr′2

1
4πrr′

[Gs(r− r′)−Gs(r+ r′)]gmodel(r′)dr′ (11)

where this uses the Green’s function for radially symmetric diffusion in three di-
mensions. Assuming that gdi f f (r)≥ gmodel(r) for all r, which is always true for the
Smoluchowski and Doi models, then the system returns to gmodel(r) after one cycle
if a molecule survives with probability gmodel(r)/gdi f f (r). From this, the absorption
probability for a molecule that diffuses to r is

P(react|r) = 1− gmodel(r)
gdi f f (r)

. (12)

Note the similarity to eq. 5. Thus, the algorithm, which we call the two-step RDF-
matching approach, is to first diffuse all molecules with Gaussian distributed dis-
placements, and to then react pairs of molecules based on their separations using
the probability given in eq. 12 (see Figure 3). This algorithm produces an RDF
that exactly matches that of the model when at steady state. However, it’s inexact
when away from steady state; additionally, the fact that it ignores initial molecule
positions makes it inexact when considering the reaction probabilities of individual
molecules.

r 

pdiff(r) 

pmodel(r) 

r 

P(react|r) 

Fig. 3 Illustration of 2-step RDF matching algorithm for Smoluchowski boundary condition, for
a binding radius of σb = 1 and an rms step length of s = 0.7. The left panel shows the model and
simulated RDFs; the region between the two represents the probability that molecules should react.
The right panel shows the reaction probability as a function of radius for the same parameters.

The probability function in eq. 12 can be computed explicitly in simple cases.
For the Smoluchowski model, the steady-state model RDF is

gmodel(r) = 1− σb

r
. (Smoluchowski) (13)
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Convolving this with the Green’s function for radially symmetric 3-dimensional
diffusion from eq. 11 leads to [9]

gdi f f (r) =
s2

r
[Gs(r−σb)−Gs(r+σb)]+

1
2
(e++ e−)+

σb

2r
(e+− e−) (14)

where
e± = erfc

σb ± r
s
√

2
Combining these results with eq. 12 then gives the reaction probability as

P(react|r) = 1− r−σb

s2 [Gs(r−σb)−Gs(r+σb)]+
1
2 (e++ e−)+

σb
2r (e+− e−)

(15)

This equation is relatively simple to evaluate but still might be more efficient in a
simulation if expressed in a lookup table (inputs are r̃ and s̃).

Other models yield more complicated reaction probabilities, but could again be
expressed in lookup tables.

3.4 RDF-matching, three-step

The two-step algorithm does not work if pdi f f (r) < pmodel(r) for some r value,
which again can arise for the Collins and Kimball model. As before, a simple so-
lution is to move to a three-step simulation algorithm with a middle reflection step.
Extending the prior results gives the reaction probability for the three-step RDF
matching algorithm as

P(react|r) = 1− gmodel(r)
gd,r(r)

(16)

where gd,r(r) is the RDF in the simulation, after the model RDF undergoes both
diffusion and reflection steps.

Although conceptually simple, this makes the equations much difficult to eval-
uate (in the Smoluchowski case, gd,r(r) can be found by integrating the product of
gmodel(r) from eq. 13 and the Green’s function for diffusion near a reflecting spheri-
cal boundary, which is given in eq. 16 of section 14.7 of ref. [11]). Again, numerical
computation and lookup tables are practical solutions.

As in the two-step case, this three-step algorithm reproduces the model RDF
when at steady state, but is inexact away from steady state and when considering
individual molecules. In this case though, the incorrect reaction probabilities for
individual molecules are worse than they might seem. During the diffusion step of
the algorithm, suppose one B molecules diffused to the centre of the A molecule
and another to just outside the edge of the A molecule. During the reflection step,
the first B molecule would get reflected far away from the A molecule while the
second wouldn’t be moved at all. Because the first B molecule ends up far away, it
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would have the lower reaction probability. However, this contradicts the fact that the
continuous-time trajectory of the first B molecule probably spent much more time
overlapping the A molecule, so it should have had the higher reaction probability.
Thus, this algorithm causes the molecules that have the greatest overlap at the end
of the diffusion step to have the lowest reaction probability, which is unphysical.

3.5 RDF-matching, two-step with remapping

A solution to this problem can be found by returning to the two-step RDF-matching
method, but with a new remapping option. Now, the reaction step is that molecules
react with probability P(react|r), or get moved to a new position with probability
P(move|r) and relocation mapping r → rout, or stay put with probability P(stay|r).
Clearly,

P(react|r)+P(move|r)+P(stay|r) = 1 (17)

Introducing this new option of moving molecules during the reaction step creates
much more flexibility. We describe some options for this algorithm, focusing on
models in which molecules are not permitted to overlap, such as the Collins and
Kimball model.

The total amount, or mass, of the RDF after diffusion that needs to be reacted in
order to return it to the steady-state RDF, gmodel(r), is

mreact = 4π
∫ ∞

0
[gdi f f (r)−gmodel(r)]r2 dr (18)

The next question is which portion of the RDF after diffusion should be reacted.
One reasonable choice is to react the B molecules that have the greatest overlap
with the A molecule. In particular, we can define an absorption radius, σa, for which
all molecules inside are reacted and others are not. In other words, P(react|r) = 1
for r < σa and P(react|r) = 0 for r > σa. The value of this absorption radius can be
found by integrating the RDF after diffusion until the correct mass has been reached,

mreact = 4π
∫ σa

0
gdi f f (r)r2 dr, (19)

An alternative choice would be to react B molecules with uniform probability, preact ,
up to the binding radius and not beyond it, meaning that P(react|r) = preact for
r < σb and P(react|r) = 0 for r > σb. For this choice, preact can be found from

mreact = 4π preact

∫ σb

0
gdi f f (r)r2 dr. (20)

With either choice, reactions then convert the RDF after diffusion, gdi f f (r), to the
RDF after diffusion and reaction, gd,rxn(r),
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gd,rxn(r) = gdi f f (r)[1−P(react|r)] (21)

Next, this modified RDF, gd,rxn(r), needs to be remapped to make it equal to
the model RDF. Because the correct number of molecules have been reacted at
this point, the mass of the RDF is conserved during this mapping step. Using the
assumption that molecules are not allowed to overlap in the model, all RDF mass
within the binding radius is excess and needs to be remapped to points outside of the
binding radius. For convenience, also assume that the gd,rxn(r) function is smaller
than gmodel(r) at all values that are outside of the binding radius (it is necessarily
smaller on average, but things get complicated if it’s not also smaller at all individual
points). The mass of the RDF that needs to be remapped is

mmap = 4π
∫ σb

0
gd,rxn(r)r2 dr = 4π

∫ ∞

σb

[gmodel(r)−gd,rxn(r)]r2 dr. (22)

Again, there are multiple options, now for how to map these molecules from [0,σb)
to their new locations in (σb,∞) in order to recover the steady-state profile. Simple
choices are to maintain or invert radial ordering, where molecules near the origin
are moved just outside σb in the former option and further out toward ∞ in the
latter option. It is not intuitively clear which would be more accurate. For the first
approach, in which radial ordering is maintained, consider the cumulative function
for the molecules that need to be moved,

Cin(rin) = 4π
∫ rin

0
gd,rxn(r′)r′2 dr′, (23)

This is defined on 0 < rin < σb and returns a Cin(rin) value that increases mono-
tonically from 0 to the mass of molecules that need to undergo mapping, mmap. As
this mass is conserved upon mapping, there is an equivalent value in the cumulative
function for the locations where the molecules get mapped to,

Cout(rout) = 4π
∫ rout

σb

[gmodel(r′)−gd,rxn(r′)]r′2 dr′. (24)

This cumulative function is defined on σb < rout < ∞ and also increases monotoni-
cally from 0 to the mass of molecules that need to undergo mapping, but now repre-
sents the spaces available for those molecules. The process of mapping a molecule
from rin ∈ [0,σb) to its new location at rout ∈ (σb,∞) is then:

1. Calculate Cin(rin) for the initial location of the molecule from eq. 23.
2. Calculate the value of rout such that Cout(rout) =Cin(rin) from eq. 24.
3. Move the molecule from rin to rout .

The second case, in which radial ordering is reversed, is identical but with the ex-
ception that the outer cumulative function runs in reverse order, being defined as

Cout(rout) = 4π
∫ ∞

rout

[gmodel(r′)−gd,rxn(r′)]r′2 dr′, (25)
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The same mapping process defined above works here as well.

3.6 Example of RDF-matching with remapping

Consider a 3D reaction process where the steady-state distribution follows the
Collins and Kimball RDF. Using reduced variables for simplicity, it is

gmodel(r̃) =
{

0 r̃ < 1
1− 1

r̃(1+γ̃) 1 ≤ r̃

}
(26)

where γ̃ is the reduced boundary coefficient (equal to γ/σb). After the diffusion step,
the distribution becomes, from eq. 11 and ref. [9]

gdi f f (r̃) =
s̃2

r
[Gs̃(r̃−1)−Gs̃(r̃+1)]+

1
2
(e++ e−)+

1
2r̃(γ̃ +1)

(e+− e−) (27)

The mass to be absorbed is given by substituting these two RDFs into eq. 18, yield-
ing

mreact =
2π s̃2

1+ γ̃
(28)

Next, we described two possibilities for the reaction step, of which one is to react
all molecules up to some radius σa and the other was to react molecules up to the
radius σb with probability preact . The former is more difficult to solve analytically,
so we consider the latter in this example. From eq. 20, the reaction probability is

preact =
mreact

4π
∫ 1

0 gdi f f (r̃)r̃2 dr̃
(29)

=
6s̃2

2s̃
√

2√
π {(s̃2 −1)(γ̃ +1)e

−2
s̃2 +[s̃2(γ̃ +1)−3γ̃]}+[3s̃2 −4(γ̃ +1)] erf

√
2

s̃ +4(γ̃ +1)

(30)

Applying this to the RDF after diffusion yields

gd,rxn(r̃) =
{

preactgdi f f (r̃) r̃ < 1
gdi f f (r̃) 1 < r̃

}
(31)

with substitutions from eqs. 27 and 30. This RDF is lengthy but can still be ex-
pressed in closed form. However, the next step is to compute the cumulative masses
both inside and outside of the binding radii with eqs. 23 and 24, which can only be
done numerically. Once those numerical integrals are computed, they are equated
to each other and then solved for rout as a function of rin. This solution gives the
required mapping.
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4 Discussion

This work presents two new algorithms for simulating bimolecular chemical reac-
tions with particle-based simulators that use fixed time steps. Both are more accurate
than existing methods but do not incur substantial computational penalties.

In the Brownian bridge approach, the simulator considers both the initial and
final separation vectors between potential reactants and computes the probability of
a reaction occurring for those values. All simulated results exactly match those of
the underlying model for isolated pairs of molecules, making it exact at this level
of detail (interactions among 3 or more molecules are still approximate). A 2-step
version of this algorithm, in which the algorithm only diffuses and reacts molecules,
is sufficient for the Smoluchowski and Doi models, whereas a 3-step version, adding
an intermediate reflection step, is necessary for the Collins and Kimball model. The
primary disadvantage of the Brownian bridge method is that it requires looking up
reaction probabilities for each reaction in lookup tables that have a minimum of
three dimensions (initial separation, final separation, and interior angle) and often
more dimensions. This may create an undesirable computational cost.

In the RDF-matching method, the simulator only considers final separations be-
tween potential reactants, while effectively assuming that the initial separations are
randomly chosen from the steady-state distribution for the model. This algorithm en-
ables the simulator to match the model radial distribution function exactly, but only
when at steady state. Moreover, the precise dynamics of single molecules do not
quite statistically match those of the underlying particle reaction-diffusion model.
We again developed 2-step and 3-step algorithm versions. Additionally, we devel-
oped a remapping method that resamples the position of unreacted molecules after
a diffusion step to correctly reproduce the steady-state radial distribution function.
This may aid in reducing the error introduced in the algorithm by only considering
molecular separations. The underlying reaction probabilities that need to be sam-
pled can be computed from closed form equations in simple cases, or can be stored
in a one dimensional lookup table.

One way in which the proposed algorithms could be optimised is by replacing the
lookup tables with suitable approximating functions. For example, many functions
can be closely approximated by rational functions or continued fractions, for which
there are simple and efficient evaluation methods.

These new algorithms are not just two of many possible improvements on ex-
isting algorithms, but are particularly accurate methods for particle-based simu-
lations that use fixed time steps. Simulating diffusion using Gaussian distributed
molecule displacements is a sensible approach as it simulates diffusion exactly for
non-interacting molecules in free space. If separating diffusion and reaction into
separate steps, as is common, then sampling reaction probabilities with the Brow-
nian bridge method is the unique solution that produces exact agreement with the
underlying model. Also, the RDF-matching approach is the simplest option for pro-
ducing exact agreement with the steady-state model RDF.

Absent from this work was any consideration of reversible reactions. Accounting
for them would minimally affect the Brownian bridge algorithm because it doesn’t
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make any assumptions about molecule starting locations. On the other hand, they
would affect the RDF-matching algorithm because reversibility changes the steady-
state radial distribution functions.

An intriguing aspect of this work is that these algorithms can be set up to sim-
ulate realistic intermolecular potentials, such as a Lennard-Jones potential, nearly
as easily as they can simulate the Smoluchowski or other simple models. Doing
so could enable much more efficient simulation of these reaction dynamics than is
currently possible.

Acknowledgements We thank Mark Flegg, Kevin Burrage, Ruth Baker, Samuel Isaacson, and
Hans Othmer for organising the 2018 MATRIX workshop on “Spatio-temporal stochastic sys-
tems in biology”, where we began this work. SNVA was partially supported by JSPS KAKENHI
Challenging Research (Pioneering) Grant No. 18H05371. SAI was partially supported by National
Science Foundation award DMS-1255408.

References

1. Agbanusi, I.C., Isaacson, S.A.: A comparison of bimolecular reaction models for stochastic
reaction–diffusion systems. Bulletin of Mathematical Biology 76(4), 922–946 (2014)

2. Aldridge, B.B., Burke, J.M., Lauffenburger, D.A., Sorger, P.K.: Physicochemical modelling
of cell signalling pathways. Nature Cell Biology 8(11), 1195 (2006)

3. Andrews, S.S.: Serial rebinding of ligands to clustered receptors as exemplified by bacterial
chemotaxis. Phys. Biol. 2, 111–122 (2005)

4. Andrews, S.S.: Spatial and stochastic cellular modeling with the Smoldyn simulator. In: Bac-
terial Molecular Networks, pp. 519–542. Springer (2012)

5. Andrews, S.S.: Smoldyn: particle-based simulation with rule-based modeling, improved
molecular interaction and a library interface. Bioinformatics 33(5), 710–717 (2017)

6. Andrews, S.S.: Particle-based stochastic simulators. Encyclopedia of Computational Neuro-
science (2018)

7. Andrews, S.S., Addy, N.J., Brent, R., Arkin, A.P.: Detailed simulations of cell biology with
Smoldyn 2.1. PLoS Comput. Biol. 6, e1000,705 (2010)

8. Andrews, S.S., Arkin, A.P.: Simulating cell biology. Current Biology 16(14), R523–R527
(2006)

9. Andrews, S.S., Bray, D.: Stochastic simulation of chemical reactions with spatial resolution
and single molecule detail. Physical Biology 1(3), 137 (2004)

10. Andrews, S.S., Dinh, T., Arkin, A.P.: Stochastic models of biological processes. In: Encyclo-
pedia of Complexity and Systems Science, pp. 8730–8749. Springer (2009)

11. Carslaw, H., Jaeger, J.: Conduction of Heat in Solids. Oxford University Press, Oxford, Eng-
land (1959)

12. Clifford, P., Green, N.: On the simulation of the Smoluchowski boundary condition and the
interpolation of Brownian paths. Molecular Physics 57(1), 123–128 (1986)

13. Collins, F.C., Kimball, G.E.: Diffusion-controlled reaction rates. Journal of Colloid Science
4(4), 425–437 (1949)

14. Doi, M.: Stochastic theory of diffusion-controlled reaction. Journal of Physics A: Mathemat-
ical and General 9(9), 1479 (1976)

15. Donovan, R.M., Tapia, J.J., Sullivan, D.P., Faeder, J.R., Murphy, R.F., Dittrich, M., Zucker-
man, D.M.: Unbiased rare event sampling in spatial stochastic systems biology models using
a weighted ensemble of trajectories. PLOS Comput Biol 12(2), e1004,611 (2016)



16 Johnston, Angstmann, Arjunan, Beentjes, Coulier, Isaacson, Khan, Lipkow, Andrews

16. ElKalaawy, N., Amr, W.: Methodologies for the modeling and simulation of biochemical net-
works, illustrated for signal transduction pathways: A primer. Biosystems 129, 1–18 (2015)

17. Erban, R.: From molecular dynamics to brownian dynamics. Proceedings of the Royal Society
A: Mathematical, Physical and Engineering Sciences 470(2167), 20140,036 (2014)

18. Erban, R., Chapman, J., Maini, P.: A practical guide to stochastic simulations of reaction-
diffusion processes. arXiv preprint arXiv:0704.1908 (2007)

19. Erban, R., Chapman, S.J.: Stochastic modelling of reaction–diffusion processes: algorithms
for bimolecular reactions. Physical Biology 6(4), 046,001 (2009)

20. Grima, R., Schnell, S.: Modelling reaction kinetics inside cells. Essays in Biochemistry 45,
41–56 (2008)

21. Karplus, M., McCammon, J.A.: Molecular dynamics simulations of biomolecules. Nature
Structural and Molecular Biology 9(9), 646 (2002)

22. Kerr, R.A., Bartol, T.M., Kaminsky, B., Dittrich, M., Chang, J.C.J., Baden, S.B., Sejnowski,
T.J., Stiles, J.R.: Fast Monte Carlo simulation methods for biological reaction-diffusion sys-
tems in solution and on surfaces. SIAM Journal on Scientific Computing 30(6), 3126–3149
(2008)

23. Mogilner, A., Allard, J., Wollman, R.: Cell polarity: quantitative modeling as a tool in cell
biology. Science 336(6078), 175–179 (2012)

24. Rice, S.A.: Diffusion-Limited Reactions. Elsevier (1985)
25. Robinson, M., Andrews, S.S., Erban, R.: Multiscale reaction-diffusion simulations with Smol-

dyn. Bioinformatics 31, 2406–2408 (2015)
26. Robinson, M., Flegg, M., Erban, R.: Adaptive two-regime method: application to front prop-

agation. The Journal of Chemical Physics 140(12), 124,109 (2014)
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