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Preface

These are the scientific proceedings of the 126th Study Group Mathematics with
Industry (Studiegroup Wiskunde met de Industrie or SWI 2017), held at the Ams-
terdam Science Park campus, January 23-27, 2017. The SWI 2017 was co-organized
by the Korteweg-de Vries Institute for Mathematics of the University of Amsterdam
and Centrum Wiskunde & Informatica (CWI), the Dutch national research institute
for mathematics and computer science in Amsterdam.

The proceedings are provided in two different formats. In this volume, the partici-
pants of SWI 2017 have provided their account of the week’s developments, presented
in English and aimed at a scientific audience. Each of the six groups has prepared
a contribution that presents the problem they worked on, the approaches they at-
tempted or used, and the results that they obtained.

Accompanying the present volume are the popular proceedings, written by science
journalist Julia Cramer. These provide an account of the work meant for a general
audience, written in Dutch.

The organisers of SWI 2017
Daan Crommelin, Stella Kapodistria, Guus Regts, Chris Stolk, Peter van de Ven

v





The fair value of a mortgage

Anatoliy Babič Mihail Bazhba Felix Beckebanze
Marko Dimovski Aldina Correia Eliana Costa e Silva
Marko Dimovski Robert Fitzner Stella Kapodistria∗

David Koops Willem Moerkens
Irving van Heuven van Staereling Xiaoming op de Hoek

Bart Sevenster Jok Tang

Abstract
We consider the problem proposed by the Bank at the SWI 2017 meeting. In
particular, the following directions of investigation were proposed:

Question 1: How should the bank calculate the fair value for it’s current port-
folio?

Question 2: What are the main drivers for prepayments?

Question 3: What is the biggest concern for the bank with the present low/negative
rates regarding mortgages? How should the bank deal with this?

Question 4: What can the bank do to mitigate the risk of prepayments?

Question 5: What is the fair value of the banks portfolio (Dataset 2B)?

In this report, we deal with the mathematically oriented questions and we are
interested in the modelling of the prepayments and their prediction.
Keywords: mortgage, prepayments.

1 Introduction
Mortgages are an important tool in making housing available for people who do not
have sufficient savings but still want to buy a house. In the Dutch economy, mort-
gages play an important role in consumer expenditure. The total household debt in
the Netherlands in 2011 was 117% of GDP according to CBS, see (2). Household
debt (including debt of non-profit institutions serving households) are the loans on
the liabilities side of the balance sheet, excluding mutual household debts. While the
non-financial corporations accounted for 107% of the GDP, (2). The bulk of household
debts consists of residential mortgages. The mortgage debt has grown substantially
between 1995 and mid-2012. After a period of decline between 2012 and 1014, house-
hold debts started rising as of September 2014, in particular the level of residential
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2 SWI 2017 Proceedings

mortgage debt. The latter increased from 649 billion euros at the end of September
2014 to 669 billion euros at the end of June 2017. In the same period, non-mortgage
debt rose from 88.5 to 91 billion euros. Despite increasing debt levels, household
debt as a percentage of GDP declined in Q2 2017, because the increase in GDP was
stronger than the increase in debt levels. At the end of June 2017, the household
debt ratio had declined to 106.1 percent from 106.7 percent in March; the ratio has
been falling since Q4 2012. In Q2 2017, the non-financial sector debt ratio declined
from 114.1 to 112.7 percent. Total private sector debt amounted to 218.8 percent as
a result, the lowest level since 2008.

Mortgages are for the bank an investment, as the bank loans the money in the form
of a mortgage to the customer with a given interest rate. Although mortgages are a
relatively secure investment opportunity due to their structured payment scheme and
the interest rate which is fixed for a long time, mortgages do possess some risks for
the issuer of the mortgage, typically the bank, which need to be taken into account
when assessing the value of a mortgage. The most important risks related to mort-
gages are the risk of defaulting, which is the risk of customers not paying back their
mortgage, and the interest rate risk, which is the risk caused by the uncertainty of
future interest rates. These risks have been extensively researched both in practice
and in the academic literature. A relatively less known risk for the issuer is that of
the prepayment risk, which is the risk created by customers paying back (partially or
in full) their mortgages earlier than the date stated in their contract. Prepayments
can be done after the customers sell the house or refinance the mortgages, after which
the mortgage ceases to exist. Refinancing can be lucrative if interest rates are low.
It is also possible that customers pay back only a small percentage of the mortgage
debt in order to reduce the interest that they have to pay, while staying under the
extra instalments threshold so as to avoid penalties associated with prepayments.

A bank needs to meet its obligations: similarly to individuals, a bank needs to
meet all its anticipated expenses, which in this case are the funding of loans, making
payments on debt, etc. These payments need to be done by the bank using liquid
assets, e.g., money. Ideally, a bank should maintain a level of liquidity that also allows
it to meet any unexpected expenses without having to liquidate other assets. The
bigger the cushion of liquid assets relative to anticipated liabilities, the greater the
bank’s liquidity. To this end, the bank makes a financial plan based on payments it
will receive and the payments it needs to make. Thus, if many people simultaneously
prepay their mortgage, the bank is thrown off this financial balance. Furthermore,
because of the high costs of acquiring a mortgage, mortgages typically need to remain
on the books for several years in order to be profitable.

A very recent trend noticed in the financial markets is that of the reduction of the
average tenure of a residential mortgage (i.e., duration of a mortgage at one issuer),
due mainly to consumers’ increased willingness to switch lenders for a better deal.
This is a worrisome trend for lenders, as they are exposed due to lack of liquidity and
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due to the unprofitability of mortgages for the banks when they are prepaid at very
short tenure.

In general, the following four drivers are shown to have a significant impact on
prepayment behaviour, see (5):

• Age of the fixed rate loan – Typically, prepayment occurs after the end of the
first fixed rate period.

• House price inflation – When house price inflation is high, the number of home
moves increases. Increased activity in the housing market results in increased
prepayment.

• Interest differential – This measures the tangible saving that a borrower could
make by switching to another fixed rate or variable rate mortgage (typically by
negotiating the mortgage anew with another bank - refinancing).

• Prepayment charges – These charges create a cost to prepayment that acts as a
disincentive to prepay. We observed that charges over a certain level appeared
to discourage prepayment significantly.

The goal of this report is to propose some models for the calculation of the fair
value of a mortgage i.e. the value of a mortgage when taking prepayment risk into
consideration.

Section 2 introduces the notation used in this analysis, Section 3 describes some
common mortgage types and their characteristics. In Section 5, the risks for a bank
are described. Section 6 introduces the way prepayments can be modelled and Section
7 introduces some models to incorporate prepayments in the valuation of a mortgage
portfolio.

2 Prerequisites

Throughout this study, we consider mortgages with a contractual duration of M
months, an initial coupon c (interest rate, expressed in % per month), and an initial
principal P0. For simplicity, we assume that the maximum duration for a mortgage
is 30 years, i.e., M ≤ 360. Furthermore, without loss of generality, we assume that
the interest rate, c, is fixed throughout the entire contractual period, except if stated
otherwise. We express the contractual payment (cashflow) by the borrower to the
bank in month t by xt. The amount of the monthly payment will be calculated in
accordance to the type of mortgage.
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3 Types of mortgages

Bullet mortgage

Bullet mortgages do not require the pay-off of the initial principal, P0, throughout
the contractual period. The monthly payment, xt, thus only consists of the interest
payment, i.e. xt = cP0 for all t = 1, 2, . . . ,M − 1. The only exception is the last
payment, t = M , in which the initial principal needs to be repaid, hence xM =
P0(1 + c), see figure 1.

Linear mortgage

In a linear mortgage, the borrower repays the initial mortgage loan by a fixed amount
every month. On top of this the borrower pays interest, but the interest payments
will reduce over time since the borrower is gradually redeeming the initial loan. Since
the mortgage amount will actually decrease, so will the interest payments. Say that
the initial principle is P0. Then, each month a payment of P0/M is performed, plus
the interest. So the monthly payment, xt, is thus the sum of P0/M plus the interest,
cPt, with Pt = M+1−t

M P0. The monthly interest decreases every month, since the
principle, Pt, decreases over time.

Straight line or level-pay or annuity mortgage

The characteristic of a straight line mortgage is that the monthly payment by the
borrower is constant, x∗ (assuming that there are no fluctuations in the mortgage
interest rates). This means that initially the borrower pays a lot of interest, while
the pay-off of the initial principle, P0, is relatively small. This reverses towards the
end of the mortgage term, when a smaller fraction of the monthly payment consists
of interest payment. The constant monthly payment, x∗, can be calculated as follows

P0 =

(
M∑

t=1

x∗
(1 + c)t

)−1
⇒ x∗ =

cP0(1 + c)M

(1 + c)M − 1
. (1)

The situation in the Netherlands

The Dutch housing market is shaped by four dominant forces, which stem from for-
mer political choices, see (3): (i) income tax deductibility of mortgage interest; (ii)
a rental market in which not-for-profit social housing institutions have a combined
market share of 84 percent; (iii) a scheme involving rent control and strong tenant
protection; and (iv) a restrictive regulatory (‘zoning’) regime for the development and
construction of new homes. The Dutch housing stock consists of 7.1 million houses,
56 percent of which are in the owner-occupied segment. This rate is below aver-
age in the eurozone. The low share of the owner-occupied segment in itself acts as
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Figure 1: Cashflow (monthly payments) depiction for the various types of mortgages:
Bullet, Linear and Level Pay mortgage

risk filter, since access to ownership is restricted to households with a good risk profile.

The Netherlands scores high in terms of mortgage debt. In fact, with a mortgage
debt stock equalling 108% of the gross domestic product in 2012, see Figure 2. On
the basis of this high debt burden, risks to the Dutch mortgage market are perceived
to be elevated.

	
	

	

	
	

	

Figure 2: GDP per capita (2010), on the left, and current account balances (2011),
on the right

In (1), the following conclusions were drawn for the Dutch mortgage market:

• The strong asset base of Dutch households and the full tax deductibility of
interest payments are the primary reasons for the relatively high mortgage debt
levels in the Netherlands.

• From 2013 onwards, it is expected that tax deductibility will only apply to
amortising mortgage loans. Existing mortgage borrowers will be excluded from
this change and continue to benefit from the existing tax regime. First-time
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buyers will be hit by this change, which translates into higher net mortgage
servicing costs.

• The Dutch housing market is unlikely to recover in the short run. Cyclical head-
winds to the economy, a very low level of consumer confidence and structural
changes to the housing and mortgage market are making people reluctant to
buy a house. House prices are likely to decline further in the short run.

• Foreclosures rates are very low, especially in international comparisons. Al-
though the modest recession is likely to result in an increase in the foreclosure
rate, the resilient structure of the economy and the mortgage market will prevent
a sharp increase in mortgage defaults.

Risks for the Dutch mortgage market

Till 2012, the main risks for the issuer of a mortgage loan were late payments and
ultimately foreclosure. Late payments are generally managed well. Virtually all mort-
gage payments are automatically debited from current accounts. Payment failures are
quickly discovered and notices are sent out usually within days. Statistics from vari-
ous rating agencies show that mortgage arrears are very low in the Netherlands. By
international comparison, both late payment and foreclosure rates are among the low-
est in Europe.

Figure 3: RMBS Prime 60+ days delinquency ratet

A very recent factor of risk is related to the housing price, (3). For about thirty
percent of Dutch mortgages, the size of the mortgage exceeds the value of the un-
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derlying property (4)1. These households suffer from negative home equity, their
mortgages are ‘underwater’. (4) shows that the underwater problem affects mainly
younger households (20-40 years).

Key figures for the Dutch mortgage market

According to (3), the tax deductibility of mortgage interest has greatly influenced the
Dutch mortgage market. It has encouraged ‘interest only’ mortgages, leading to high
portfolio LTVs, and caused a large difference between LTIs based on gross and net
income. Yet defaults and losses have remained very low, even in the recent crisis. The
mortgage portfolio of lenders in the Dutch market consists of 3.5 million households:
83 percent of the 4.3 million Dutch homeowners carry a mortgage debt, with their
property as collateral. In 2013, the total mortgage debt amounted to EUR 637 billion.
The value of the housing stock amounts to EUR 1.07 billion.

4 Mortgage value

The objective of this study is to model and predict the net present value of a mortgage
portfolio. The net present value of a mortgage portfolio is the sum of all future cash
flows, xi,t, of mortgage i at time t, discounted appropriately. In order to be able to
generate income, the interest rate at which the bank borrows money, say rt (expressed
in % per month and called yield), must be smaller than the coupon rate, ct, of the
mortgages.

Let ct denote the cashflow at time t, then its net present value at time 0 is given
by ct

(1+reff)t
, assuming that reff is the effective interest rate (corresponding here to a

monthly period). If the interest rate changes over time, then the net present value
can be calculated by discounting every month and using the appropriate interest rate
as they appear in the yield curve, see Figure 4.

We assume that the future cashflows from a borrower, ct, are always larger or
equal to the contractual payments, xt. The exact amount of the additional payment,
dt = ct − xt, which is voluntary, depends on various parameters, which are discussed
in more detail in §6. The net present value for a mortgage at time t = 0, (PV), with
future cash flows ct for t = 1, ..,M is given by

PV =

M∑

t=1

ct
(1 + reff)t

(2)

1This figure is based on an approximated correction for mortgage-related savings (cf. Chapter 3).
Without this correction, and including non-bank loans, the percentage of underwater loans amounts
to 41 percent (2).
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	Figure 4: Interpolated yield curve, 01-01-2016. Yield versus number of months (0 to
360).

for a constant yield reff. If r = r(t) varies over time, then

PV =
M∑

t=1

ct

t∏

t′=1

1

1 + r(t′)
.

5 Risks of a mortgage portfolio
The net present value of a mortgage portfolio is the value of each discounted future
cash flow of the mortgages. However, there are several risks that make valuation of
the portfolio complicated; some of these risks are listed below.

• Default risk Default risk is the risk of customers not paying back (part of)
their mortgages. This can be the result of people losing their jobs or having
other problems with income which means they do not have enough money left
to pay off their mortgages. Another reason is people dying before the end of
the mortgage term.

• Interest rate risk Interest rate risk is the risk that banks have because of
changing market interest rates and with it changing income and expenses. The
interest that the banks receive on the loans and mortgages they have and the
interest they have to pay on the savings accounts of their customers depend
heavily on the market interest rate. A change in the market interest rate there-
fore influences the ratio of income and expenses.
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• Prepayment risk Related to interest rate risk is the prepayment risk. Prepay-
ment risk is the risk that customers pay back their loans or mortgages earlier
than their contract says they have to, which means that the bank misses out
on interest they would have received if no prepayment had been done. The pre-
payment risk depends on the interest rate since lower interest rates can make
it more profitable for customers to pay back part of their mortgages, since the
money they put on a bank account does not yield enough interest any more.

• Reputational risk Reputational risk is the risk that a bank has based on its
reputation as a reliable business partner. If the bank has a bad reputation,
customers may not want to use any of the financial products that the bank has
to offer and instead go to one of its competitors.

• Operational risk Operational risk is the risk the bank has in its operations.
According to Solvency 2 operations risk is “the risk of a change in value caused by
the fact that actual losses, incurred for inadequate or failed internal processes,
people and systems, or from external events (including legal risk), differ from
the expected losses”.

Figure 5: Average fraction of outstanding principal that is prepaid, versus the fraction
of time that is remaining until maturity, for each different type of mortgage (bullet,
level pay, straight line). The light blue plot shows the average over all of these types.
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Figure 6: The red curve is the (expected real (non-discounted) cash flow, based on
prepayment model. The blue curve are the remaining principals according to the con-
tractual payments. Green represents the interest payments.

6 Prepayment modelling

In this section we zoom in on the prepayment risk, which is a significant risk in a
mortgage portfolio. In order to manage this risk, it is important to have insight into
the prepayment behaviour of clients. Therefore, we used the provided data2 to find
the relation between the duration (defined as the time in months since the start of the
amortisation), and the average prepayment rate (defined as the prepayment made as
a fraction of the outstanding principal, averaged over all contracts). This relation is
represented in Figure 5. We see that in the beginning of the period, people typically
prepay a smaller amount of their outstanding principal. We can fit a curve through
this (for each type of mortgage, or just one curve if the differences are negligible).
This curve can be used to generate the future expected cashflows, which consists of
the contractual cashflows, in addition to the expected prepayments. The result of this
is depicted in Figure 6. As a final step, we have to discount these cashflows by making
use of the yield curve in order to obtain the present net value. The yield curve that
we are provided with for the present time, does not contain a value for each month,
but there are gaps. Therefore we interpolate the yield curve, after which we can use

2Due to confidentiality reasons and in order to guarantee the anonymity of the Bank that provided
us with the data set, we cannot describe the data, but can only present some results obtained from
the data set. We would also like to note that these results might be specific to the dataset we analysed
and might not be replicable for other data sets, as the data set provided to us was synthetic.
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Figure 7: Each bar represents the count of the number of people who prepay the
corresponding percentage of their outstanding principal.

it for discounting the future cash flows. The interpolated yield curve is depicted in
Figure 4.

7 Improvements of the model

We could make improvements on the model by not only distinguishing between the
different type of mortgages, but by also considering different types of prepayments
(i.e., curtailment, relocation, refinancing). Within curtailment, we can make a further
distinction, which is suggested by Figure 7. The low number of people who make
prepayments at around 15% of the outstanding principal can be explained by the
fact that there is a penalty inflicted on people who pay off more than 15% of their
outstanding principal. Therefore, people who would like to make a curtailment, either
avoid it by paying less than 15%, and if they really want to make a larger curtailment
they make it worthwhile by substantially overshooting the 15% barrier.

8 Relocation distribution – Fitting Approach

This study focuses on the relocation cases for the mortgage portfolio of the bank, with
interest time (maturity) equal to 360 months. By visual inspection, we consider the
Gamma distribution as the best candidate to fit the data of the variable ElapsedTime,
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see Figure 8. This variable represents the number of months elapsed at the time a
client decides to relocate this mortgage. Other distributions were tested, such as the
log-normal and beta, but the gamma distribution had the best fit.

Figure 8: Histogram of the variable “Number of Months” accounting for the months
that have elapsed since the beginning of the mortgage

Let Y be a random variable with the Gamma distribution with parameters ν and
ν/µ, symbolically Y ∼ Ga(ν, ν/µ), then the density function of this random variable
is written as

f(y|ν, µ) =
1

Γ(ν)

(
ν

µ

)ν
yν−1 exp

(
−ν
µ
y

)

= exp {ν(θy + log(−θ)) + (ν − 1) log(y)− log(Γ(ν)) + ν log(ν)} ,

with y > 0, θ = −1/µ and Γ the gamma function.

We can divide the data in the mortgage portfolio in 3 groups distinguishing for the
three types of mortgages: Bullet (1401 clients), Level Pay (1404 clients) and Straight
Line (1400 clients). In the first fit, we consider all three types of mortgages, obtain-
ing the parameter estimates γ = 2.0492072693 and γ/µ = 0.0186694832, see Figure
9a. If we consider just one type of mortgage, e.g. Bullet, we can repeat the fitting
and obtain very similar results. More concretely, we obtain the following parameter
estimates γ = 2.0104627616 and γ/µ = 0.0185100704, see Figure 9b. If we consider
the Straight Line, we obtain the following parameter estimates γ = 2.0288771200
and γ/µ = 0.0186201469, see Figure 9c, and for Straight Line, we have the following
estimates γ = 2.1129085041 and γ/µ = 0.0189148191, see Figure 9d.
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(a) γ = 2.0492072693 and rate γ/µ =
0.0186694832

(b) Gamma γ = 2.0104627616 and
rate γ/µ = 0.0185100704 shaped his-
togram and fit curve - Bullet Amor-
tisation Type

(c) Gamma γ = 2.0288771200 and rate γ/µ =
0.0186201469 shaped histogram and fit curve
- Straight Line Amortisation Type

(d) Gamma γ = 2.1129085041 and
rate γ/µ = 0.0189148191 shaped his-
togram and fit curve - Level Pay
Amortisation Type

Figure 9: Fitting the data to the Gamma distribution with parameters ν and ν/µ

Using the well known Kolmogorov-Smirnov test (KS), we tested the similarities
between the various estimates for the parameters comparing the case that all the data
is aggregated versus the cases that we distinguish for each type of mortgage. In all
cases, a significance level >> 5% was obtained, therefore we can consider that there
exist no significant differences between the 4 distributions. Thus, the distribution of
the months since the beginning of the mortgage to relocation does not depend on the
type of amortisation and the same probability distribution can be used for all the
amortisation types.

9 Relocation distribution – Survival Approach

In this section, we investigate the distribution of the relocation lifetime using notions
from survival analysis. More concretely, we use the Kaplan-Meier (KM) estimator,
which is a non-parametric statistic for the estimation of the survival function from
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the relocation amortisation lifetime data. In the present analysis, considering as zero
the instant in time at which the mortgage is contracted, the KM estimator gives, at
each month after the begging of the mortgage, an estimation of the probability that
a client has not relocated. The obtained KM estimator is illustrated in Figure 10.

Figure 10: Kaplan - Meier estimator
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Optimal dike heights around the IJsselmeer
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Abstract

In this note we show that the polytope associated with the IP model introduced
by Zwaneveld and Verweij (6) is not integer. We also prove that, for a fixed
number of dike segments, the problem can be solved in polynomial time. Sim-
ilarly, we show that for a fixed number of allowed barrier heights, the problem
can be solved in polynomial time.

1 Introduction
Protection against increasing sea levels is an important issue around the world. Op-
timal dike heights are of crucial importance to the Netherlands as almost 60% of its
surface is under threat of flooding from sea, lakes, or rivers. This area is protected
by more than 3500 kilometers of dunes and dikes. These dunes and dikes require
substantial yearly investments of more than 1 billion euro (5).

Recently, Zwaneveld and Verweij (6) gave an integer programming model for a
cost-benefit analysis to determine optimal dike heights that allows input-parameters
for flood probabilities, damage costs and investment costs for dike heightening. The
model by Zwaneveld and Verweij (6) is an improvement of the model proposed by
Brekelmans et al. (1), who presented a dedicated approach with no optimality guaran-
tee, and which was in turn an improvement of the original model by van Dantzig (4)
from 1956. The latter was introduced after a devastating flood in the Netherlands in
1953.
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Our work is based on the IP model presented in a recent manuscript by Zwan-
eveld and Verweij (6), where the authors study the problem of economical optimal
flood prevention in a situation in which multiple barriers dams and dikes protect the
hinterland to both sea level rise as well as peak river discharges. Current optimal
flood prevention methods (Kind (3), Brekelmans et al. (1)) only consider single dike
ring areas with no interdependency between dikes. Zwaneveld and Verweij (6) present
a model for a cost-benefit analysis to determine optimal dike heights with multiple
interdependencies between dikes and barrier dams, and they also show that it can be
solved quickly to proven optimality. The model was presented at the Study group
Mathematics and Industry (SWI), taking place in Amsterdam in the last week of
January 2017. It was our task at SWI 2017 to give a better understanding of the
mathematical complexity of the model proposed by Zwaneveld and Verweij. The
present report summarizes our approaches and results that were obtained during the
week that SWI took place and the weeks after it.

We will follow the notation used in Zwaneveld and Verweij (6). Before going
into the details of the problem, let us introduce some important terminology and the
geographical configuration of the dikes in the Netherlands. A dike segment is a part
of a dike that is protecting a region. It is possible that several segments protect the
same area and in that case they are called a dike ring. In the Netherlands, dike ring
areas and smaller dikes lie beneath the Afsluitdijk, sometimes denoted by the barrier
dam, which is the most outer dike located in the north. The Afsluitdijk separates the
North Sea and the IJsselmeer, an artificial lake.

In this paper we show that the polytope associated to the IP model introduced
by Zwaneveld and Verweij (6) is not integer. Moreover, we present some sufficient
conditions that allows the linear relaxation of the integer programming to avoid these
non-integral points. We also prove that, for a fixed number of dike segments, the
problem can be solved in polynomial time. Similarly, we show that for a fixed number
of allowed barrier heights, the problem can be solved in polynomial time. This paper
is organized as follows. In Section 2 we introduce the IP model that forms the subject
of our investigations. In Section 3 we discuss integrality of the polytope. In Section
4 we propose an alternative approach to solve the problem by means of dynamic
programming. Finally, in Section 5 we present a natural abstract version of the dike
height problem, which allows for several variations and open problems.

2 IP Model formulation

In this section we present the model formulated in (6).
Throughout we use the following notation:

• D is the set of dike segments.

• HD is the set of possible heights for a dike segment. For ease of notation, we do
not let HD depend on the dike segment, i.e., all dike segments have the same
set of possible heights. We denote the height of a previous year by h1, and that
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of the current year by h2. Likewise, HB is the set of possible heights for the
barrier dam and we denote the height of the barrier in the previous year by hB1 ,
and that of the current year by hB2 .

• T is the set of time periods at which changes to a dike segment can be made
(e.g., one can assume that changes are scheduled per year), for simplicity we
assume (with abuse of notation) T = {0, 1, . . . , T}.

The decision variables are:

• CY (t, d, h1, h2) ∈ {0, 1}. The variable being one meaning that dike ring d is
updated in time period t from height h1 up to height h2. If h1 = h2 then this
dike ring segment is not strengthened in period t and remains at its previous
height. This decision variable is used for tracking investment (and maintenance)
costs.

• DY (t, d, h2, h
B
2 ) ∈ {0, 1}. It is one if at the end of period t the barrier dam

has height hb2, and dike segment d is of height h2. This variable is used to
connect investments in dike segments (and the barrier dam) to expected dam-
ages. Another way to view it is that this variable linearizes the 0-1 variable(∑

h1
CY (t, d, h1, h2)

) (∑
hB
1
B(t, hB1 , h

B
2 )
)
.

• B(t, hB1 , h
B
2 ) ∈ {0, 1}. It is one if the barrier dam (i.e., the Afsluitdijk) is

updated in time period t from height hB1 up to hB2 . If hB1 = hB2 then the barrier
dam is not strengthened in period t and remains at its previous height. This
decision variable is used for bookkeeping investment (and maintenance) costs,
flood probabilities and related expected damage costs of the barrier dam.

The input parameters are:

• Dcost(t, d, h1, h2) = costs for investment and maintenance, if dike ring d is
strengthened in time period t from h1 to h2. If h1 = h2, the dike ring segment
is not strengthened and these costs only represent maintenance costs.

• Dexpdam(t, d, h2, h
B
2 ) = expected damage, i.e.,

Dexpdam(t, d, h2, h
B
2 ) = prob(t, d, h2, h

B
2 )× damage(t, d, h2, hB2 ),

where prob(t, d, h2, hB2 ) and damage(t, d, h2, hB2 ) are respectively the probability
of failure and the expected damage cost (the latter given that there is a flooding)
in period t given the height of the segment h2 and the height of the barrier hB2 .
Note that it is assumed that both the probability of failure and the expected
damage upon failure of dike segment d only depend on the height of segment d
and that of the barrier dam.

• Bcost(t, d, hB1 , hB2 ) = costs for investment and maintenance, if the barrier dam
is strengthened in time period t from hB1 to hB2 . If hB1 = hB2 , the barrier dam is
not strengthened and these costs only represent maintenance costs.
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• Bexpdam(t, hB2 ) = expected damage of a flooding of the barrier dam, i.e.
prob(t, hB2 ) × damage(t, hB2 ), here prob(t, hB2 ) and damage(t, hB2 ) are respec-
tively the probability of failure and the expected damage cost (the latter given
that there is a flooding), in period t given the height of the barrier hB2 .

All input parameters are calculated in net present value of a certain year (i.e. 2015,
which is the starting year for our calculations) and represent price levels in a certain
year.

The IP model is:

minimize
∑

t∈T

∑

d∈D

∑

h1∈HD

∑

h2≥h1

Dcost(t, d, h1, h2) · CY (t, d, h1, h2) + (1)

∑

t∈T

∑

d∈D

∑

h2∈HD

∑

hB
2

Dexpdam(t, d, h2, h
B
2 ) ·DY (t, d, h2, h

B
2 ) + (2)

∑

t∈T

∑

hB
1 ∈HB

∑

hB
2 ≥hB

1

(
Bcost(t, hB

1 , h
B
2 ) +Bexpdam(t, hB

2 )
)
·B(t, hB

1 , h
B
2 ) (3)

subject to

CY (0, d, 0, 0) = 1, CY (0, d, h1, h2) = 0 ∀d ∈ D,h1, h2 ∈ HD, h2 ≥ h1 ∧ h2 > 0 (4)
∑

h1≤h2

CY (t− 1, d, h1, h2) =
∑

h3≥h2

CY (t, d, h2, h3) ∀t ∈ T>0, d ∈ D,h2 ∈ HD (5)

∑

h1≤h2

CY (t, d, h1, h2) =
∑

hB
2

DY (t, d, h2, h
B
2 ) ∀t ∈ T, d ∈ D,h2 ∈ HD (6)

B(0, 0, 0) = 1, B(0, hB
1 , h

B
2 ) = 0 ∀hB

1 , h
B
2 ∈ HB , h

B
2 ≥ hB

1 ∧ hB
2 > 0 (7)

∑

hB
1 ≤hB

2

B(t− 1, hB
1 , h

B
2 ) =

∑

hB
3 ≥hB

2

B(t, hB
2 , h

B
3 ) ∀t ∈ T\{0}, d ∈ D,hB

2 ∈ HB (8)

∑

hB
1 ≤hB

2

B(t, hB
1 , h

B
2 ) =

∑

h2

DY (t, d, h2, h
B
2 ) ∀t ∈ T, d ∈ D,hB

2 ∈ HB (9)

CY (t, d, h1, h2) ∈ {0, 1} ∀t ∈ T, d ∈ D,h1 ∈ HD, h2 ≥ h1 ∈ HD (10)

DY (t, d, h2, h
B
2 ) ∈ {0, 1} ∀t ∈ T, d ∈ D,h2 ∈ HD, hB

2 ∈ HB (11)

B(t, hB
1 , h

B
2 ) ∈ {0, 1} ∀t ∈ T, d ∈ D,hB

2 ≥ hB
1 ∈ HB (12)

3 On the integrality of the polytope
In this section we show that, in general, there are vertices of the polytope defined by
the linear relaxation of the constraints (when the integer values are considered to be
in the interval [0, 1] instead of {0, 1}), that have non integral coordinates.
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Figure 1: Example of non-integer point.

(t = 0, h = 0) (t = 1, h = 0)

(t = 1, h = 1)

(t = 2, h = 0)

(t = 2, h = 1)

CY (1, 0, 0) = 1/2

CY (1, 0, 1) = 1/2

CY (2, 1, 1) = 1/2

CY (2, 0, 0) = 1/2

CY (2, 0, 1) = 0

(t = 0, hB = 0) (t = 1, hB = 0)

(t = 1, hB = 1)

(t = 2, hB = 0)

(t = 2, hB = 1)

B(1, 0, 0) = 1/2

B(1, 0, 1) = 1/2

B(2, 0, 0) = 1/2

B(2, 1, 1) = 1/2

B(2, 0, 1) = 0

DY (1, 1, 0) = 1/2

DY (1, 0, 1) = 1/2
DY (2, 0, 0) = 1/2 DY (2, 1, 1) = 1/2

The example involves the following sets indexing the variables.

• T = {0, 1, 2}

• one segment. Hence, we remove the dike index from all related variables.

• H = {0, 1}, HB = {0, 1}

The point P , candidate to be a vertex of the polytope of the linear relaxation, has
the following non-zero values:

• CY (t, h1, h2): CY (0, 0, 0) = 1, CY (1, 0, 1) = 1/2, CY (1, 0, 0) = 1/2, CY (2, 1, 1) =
1/2, CY (2, 0, 0) = 1/2.

• B(t, h1, h2): B(0, 0, 0) = 1, B(1, 0, 1) = 1/2, B(1, 0, 0) = 1/2, B(2, 1, 1) = 1/2,
B(2, 0, 0) = 1/2.

• DY (t, h2, h
B
2 ): DY (0, 0, 0) = 1,DY (1, 0, 1) = 1/2,DY (1, 1, 0) = 1/2,DY (2, 1, 1) =

1/2, DY (2, 0, 0) = 1/2.

The example is summarized in Figure 3 where each arrow corresponds to one of
the decision variables.
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One can check that the example is a feasible solution (a point in the polytope).
Indeed, the flow conditions are verified, as well as the equations linking the dummy
variables DY and the CY ’s and B’s (Equations (6) and (14)).

To argue that the point P is indeed a vertex of the polytope, we show that, for
every line with non-zero direction vector v = (x0, . . . , x14), and for every ε > 0, either
P + εv or P − εv is outside the polytope. Every coordinate xi of v corresponds,
uniquely, to a variable B(·), CY (·), or DY (·).

First observe that if xi is the coordinate related to a variable that is either 0 or 1
in P , then xi = 0, as otherwise, for any ε, either P + εv or P − εv would be outside
of the polytope. Hence, the only xi that may be non-zero, are those for which the
coordinate i in P is in the open interval (0, 1).

In our example, every equation involves at most 2 variables on each side of the
equality, one of them being either 0 or 1. Hence the implications written below
are forced by the previous observation. Assume, for instance, that the coefficient xi
corresponding to B(2, 1, 1) in v is negative.

• Then, by the flow constraints (Equation (8)), the coefficient of B(1, 0, 1) is
negative.

• Then, by the flow constraints, the coefficient of B(1, 0, 0) is positive.

• Then, by the flow constraints, the coefficient of B(2, 0, 0) is positive.

Now, using the equations that link the variables B and DY , we obtain that the
the coefficient of DY (2, 1, 1) is positive, which implies that

• the coefficient of CY (2, 1, 1) in v is positive.

• Then, by the flow constraints, the coefficient of CY (1, 0, 1) is positive.

• Then, by the flow constraints, the coefficient of CY (1, 0, 0) is negative.

• Then, by the flow constraints, the coefficient of CY (2, 0, 0) is negative.

Observe now that this implies that the coefficient of DY (2, 0, 0) has to be negative.
However, let us now look at the coefficients of DY (1, 0, 1) and the one corresponding
to DY (1, 1, 0).

If we use the links between the variables DY and B, the coefficients corresponding
to the variables DY (1, 0, 1) and DY (1, 1, 0) in v have to be negative and positive
respectively. However, if we look at the equations linking the variables DY and CY ,
the signs of the coefficients should have the opposite sign. Thus, these coefficients
should be zero, implying that all the other coefficients have to be 0, which shows that
no non-zero vector v exists.

The first coefficient involved in the argument was the one involving the variable
B(2, 1, 1). Since the implications described here involve all the non-zero variables of
the point, and the implications are reversible, the result now follows.



Optimal dike heights around the IJsselmeer 21

3.1 Avoiding the non-integral points
We present here a sufficient condition on the objective function (1)–(3), that guaran-
tees that either the linear relaxation of the integer program finds an integral point as
a solution, or that there is an integral point in the optimal face and a procedure to
find it.

Proposition 1. Assume that, for every h2 ≤ h′2 and hB
2 ≤ h′B2 the objective function

satisfies:

Dexpdam(t, i, h′2, h
B
2 ) +Dexpdam(t, i, h2, h

′B
2 ) ≥ Dexpdam(t, i, h2, h

B
2 ) +Dexpdam(t, i, h′2, h

′B
2 )
(13)

and that, if h1 ≤ h′1 and h2 ≤ h′2, then, for every t,

Bcost(t, h1, h
′
2) +Bcost(t, h

′
1, h2) ≥ Bcost(t, h1, h2) +Bcost(t, h

′
1, h
′
2) (14)

and, for every t and d,

Dcost(t, d, h1, h
′
2) +Dcost(t, d, h

′
1, h2) ≥ Dcost(t, d, h1, h2) +Dcost(t, d, h

′
1, h
′
2) . (15)

Then, there is an optimal solution of the linear relaxation of the IP model in Section 2
with integer coordinates.

Proof of Proposition 1. The problem from Section 2 can be thought of as several
intertwined min-cost flow problems (see Section 5), one for each dyke, and one for the
barrier.

Let x0 be a solution point given by the linear relaxation, and assume it is non-
integral. Using the monotone relations (14) and (15), the paths of the non-zero
flows that x0 defines for each of the dykes and the barrier can be assumed to be
completely ordered (as otherwise, the flow values on the edges might be modified while
maintaining the value of the in flow and out flow at each vertex while not increasing
the objective function). So, we obtain a layered flow, where no two flow-paths strictly
cross between two layers of vertices corresponding to two different consecutive times.
In particular, for each of the dykes d, we can talk about a top path Ud (the height
profile being always larger or equal than all the other height profiles), and a bottom
path Ld, whose heights are smaller or equal than all the other height profiles. There
is also a top UB and bottom LB paths for the flow of the barrier.

Observe that, as x0 is non-integral, at least one of the variables DY is non-integral
(either not equal to zero or not equal to one). Let DYmin be the minimal distance of
the non-integral variables to either 0 or 1.

Using (13) as a guideline repeatedly, we modify the variables DY from x0 to create
a new feasible solution x1 in which the variables DY (t, i, h2, h

B
2 ) are “untangled”. In

particular, we can assume that

DYx1(t, i, h2(Ui), h
B
2 (UB)) =

= min




∑

h2

DYx0
(t, i, h2, h

B
2 (UB)),

∑

hB
2

DYx0
(t, i, h2(Ui), h

B
2 )







22 SWI 2017 Proceedings

and that

DYx1
(t, i, h2(Li), h

B
2 (LB)) =

= min




∑

h2

DYx0(t, i, h2, h
B
2 (LB)),

∑

hB
2

DYx0(t, i, h2(Li), h
B
2 )





by reassigning some mass of the variables DY that are crossed. The remaining vari-
ables of x0 are kept equal in x1. The reassignment is done in a way to preserve the
flow constraints, so x1 remains feasible. By (13), x1 has the same objective value as
x0, since x0 is optimal.

Let Fmin be the minimal difference to 0 or 1 of the flow through each Ld, Ud for
every dyke d and LB or UB , which can be assumed to be the minimal value of

min
t,i

{
DYx1

(t, i, h2(Ui), h
B
2 (UB)), DYx1

(t, i, h2(Li), h
B
2 (LB))

}

We note that x1 is not a vertex of the polytope. Indeed, for any dyke d, we can
pair up Ld ↔ LB and Ud ↔ UB . Using (14) and (15), this pairing is well defined and
consistent. In particular, we can redirect an ε flow (0 < ε ≤ Fmin) from each of the
Ld to Ud and from LB to UB , or viceversa (the redirection of the flow should be done
on each of the paths simultaneously, either from upper to lower paths, or from lower
to upper ones). Since there exists a d (or B) for which the paths Ld and Ud differ,
this flow-redirection by ε gives a different point on the polytope of feasible points and
shows that x1 is not a vertex of the polytope.

Furthermore, for every ε > 0, the mentioned flow redirection should give the same
value of the objective function (since otherwise x0 would not have been an optimal
solution). Hence we can choose to redirect the flow at our convenience; we redirect it
so that the edge whose flow-value is Fmin becomes either 0 or 1 (depending on whether
its value is closer to 0 or to 1, if Fmin = 1/2, we arbitrarily redirect the flow either
way). In particular, we have obtain a new solution x2 where the number of edges with
non-integral flow has been reduced, at least, by one. This procedure can be iterated
until no non-integral flows are found. Therefore, an integral vertex of the polytope in
the optimal face of the linear relaxation of the integer program is found.

4 Alternative approaches
A feasible solution to the integer program presented in Section 2 can be interpreted
as a choice of height hd(t) for each dike segment at each time period t, and a height
hb(t) of the barrier dam. Abstractly, the cost of these height series can be written as
a sum of cost terms which depend only on the ‘upgrade’ done in period t to segment
d (i.e., a heightening of the dike, or merely the maintenance cost), we denote this by
costd(hd(t− 1), hd(t), t) for segment d, and by costb(hb(t− 1), hb(t), t) for the barrier.
Finally, there is also an expected damage cost for upgrading the dike and barrier to
heights hd(t) and hb(t) in period t, denoted by damd,b(hb(t), hd(t), t). The problem
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modeled in Section 2 can thus be written in the following way:

d− opt =

min
{ ∑

t∈[T ]

costb(hb(t− 1), hb(t), t) +
∑

d∈D
costd(hd(t− 1), hd(t), t) + damd,b(hb(t), hd(t), t)

s.t. hd(t) ∈ HD, hb(t) ∈ HB for d ∈ D, t ∈ T

hd(t) ≥ hd(t− 1) for d ∈ D, t ∈ T

hb(t) ≥ hb(t− 1) for t ∈ T
}

The linear relaxation of the integer programming model presented in Section 2 can be
solved in time polynomial in |D|, |T |, |HD|, and |HB |. However, in general there is no
guarantee that the returned solution is integral, see Section 3. In the next two sections
we describe two different approaches to solving this problem. Both approaches have
the benefit of solving the integer problem exactly. However, this comes at a cost:
both approaches give a polynomial time algorithm only if one of the parameters is
regarded as a constant. The first approach is to solve the integer program by ways
of a dynamic program. The second approach comes down to enumerating all possible
height profiles of the barrier dam, and for each profile solving shortest path problems
on small graphs.

4.1 Dynamic programming
There are two key observations to be made. First, the second part of the objective
function decomposes naturally into a sum of |D| terms, each of which depends only
on the barrier height and one segment. Secondly, for each time period the cost only
depends on the dike/barrier heights at times t − 1 and t. Together this allows us to
solve the problem using a dynamic program. The recursion will be on the time period.
We maintain the following table: opt(hb,hs, t) for all t ∈ T, hb ∈ HB ,h

d ∈ (HD)D.
The interpretation is as follows, opt(hb,hd, t) is equal to the minimum cost made,
up to time t, if the barrier and segments are of height hb and hd at time period t
respectively. We can compute the entries of this table as follows:

opt(hb,hd, t) = min
{
opt(hb − ib,hd − id, t− 1) + costb(hb − ib, hb, t)+

cost(hd − id,hd, t) + dam(hb,hd, t) :

hb − ib ∈ HB ,h
d − id ∈ (HD)|D|

}

It follows that each entry of the table can be computed in time O(|HB ||HD||D|).
Hence, all entries of the table can be filled in time O

(
(|HB ||HD||D|)2 · |T |

)
. Using the

interpretation of opt(hb,hd, t) it follows that

d− opt = min
hb∈HB ,hd∈(HD)|D|

opt(hb,hd, T )

This shows the following result:
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Theorem 4.1. One can determine d− opt in time O
(
(|HB ||HD||D|)2 · |T |

)
.

4.2 Shortest paths

In the previous section we have seen an algorithm for computing the optimal dike/barrier
height profiles which has polynomial runtime for a fixed number of dike segments, in
this section we present a different algorithm, based on shortest paths, that runs in
polynomial time when the number of possible barrier heights is fixed. We present an
algorithm that computes d− opt in time

O




# segments︷︸︸︷
|D| · (T · |HD|)2︸ ︷︷ ︸

Complexity shortest path

·
# barrier height profiles︷ ︸︸ ︷

T |HB |


 .

To illustrate the basic idea we first discuss the algorithm for the setting of one dike
segment and no barrier, we then add a barrier dam and from that the generalization
to multiple dike segments and barriers easily follows.

4.2.1 One dike segment, no barrier

First consider the situation with only one dike segment and no barrier. In this case
the problem of minimizing the cost at time period T becomes equivalent to finding a
shortest p-q path in the following graph. The source p = (0, 0) is the initial height of
the dike at time 0. Then, for each time t ∈ [T ] and each possible height of the dike
h, we define a node (t, h). Finally we define a sink node q. The edges are defined as
follows. We first add an edge between (0, 0) and (1, h) for each h ∈ HD, with weight
cost(0, h, 1), similarly for each t ∈ [T ] and height pair h1 ≤ h2 there is an edge from
(t − 1, h1) to (t, h2) with weight cost(h1, h2, t) equal to the financial cost associated
to the decision of raising the dike segment from height h1 to h2 in time period t.
Notice that since there is no barrier, we can assume that the expected damage cost
dam(t, h) are incorporated in cost(h1, h2, t). Finally, the nodes (T, h) are all connected
to the sink q. In the figure below the incoming and outgoing arcs of a node (t, h2) are
sketched for some 0 < t < T and h2 ∈ HD. One observes that, indeed, the shortest
p-q path corresponds to the best strategy of heightening this dike segment.

Recall, the shortest p-q path in a graph G = (V,E) with nonnegative edge weights
can be found in time O(|V |2) using Dijkstra’s algorithm.
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(t− 1, h2)

(t− 1, h2 − 1)

(t− 1, h2 − 2)

(t, h2) (t+ 1, h2)

(t+ 1, h2 + 1)

(t+ 1, h2 + 2)

cost(t, h1, h2)

4.2.2 One dike segment, a barrier

We now consider the case of a single dike segment and a barrier. The observation we
need to make is that the total financial cost incurred by upgrading the dike segment
from height h1 to height h2 in time period t no longer only depend on the dike segment,
they also depend on the height of the barrier at time point t. This means that we
cannot solve a shortest path problem for the barrier and dike segment separately: the
costs on the dike segment graph depend on the path chosen in the barrier graph.

The key idea is that if we fix the height of the barrier at each time t, then we
reduce to the previous setting where all the costs are known. Hence, the optimization
problem d− opt can be solved by minimizing over the possible height profiles hb(t) of
the barrier over time, the minimum cost of a p-q path in the network defined in the
previous section (using the costs associated to hb(t)) plus the cost of implementing
height profile hb(t). The outer minimization over the possible height profiles hb(t)
is performed by enumeration, which takes time roughly T |HB |. This means that the
optimal investment strategy for both the dike segment and barrier can be found in
time

O
(
(T · |HD|)2 ·

(
T

|HB |

))
= O

(
(T · |HD|)2 · T |HB |

)
.

4.2.3 Multiple dike segments and a barrier

The approach of the previous section easily generalizes to the setting of multiple
dike segments and a barrier. Once a height profile hb(t) of the barrier dike is fixed,
the optimal height profiles of each of the different dike segments can be computed
independently. Hence the problem of finding the optimal investment strategy for
multiple dike segments and a barrier can be solved in time

O
(
|D| · (T · |HD|)2 · T |HB |

)
.
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This approach generalizes to the setting of multiple barriers and dike segments (where
the costs of a dike segment at time t may depend on the height of several barriers).
The complexity will be of the form

O
(
|D| · (T · |HD|)2 · T |HB ||B|

)
,

where |B| is the number of barriers. One should note that the above approach assumes
the same discretization in time of the barrier and dike segments. It seems reasonable
to assume a coarser discretization for the barrier of say TB steps, this would reduce
the above-mentioned formula to

O
(
|D| · (T · |HD|)2 · (TB)|HB ||B|

)
.

5 An abstraction of the problem
In this section we present a natural abstract version of the dike height problem, which
allows for several variations and questions, which we believe have not been considered
in the literature before. We believe that studying these variations may shed more
light on the complexity of the dike height problem.

In the dike height problem we essentially have two directed graphs where each path
in one of the two graphs (the one modeling the height of the barrier dam) influences
the cost of arcs in the other graph. It is not difficult to show that if we were to allow
any kind of influence of the path in the one graph on the cost of arcs in the other
graph, the problem would automatically become NP-hard. Indeed, one can easily
show that in this case the problem contains the problem of finding two vertex disjoint
paths in a directed graph, which is NP-complete (2).

For this reason, we consider the following restricted problem.

Definition 5.1. For k ∈ N, a k-layered graph is a directed graph D = (V,A) such
that V is partitioned into layers V = V0 ∪V1 ∪ . . .∪Vk ∪Vk+1 such that each a ∈ A is
from Vi to Vi+1 for some i = 0, . . . , k and where V0 and Vk+1 both consist of a single
vertex and where |V1| = |V2| = · · · = |Vk|. We denote the arcs between Vi and Vi+1

by A[Vi, Vi+1] and we refer to |V1| as the partition size.

Definition 5.2 (Minimum intertwined-cost path).
Input: two k-layered graphs G1 = (V1, A1), G2 = (V2, A2), with partitions Vi =

V
(i)
1 ∪ . . . ∪ V (i)

k , respectively, cost functions c1 : A1 → R≥0, c2 : A2 → R≥0 and for
each i = 1, . . . , k a map mi : V

(2)
i ×A[Vi−1, Vi]→ R≥0.

Given a path P2 = (a1, v1, a2, v2, . . . , ak, vk, ak+1) from V
(2)
0 to V (2)

k+1 and a path
P1 = (a′1, . . . , a

′
k+1) from V

(1)
0 to V (1)

k+1, we define the cost of the pair (P1, P2) as

cost(P1, P2) =
k+1∑

i=1

(c1(ai) + c2(a
′
i)) +

k+1∑

i=1

mi(vi, ai).
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Output: the minimum cost of a pair of paths (P1, P2) over all pairs and a pair of
paths (P ∗1 , P ∗2 ) attaining this minimum.

In the Minimum intertwined-cost problem, the dependence of cost(P1, P2) on the
path P2 is linear in the edges of P2. It is not difficult to see that the dike height problem
in Section 4.2.2 can be modeled as a special case of the Minimum intertwined-cost path
problem, where for both graphs the arcs between Vi and Vi+1 are somewhat restricted.
More precisely, if we identify each V (2)

i (i = 1, . . . , k) with HB =: {h1, . . . , ht} then
the only arcs that are present are of the from (hi, hj) with hi ≤ hj . This particular
fact allowed us in Section 4.2.2 to give an algorithm for the problem, which runs in
polynomial time if we consider the size of the sets in the partition of the vertices of
the second graph as a constant. Clearly if the bipartite graphs between V (2)

i and V (2)
i+1

are complete, then this dynamic programming approach will not work. It would be
interesting to find out if some other approach may yield an efficient algorithm.

We end this section with some concrete questions.

Question 1. Is the Minimum intertwined-cost path problem NP-hard?

If this question has a positive answer, then it makes sense to consider the following
questions.

Question 2. Under which conditions on the bipartite graphs Gj [V
(j)
i , V

(j)
i+1], (j = 1, 2,

i = 1, . . . , k) is there a polynomial time algorithm for the Minimum intertwined-cost
path problem?

Question 3. Suppose the partition size of G2 is constant. Under which conditions
on the bipartite graphs Gj [V

(j)
i , V

(j)
i+1] (j = 1, 2, i = 0, . . . , k) is there a polynomial

time algorithm for the Minimum intertwined-cost path problem?
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Abstract

The Dutch government compensates health insurance companies when insuring
individuals who are estimated to have high health care costs. This is necessary
to avoid insurers not offering services to certain groups or not providing them
with a high quality of service. It is, however, unknown to what extent the
differences in health care expenses by different groups of people are truly due to
a poorer or better health status. We explore several statistical approaches that
facilitate explaining the cause of these differences.

Keywords: health insurance, risk equalisation, model selection, predictive
model, explanatory model, model selection, lasso, elastic net, ridge regression,
clustering.

1 Introduction
Health care costs in the Netherlands are paid for by private insurance companies, who
receive their funds from two different sources. In the Netherlands each adult chooses
an insurance company and pays a fixed premium per month. Insurers are free to set
their premium, but it has to be the same for all insured adults. The first source of
income for insurance companies is this monthly premium paid by all their customers.

The second source is a subsidy from the government. This subsidy is different
for different insured individuals, based on a number of indicators that estimate the
general health of the insured. The goal of this differentiation is to equalize the risk
carried by insurers when insuring different people. Without such equalization, it
would be profitable for insurers to target certain groups they estimate will generate
larger health care costs and an incentive for insurers to offer good care and services to
those in need would be lacking. This report focuses on the second source of funding,
the risk equalization fund.

Determining the correct amount of funding for each insured individual is a chal-
lenging task and involves political considerations. This task is very important since
health care costs in the Netherlands are increasing significantly due to an ageing pop-
ulation, which is a threat to the affordability of the national health care system. The
particular problem we intend to address is that the current approach uses past health
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care expenses as the basis for the estimation of required health care costs. These past
expenses, however, are not necessarily a good indicator of the truly required health
care costs. Several factors may lead to inflated expenses, such as, but not limited to:
a propensity to ‘consume’ health care if it is readily available, the deliberate exaggera-
tion of diagnoses by care givers to increase turnover and profit and inefficiencies in the
execution of certain treatments. On the other hand, the real expenses do not see where
care was required, but not consumed due to financial incentives, such as the legally
imposed deductible of several hundred euros or the loss of income for self-employed
people. These two deficiencies both have grave consequences for the functioning of
the health care market. The first error, overestimating the truly required costs, re-
moves the incentive for health insurers to put pressure on care providers to make their
business more cost efficient. Furthermore, as there is a fixed total budget, an overes-
timated budget for one group directly harms another. The cases where the insured
persons would benefit from more care but are for some reason unable to obtain this
are now largely ignored by the system. This could be detrimental to their long term
health, and is certainly an ethically questionable situation.

2 The current model

In this section we will outline the current procedure used by the government to deter-
mine the funding for health insurance companies. We will particularly focus on how
the funding for risk equalization is computed. The risk equalization model is calcu-
lated for the total funding and then adjusted for a set premium by VWS. After the
real premium collection by insurers, an insurance company either gets money from
the risk equalization fund or contributes to the risk equalization fund based on the
outcome of the risk equalization model. The basis of the risk equalization is a linear
regression model that aims to predict the health care costs for each individual based
on a number of personal variables that are deemed a good indicator of their general
‘health status’. We will detail which variables are used — and to some extent why
— in Section 2.1. Due to the time required for processing all health care providers’
accounts of realized costs, there is a three year lag in the cost prediction. This implies
the risk equalization funds are determined for 2017 using a regression model based on
costs from 2014 and the characteristics (FKG/DKG) from 2013.

2.1 Model parameters

The variables used for risk equalization are intended to be variables that indicate how
healthy a person is likely to be. Originally, this included only the age and gender of
individuals, but the number of variables included in the model has vastly increased
since then.

We have summarized the used variables in Table 1 and noted a few remarkable
properties of the data below. The categories s_fkg, s_dkg and s_hkg all indicate
specific use of products and are therefore strongly linked to specific health issues.
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Table 1: A list of model parameters used in the government’s risk equalization scheme

Variable prefix Explanation
normbedrag_somatisch Gross compensation of health insurer for so-

matic costs in the postcode based on risk equal-
ization model

s_iedereen Total number of people in the postcode, given
in ‘insured years’ to account for people who are
insured for the full year

s_kost Total costs for various types of somatic care
s_totale_kosten Grand total of somatic costs
s_lgnw Age and gender categories
s_fkg Pharmaceutical cost groups
s_ape Postcode ‘region’
s_dkg Diagnosis cluster groups
s_mhk History of medical expenses (top percentiles

over past two or three years)
s_hkg Medical devices-based cost group
s_avi Source of income
s_ses Social economic status
s_FGG Physiotherapy use
s_VGG Nursing and caregiving (at home) costs
s_GGG Geriatric rehabilitation care
s_gsm Comorbidity

The (ten) postcode ‘regions’ indicated by the s_ape variables will be discussed in
greater detail in Section 2.2. Some of the categories (e.g. s_avi and s_ses or s_fkg
and sdkg) are strongly correlated, resulting in a strong multicollinearity, which we
will discuss in Section 4.3. It should also be noted that the category s_avi contains a
wealth of different types of income, such as benefit schemes and regular employment,
but also contains elements for students and the self-employed.

2.2 Linear regression procedure

The regression procedure used by the government consists of three steps. The first
step is a linear regression that fits the grand total cost (variable s_totale_kosten)
based on all the predictive variables (variables s_lngw–s_gsm) except for the postcode
regions (s_ape). This first regression is performed using two constraints: (i) those
coefficients associated to age and gender must result in a total that matches the
true total when ignoring the other variables, and (ii) the other groups of coefficients
must all result in a zero sum. These constraints result in an easier interpretation
of regression parameters and facilitate the comparison of the parameters obtained
from different models or different years, but in our view do not affect the result of
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the regression. An exeception are pharmaceutical costs, since each individual can
have more than one s_fkg, while for example the s_dkg of each individual can be
categorized in one group only.

After the first step, the model is further refined by looking at ‘regional’ varia-
tions. The residuals from the first step are aggregated to a postcode level, and the
postcodes are then clustered into ten ‘regions’ based on their aggregated residuals.
This clustering is performed by considering ten deciles of these residuals, and thus the
‘regions’ do not necessarily have any geographical cohesion. A final regression is then
performed using the postcode region (s_ape) for each individual, again constrained
to a zero-sum correction.

3 Our goal
We would like to immediately point out an important distinction between the pre-
diction and the explanation of health care costs. The current model is intended for
prediction to equalize the risk for healthcare insurers. The question(s) posed relate to
both explanation and prediction, to understand how the various parameters in play
affect the realized healthcare costs and to what extent these are down to the actual
health status of individuals. It is known in statistics that models that perform well
for prediction, may perform poorly for explanation. We combine these questions in a
single research question:

What are appropriate ways to find and explain geographical differences in
healthcare costs?

The answer to this question will be given by a number of different data analysis tools.
We exemplify – and to some extent justify – these methods by discussing the results
of their application to the aggregated data set that has been made available to us.

4 Results
The proposed models can be divided into three categories. First, we study ordinary
linear regression models similar to the model used by the government, but we focus on
the selection of the most significant variables. Secondly, we look at more sophisticated
linear regression models in order to obtain models that are good for either explanation
or prediction. Finally, we perform clustering of postcodes (or other aggregation levels)
to investigate analogies and differences. This approach is significantly different from
the other two and is aimed specifically at explanation rather than prediction.

We would like to stress that we are aiming solely at providing tools that may be
used in assessing the proper choice of model and variables. Any such choice impacts
the funding of health insurers and consequently their behaviour on both the healthcare
market (buying healthcare from providers) and the consumer market (selling insurance
to individuals). The choices made should be justifiable to the public or at least to
their elected representatives. It is our contention that after using tools that might
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seem opaque to assess the behaviour of certain models, it is possible to obtain better
models that balance transparency on the one side with predictor accuracy on the
other. Note, however, that an accurate predictor of realized costs might in fact be
predicting something different to the necessary costs of health care.

Beside model fitting, finding which elements in a data set are outliers with respect
to a given regression provides useful information on the quality of the regression. If
outliers share traits that are not captured by the regression model, it may be useful
to include a quantifier for these traits in the model. The outliers will also clearly
demonstrate the regional differences, potentially providing an even stronger motiva-
tion for our current exercise. We discuss the results of outlier detection (aggregated
at the level municipalities for privacy reasons) in Section 4.2.

We also perform recursive variable selection to get an understanding of which
variables in the model are most relevant. Subsequently ranking the different models
based on how well they model the variation in the data relative to the required number
of variables — quantified by Mallows’ Cp, see Mallows (1973) — provides valuable
insight into the optimal number of variables to include. Particularly, this will indicate
if the current model is over- or underfit. This is important because overfitting may
lead to spurious explanations of differences. Section 4.3 contains the results of this
part of the analysis.

To avoid issues arising due to the collinearity between many of the predictor
variables (in particular, the danger of important variables being erroneously declared
non-significant since significance is divided over several similar predictor variables), we
consider adding regularization to the regression. Such regularization can facilitate the
interpretation of different resulting parameters for the regression by removing some
ambiguity from the system. It does, however, introduce some new (meta)parameters
that need to be computed a priori. We discuss some preliminary results from this
approach in Section 4.4.

The final approach we elaborate upon does not involve a regression technique, but
instead attempts to find clusters of similar postcodes. Within these clusters, it may
be easier to identify individuals, postcodes or groups at a different level of aggregation
that are remarkably different from others in the cluster. A clustering based on data
at the postcode level, the finest at our disposal, is presented in Section 4.5.

Before detailing the results of these approaches, we briefly outline some of the
work that was done in preparing the data.

4.1 Data and preparation

Currently the government collects a large number of ‘health status’ variables on an in-
dividual person basis as input for their risk equalization calculations. These indicator
variables are, amongst others, information on location of residence, age, gender, social
economic status, source of income, healthcare costs in the previous three years and
the morbidity of the individual. The morbidity is split in somatic morbidity and men-
tal morbidity. For somatic morbidity the government includes 30 (classes of) diseases
each with its own list of specific medicine use and medical treatments (Zorginstituut
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Nederland, 2017). The use of these determines whether an individual is registered for
that specific disease in the government database. For mental morbidities a similar
approach is used, although with fewer diseases. The resulting dataset then contains a
total of 225 variables per individual of which 26 are mental health care costs specific
and 17 are used solely in the model for regional variation at the postcode level.

The original dataset held by the government is too confidential to work with as
it contains information on the health of individual citizens. Therefore, we only had
access to a data set aggregated at the four digit postcode level 1. This results in 3838
postcodes with the combined 225 health status variables of the people living in those
postcodes together with an extra variable depicting the total number of people in that
postcode.

Due to this aggregation a few peculiarities creep into the dataset. Firstly the
dataset contains several postcodes that consist solely or partially of PO boxes2. These
do in fact not correspond to a physical location in the Netherlands where people are
registered to live. Multiple scenarios exist why people can be registered under a PO
box, such as when someone does not have a fixed address or lives abroad. In that case
the health insurers will often register the costs of the insured person on the postcode
of the insurer, which can be a PO box. For the purpose of explaining geographical
differences in the Netherlands we exclude these particular set of postcodes as any
geographical information on the people in these groups is lacking3. However, when
making predictions for the health care costs for the next year the individuals in these
postcodes have to be included, since they do after all contribute to the total costs
and need to be included in the risk equalization calculations. This reiterates our
earlier point that there should be a difference between the explanation and prediction
approaches.

Aside from the PO box issue we now have the issue that postcodes can widely vary
in the number of residents registered. As a result we observe a vast range of different
scales of many of the indicator variables. We therefore normalise all the variables to
the number of registered residents. The indicator variables then represent the average
values for a registered insured person at the various postcodes.

1Dutch postcodes follow a four digits plus two letter format, e.g. 1234 AB. The aggregation puts
together all the residents of 1234 AB and 1234 CD into the same category 1234.

2In major cities like Amsterdam and Rotterdam such postcodes are the ones ending at 00 or 01,
but this varies from city to city. E.g., PO boxes in Nijmegen are postcodes ending on 00, 01, 03, 04
and 31 (see e.g. http://postcodebijadres.nl/postbus+Nijmegen.

3There remain postcodes that are partially PO boxes and partially residential addresses and we
make the decision to omit these from the data used for the explanation as well whenever we can
locate these postcodes.
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4.2 Outlier identification

Summary
Goal Identify regions with exceptional costs or characteristics. These identified regions can then be
investigated more thoroughly to determine if the risk adjustment model is appropriate and sufficient
for these more extraordinary groups of insured. In addition exclusion of extreme values can improve
the estimation of the expected costs of a group of insured.
Method Studentized residual analysis after linear regression on a regional basis for the costs and
age/gender.
Main result There are a few regions with exceptional costs and characteristics. For example, Urk,
Lelystad, Pekela, Koggenland, Weesp and Oegstgeest have an extraodanary age/gender-profile. Vlist,
Onderbanken, Pekela, Vlieland, Menseradiel, Son en Breugel and Oud-Beijerland have exceptional
costs. Pekela seems extreme with low age and high costs.
Recommendation Further research of characteristics (next to age or gender) of inhabitants in the
extraordinary regions is recommended. This can lead to new characteristics that can be included
in the risk equalization model. Compare the current risk equalization model with a model where
extreme values are excluded to get a feeling how strongly the average results are biased by the
outliers.

As mentioned in Section 2, the current model used has three steps, of which the
first is a straightforward linear regression and the second and third steps aim to
correct for regional variation. In the interest of simplicity, we will only consider the
first step of the procedure. Due to restrictions on what we are allowed to publish,
the data is first aggregated to the level of municipalities before studying outliers. We
perform two linear regressions using a different subset of the available variables. The
first uses only the age and gender distribution of each municipality and the second
uses all predictive variables that are used in the government model.

Figure 1 displays the regression fit and the studentized residuals of that fit for
each municipality in the data set. The left panel shows the results using only age and
gender in the model, the right uses all predictive variables. The studentized residuals
represent a rescaling of the residuals (i.e, the differences between the observations and
the fitted values from the model) such that it is comparable to a standard normal
distribution under the assumption that the error of the linear regression is truly
Gaussian. In this way the residuals are scale free, i.e. their values are independent
of the unit used for the response variable, so that it is possible to have a universal
threshold to detect outliers. Red lines in Figure 1 indicate a threshold for outliers
chosen at 2.5 times the standard deviation from the zero mean. The factor 2.5 is a
rule-of-thumb to decide on suspect observations, based on the approximate standard
normal distribution of the scaled residuals.

When using only age and gender in the model, there are three outliers either side
of the 2.5 standard deviation threshold. This is not surprising in itself, but the very
low fit for the municipality of Urk is exemplary of a broader trend that ‘cheaper’
municipalities are underestimated. It should be noted that Urk is a fairly unique
location; it is a former island that still retains a somewhat isolated character. When
using all predictive variables, there is a marked skew in the outliers with many more
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Figure 1: The studentized residuals after linear regression on a municipal level, based
on only age and gender (left) or on all predictive variables (right). On the x-axis are
the predicted values of the models. These studentized residuals put deviations from
predictions on a universal scale. The usual threshold is 2.5. The municipalities that
are highlighted in red have total costs that are not predicted well by the respective
models

municipalities having a severe, positive residual. As a final note, we wish to point out
the municipality of Pekela retains a strong, positive residual when using all variables.

4.3 Variable selection

Summary
Goal In the current risk equalization model there is a risk of over-fitting due to the large number of
included variables. There are also some problems with multicollinearity that make results difficult to
interpret. In this part of the study we identify the variables with the highest impact on the results
and which variables can be left out with little impact on the result.
Method We use a stepwise forward model selection and a stepwise backward model selection pro-
cedure to find the variables with highest and lowest impact.
Main result The forward and backward selection procedure both lead to the conclusion that vari-
ables need to be excluded in order to avoid overfitting. The two methods have partially overlapping
results concerning variables that can be excluded. However, it is difficult to determine which variables
should be left out due to multicollinearity.
Recommendation Use this method to determine which variables potentially can be deleted. For
the variables with multicollinearity problems, determine politically which variables should be left
out. Estimate the regression model without these variables to determine the impact on the regular
descriptives of the model. Use a measure for multicollinearity in addition to the current descriptives
to judge the performance and validity of the model.

There are several different ways to study which variables are important so that they
should be included in a regression model. Note that this is not the same as ranking
the variables in a model according to their importance (see Grömping (2007) for an
excellent discussion of relative importance in regression analysis). In this section, we
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focus on forward and backward regression, which are elementary, heuristic ways for
iterative model selection.

Stepwise forward model selection starts with a (trivial) linear regression model
with no variables and then at each the variable that results in the lowest R2 error term
is added to the regression. As such, an increasingly complex regression is constructed.
Backward model selection starts using all model variables and then iteratively removes
those variables that have the smallest impact on the error. Both methods result in
a hierarchy of models and a list of variables for each model. The models are then
ranked by a score that balances the complexity of the model with the accuracy of the
fit. This is intended to counter the overfitting that would occur if only the R2 error
is used as a norm – in that case the more variables the better, which may lead to
overfitting. By studying which variables are used most, or at least used by the best
models, provides useful information on which (categories of) variables have the most
predictive power.
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Figure 2: Ranking of models based on Mallows’ Cp. Each row of either chart repre-
sents a linear regression using different variables, indicated by the dark cells in that
row. The left-hand panel uses forward selection, the right hand panel uses backward
selection. Note that the vertical axes are ranked, but correspond to slightly different
Mallows’ Cp values (the lower the better), both ranging from 136 up to roughly 4900.

Figure 2 demonstrates the results of forward (left panel) and backward (right)
model selection. The models are ordered vertically by Mallows’ Cp (see Mallows
(1973) and Gilmour (1996), an alternative to R2 that penalizes for having too many
variables), a lower score indicates a better model. Note that there is no linear scale on
the axis. It is well-known in the statistical literature that R2 is not a model selection
criterion (see e.g. Kvålseth (1985)). Dark pixels indicate variables included in the
model, the darkness of the colour scales linearly with Mallows’ Cp. The individual
variables have not been labelled on the abscissa, since this would be too dense to read
(but they can be easily read off a tabular output). Instead the different categories
have been indicated.

Variables that are included in the top rows in the diagrams provide the most useful
information in predicting health care costs. We observe in both forward and backward
selection that the best scoring models are those with roughly half the number of
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variables included. Models that include more variables rank low, indicating that using
all these variables is overfitting the data. This conclusion is particularly apparent from
the forward selection, but also holds in the backward case.

The difference in the variables selected by the forward and backward procedures is
minimal. We therefore first focus on aspects that are visible in both, a few differences
will be pointed out later. The most striking feature is the ubiquitous inclusion of the
history of health care expenditure (s_mhk) the list of variables. These categories reflect
top quantile health care use in previous years, and probably is particularly useful in
predicting the high costs for chronic patients. Similarly, a history of high costs for
nursing and caregiving is also a strong indicator of realized health costs. Comorbidity
(s_gsm, far right) is also included in all models with a high rank. However, this is
likely to cause multicollinearity in models that also include s_fkg, s_mhk and s_hkg.
The diagnostic cluster groups are mostly good indicators, with the notable exception
of cluster groups 1, 3, 5 and 10. As we have no information on the meaning of these
clusters, we can draw no further conclusions from this.

The forward selection selects substantially fewer variables from the age and gender
(s_lgnw and ‘source of income’ (s_avi) categories. It appears that this is compen-
sated for by the inclusion of more socio-economic status (s_ses) variables. This is
possible in part due to the multicollinearity embedded into the variables by making
an explicit division by age in the variables from the socio-economic status and source
of income categories. Besides this deliberate multicollinearity, we suspect there is a
strong correlation between source of income and socio-economic status, leading to
ambiguity in the choice of variables.

While this variable selection procedure is of limited sophistication, it does point
to two suggestions. First, the current model appears to be overfitting the data, as
suggested by the improved Mallows’ Cp for models with fewer variables. Second, the
multicollinearity embedded (in part deliberately) into the model stands in the way of
interpreting the individual significance of certain variables.

4.4 Advanced regression techniques

Summary
Goal Solving the problem of multicollinearity with other regression techniques.
Method Alternative regression techniques: LASSO regression, Ridge regression and Elastic Net.
Main result The Elastic Net outperforms both the Ridge regression and LASSO regression by
achieving a much lower Mean Squared Error, while controlling the number of variables.
Recommendation Explore the impact of the new methods on the regression model (on individual
level). Compare the current descriptives and compare the coefficients of the regression. Describe
these models for non-mathematicians in order to let them comprehend these models and interpret
the results.

The standard linear regression approach fails to find good explanatory models
when the data contains strong multicollinearity. It is evident from Section 4.3 that
the dataset has many collinear variables, so that one may miss significant explanatory
variables. To avoid this issue, we propose the elastic-net approach from Zou and Hastie
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(2005). This approach can be thought of as a combination of the established ridge
(Hoerl and Kennard (1970)) and the modern LASSO (Least Absolute Shrinkage and
Selection Operator, see Tibshirani (1996)) regression techniques. These approaches
have in common that they add L1 regularizations to the L2 (= least squares) criterion
in the regression procedure, and thereby handle the multicollinearity in the data. We
refer to Hesterberg et al. (2008) for an accessible review where these methods are put
in perspective, while extensive treatments can be found in the monographs Efron and
Hastie (2016) and Hastie et al. (2015). However, ridge regression has the disadvantage
that it does not lead a parsimonious model (it does shrink unimportant variables, but
they do not shrink to zero). The LASSO does shrink unimportant variables to zero,
but the LASSO selects at most n variables, where n is the number of observations.
It also tends to select only one variable from a group of correlated variables, ignoring
the others. To overcome these limitations, the elastic net adds a quadratic part
to the penalty (‖β‖22), where ‖x‖2 =

√∑
i x

2
i denotes the 2-norm of a vector x.

Mathematically, the regression problem is now written as

β̂ = argmin
β

{
‖Y −Xβ‖22 + λ

(
(1− α)‖β‖22 + α‖β‖1

)}
, (1)

where Y are the actual costs, β is a vector of weights for variables, X represents the
values of these variables for various postcodes, and α ∈ [0, 1]. The ‖x‖1 =

∑
i |xi|

denotes the 1-norm. In this way the elastic net combines the advantages of these
methods while minimising their disadvantages. Sometimes a factor 1/2 is put in front
of the ‖β‖2 term for mathematical convenience. Note that the elastic net includes
ridge regression and the LASSO as special cases through the choices α = 0 and α = 1,
respectively.

The main drawback of the elastic net is that it requires to select appropriate values
for the regularisation parameter λ and the elastic net parameterα. In principle, one
can use cross validation techniques or a grid search to find optimal values for these
parameters. For correct values of λ and α, we get a vector β̂, which highlights the
most important variables in the regression.

To test the elastic net approach, we fit our model on two thirds of the data and
test on the remaining data. We consider 11 different values for α from 0 to 1. In
Formula (1), Y represents the total Somatic costs, while X represents the various
variables corresponding to somatic costs except the postcode clusters, that is, all
variables from Table 1 except s_ape.
Table 2 presented the mean squared error (MSE) for a few different tested values of
the parameter α. The extreme values α = 0 and α = 1 correspond to ridge regression
and LASSO, respectively. The minimal value is found for the parameter α = 0.7
To present a little more insight into the behaviour of the regression techniques corre-
sponding to different values of α we illustrate the regression result with Figures 3–5.
Figure 3 shows, for the ridge regression (α = 0), the coefficients β̂ against λ on the
left and the mean squared error (MSE), measured as ‖Y −Xβ‖22, on the right-hand
side. Similarly, Figures 3 and 4 show the variation for elastic net (with the optimal
α = 0.7, see Table 2) and LASSO (α = 1) respectively.
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α MSE

0 (Ridge) 42960.8

0.2 41876.1

0.5 39314.6

0.7 37012.1

0.9 40353.4

1.0 (LASSO) 44236.1

Table 2: Mean-squared error for various values of the elastic net parameter α (on test
data). Smaller values indicate better fit.

Figure 3: Ridge Regression (α = 0). The number of coefficients (left) and the re-
spective mean square error (right) variation with regularization parameter λ. This
picture helps to find the right balance to a small number of coefficients (parsimony)
while at the same time controlling the mean squared error (measure for model fit).

From each of the left hand-panels, we observe that only relatively few variables
contribute strongly to the linear model. In the case of the LASSO, this is explained
by multicollinearity. In the right-hand panels, vertical dashed lines indicate the region
in which the MSE attains its minimal value.
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Figure 4: Elastic Net (for α = 0.7). The coefficients (left) and the respective mean
square error (right) variation with regularization parameter λ. This picture helps to
find the right balance to a small number of coefficients (parsimony) while at the same
time controlling the mean squared error (measure for model fit).

Figure 5: Lasso Regression (α = 1). The coefficients (left) and the respective mean
square error (right) variation with regularization parameter λ. This picture helps to
find the right balance to a small number of coefficients (parsimony) while at the same
time controlling the mean squared error (measure for model fit).
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4.5 Clustering approaches

Summary
Goal Cluster postcode entries based on similarity of features, which constitute a proxy for the
health profile. Within a cluster of postcode entries with similar feature values, a postcode entry with
exceptional costs might indicate inefficiency.
Method We used a k-mean clustering method using a standard distance metric (Euclidean distance)
on a transformed (e.g. splitting age and gender and collapsing age groups within AVI) features.
Main result There is a clear distinction between urban regions and suburbs, when clustered based
on age as well as based on AVI. For the age clustering, the suburban postcode entries more frequently
have low total health costs.
Recommendation This method can be extended by clustering based on different or larger sets
of features. Moreover, we suggest to use this method as a new approach to discover regions with
inefficient care, which is to search for outliers with high health care costs within clusters with the
similar feature values.

In this section we explore the possibilities and benefits of cluster analysis on the
provided dataset. We aim to use these techniques to find a natural structure present in
the postcode entries (instances) based on the similarity in the explanatory variables
(features). Our objective is twofold: we hope to gain intuition of the meaning of
different combinations of explanatory variables, and we may find unknown patterns
and relations unexplained by the regression models currently in use.

There exist many clustering techniques, but almost all of them follow similar steps:

1. Define a distance metric on the set of instances.

2. Formulate a decision rule that determines whether an instance belongs to a
cluster.

3. Iteratively separate or group instances until every one is classified.

Among commonly techniques are hierarchical clustering, distribution-based clus-
tering, and centroid-based clustering.

To provide some context: hierarchical clustering algorithms often evaluate the
’distance’ between two observations, i.e. some quantitative notion representation
of the difference between their properties. Nearby observations are linked to form
a cluster, and nearby clusters are merged to larger clusters. This is a convenient
strategy for exploratory clustering approaches, but expensive to apply to large data
sets and difficult to interpret for high-dimensional data.

Distribution-based clustering algorithms try to find a set of clusters by choosing
from a family of distributions that matches the observations.

While this collection of algorithms generally has no difficulty clustering all observa-
tions, these methods are prone to overfitting data. In addition, for many observation
properties (especially in our dataset) it is difficult to find an underlying family of
distributions.

Centroid-based clustering is based on the assumption that each cluster has a cen-
tral observation: a centroid. Observations are classified based on their distance to the
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nearest centroid. The benefits of this type of approach is that the created clusters
have an intuitive and well-defined meaning: they can be interpreted by their centroid
observations. The downside is that a priori the number of clusters must be known,
and that the method allows only for the creation of clusters with a specific shape:
convex clusters.

In our analysis, we choose a centroid-based clustering algorithm: k-means cluster-
ing. This choice is based on the fact that the data is high-dimensional and that before
we start our analysis, we lack knowledge of how the data is structured or how the
clustering could be interpreted. It is worth the effort to investigate if other algorithms
are more suitable.

4.5.1 Distance metric

In our implementation, we used the function kmean of the statistical software R, which
performed the k-mean clustering using standard distance metrics such as the Eu-
clidean distance. However, Euclidean distance has no valid meaning for the variables
in their current state. Since the spread in money-related variables is much higher than
in age-related variables, a transformation is required to ensure that the Euclidean
distance is normalized. Furthermore, from an information entropy perspective, some
variables in the data may be redundant. These are also transformed to a more com-
pact form. In the following section, we explain in what way the data is non-uniform
and redundant, and how we transform it.

4.5.2 Feature transformation

The variables as given in the data are of different types. Some count the number of
individual belonging to a category of a binary attribute (e.g. the number of individual
using certain drug) or to a category of a categorical attribute (e.g. the number of
individuals with source of income high). As, for each attribute, each category is
represented by a variable, there are as many variables as there are categories. In
fact, some variables represent the count of a category from a certain age group, which
is a finer resolution. As a result, an attribute that has been broken down in many
categories and in age groups comprises many variables.

The exact distribution in age group for each category seems redundant, therefore
we apply the following transformation:

• We collapse the age-gender categories into gender and add a feature with the
gender-ratio per instance.

• We collapse the age-‘source of income’ categories into age.

• We convert the binary variables to ratios.

Although we have reduced the number of variables of some attributes, some at-
tributes still have many variables. To uniformly distribute the contribution of each
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attribute to the distance, we weight each with the reciprocal of the number of cate-
gories such that the total weight of all categories sums to one.

Finally, we weigh each of the variables with the reciprocal of its observed variance.
This follows from our assumption to let all features be equally important.

Our transformation creates a uniform information representation, and combine
some of them into new features. Although it loses some accuracy in the exact age
distribution of some attributes, this greatly reduces the dimensionality of the data,
which is a welcome benefit for the quality of the cluster analysis.

It should be noted that we do not have to include all features when we compute a
cluster. Different subsets of features may yield different clusterings. For this reason,
our scripts allow for an arbitrary subset of features.

4.5.3 Finding the optimal cluster

The k-means clustering algorithm is a probabilistic algorithm that finds clusters in the
following way. First, it randomly chooses k centres in the feature space. Each of these
centres represents an initial cluster. Then, for each cluster it repeatedly executes the
following steps.

1. Find the closest instance and add it to the cluster.

2. Compute the new centre of all instances in the cluster.

The clustering is finished when all the instances belong to one of the k clusters. The
quality of a set of clusters is determined by computing the sum of squares (CSS) of
each of the instances with the centre of its cluster. The lower the CSS, the better
the clustering. This procedure is repeated an arbitrary number of times, each time
choosing randomly new initial locations, and finally choosing the clustering with the
minimal CSS. The k-means clustering algorithm can find clusterings for any number
of clusters. A heuristic way to determine the optimal number of clusters is to find the
elbow in the plot of the CSS against the number of clusters.

4.5.4 Results

In our exploratory analysis, we used two different groups of features to generate two
clustering. The first clustering uses the age categories as features and the second uses
the source of income (s_avi). The elbow method determines the optimal number of
clusters for both clusterings to be 3. A detail of the geographic distribution of the
clusters using age categories is depicted in Figure 6. In both maps, clusters clearly
distinguish between urban (Amsterdam, Utrecht, Almere, Amersfoort) and suburban
areas. We now discuss the findings for the two clusters separately.
Figure 7 shows the characteristic profiles for the clusters based on age. The left-hand
panel shows the distribution of people over the age groups per cluster, the right-hand
panel shows the distribution of health care costs. We see that clusters 1 (black) and
3 (red) have relatively young age profiles, of which cluster 1 has the most centralized
distribution of health care costs. One would expect young clusters (i) to be associated



Equalizing the Cost of Health Insurance 45

●●

●●
●
●
● ● ●

●
●

●
●●

●
●●

●●
●●

●
●
●

●●●●●
●●●●

●●

●●●●●
● ●

●
●

●

●
●
●

●
●
●

● ●

●
●

●

●
● ●

●
●

●
●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●
●● ●

●●
●●

●

●
●●●

●
● ● ●●●

●●
●

●

●
●

●
●
●●

●●
● ●

●●

●

●
●

●

●
●

●
●

●
●

●
●●

●●
●

●●

●

●
● ●●

●
●

●

●●

●●

●

●

●

●

●

●

●
●
●

●●
●
●

●●
●

●●

● ●

●
●

●

●
● ●

●

●

●

●

● ●●
●●●

●
●●

●●
●

●
●●

●

●
●

●
●

●

●

●

●●
●●

● ●●●● ●
●
●
●

●
●● ●

●

● ●●●●●
● ●

● ●
● ●

●

●

●●

●

●
●

●

●
●

●

●
●

●●
●●

●● ●

●
●

●

●● ●

●

● ●

●

●●

●
●

●
●●

●
●

●

●
●●

●●
●

●

●●
●

●

●

●
●

●

●

●

●

●

● ●

●

●
●

●
●●

●
●●

●

●●
●

●
●
●

●
●

●

●

●
●

● ●

●
●
●●

● ●

●
●

●

●

●

●

●●

●

●

●●
●

●
●

●
●

●

● ●

●●

●
●

●
●

●

●●

●
●

●
●

●

●

●
●

●
●

●
●

●

●
●

●

●

●
●

●●

● ●
●●

●

●

●

●
●

● ●

●
●

●
●

●
●

● ●

●●

●
●

●
●

● ●

●●●

●●
●●

● ●

●

●

●
●

●
●

●

●

●

●
●

●
●

●●
●

●

● ●

● ●

● ●
●

●
● ●

●

● ●

●●

●

●

●●

●

●
●

●
●

●
●●●●●

●

●

●

●●

●

●●
●

●
●

●●
●
●

●●
●

●●
●

●

●

●

●
●

●

●

Cluster (Age)
●

●

●

1

2

3

●●

●●
●
●
● ● ●

●
●

●
●●

●
●●

●●
●●

●
●
●

●●●●●
●●●●

●●

●●●●●
● ●

●
●

●

●
●
●

●
●
●

● ●

●
●

●

●
● ●

●
●

●
●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●
●● ●

●●
●●

●

●
●●●

●
● ● ●●●

●●
●

●

●
●

●
●
●●

●●
● ●

●●

●

●
●

●

●
●

●
●

●
●

●
●●

●●
●

●●

●

●
● ●●

●
●

●

●●

●●

●

●

●

●

●

●

●
●
●

●●
●
●

●●
●

●●

● ●

●
●

●

●
● ●

●

●

●

●

● ●●
●●●

●
●●

●●
●

●
●●

●

●
●

●
●

●

●

●

●●
●●

● ●●●● ●
●
●
●

●
●● ●

●

● ●●●●●
● ●

● ●
● ●

●

●

●●

●

●
●

●

●
●

●

●
●

●●
●●

●● ●

●
●

●

●● ●

●

● ●

●

●●

●
●

●
●●

●
●

●

●
●●

●●
●

●

●●
●

●

●

●
●

●

●

●

●

●

● ●

●

●
●

●
●●

●
●●

●

●●
●

●
●
●

●
●

●

●

●
●

● ●

●
●
●●

● ●

●
●

●

●

●

●

●●

●

●

●●
●

●
●

●
●

●

● ●

●●

●
●

●
●

●

●●

●
●

●
●

●

●

●
●

●
●

●
●

●

●
●

●

●

●
●

●●

● ●
●●

●

●

●

●
●

● ●

●
●

●
●

●
●

● ●

●●

●
●

●
●

● ●

●●●

●●
●●

● ●

●

●

●
●

●
●

●

●

●

●
●

●
●

●●
●

●

● ●

● ●

● ●
●

●
● ●

●

● ●

●●

●

●

●●

●

●
●

●
●

●
●●●●●

●

●

●

●●

●

●●
●

●
●

●●
●
●

●●
●

●●
●

●

●

●

●
●

●

●

Cluster (AVI)
●

●

●

1

2

3

Figure 6: Detail of maps showing the result of clustering postcodes based on age (left)
and based on AVI categories (right).
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Figure 7: Cluster profiles when clustering based on age. Left: distribution of people
over different age groups per cluster. Right: distribution of health care costs per
cluster.
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with better health and therefore low health care costs and (ii) to cluster around the
urban area, which are somewhat confirmed by in our results.
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Figure 8: Cluster profiles when clustering based on source of income (s_avi). Left:
distribution of people over different source of income categories. Right: distribution
of health care costs per cluster.

Figure 8 shows the characteristic profiles for the clusters based on source of income
(s_avi). The left-hand panel shows the distribution of people over the source of
income categories per cluster, the right hand panel shows the distribution of health
care costs. Cluster 1 (black) has the lowest distribution of health care costs. It would
be interesting to see whether it agrees with the actual meaning of the avi-categories.

Due to time constraints, we were only able to analyse clustering based on age and
avi-categories. For further analysis, it would be interesting to explore the clustering
based on different sets of features. For instance, a larger set of features may better
describe the health profile of regions.

Moreover, we suggest a new approach to discover municipalities with inefficient
care, which is to search for outliers with high health care costs within clusters. Con-
ceptionally, this approach is similar to outlier identification as discussed in Section 4.2,
since it also searches for outliers after adjustment for explanatory variables.

5 Conclusions
The Dutch government compensates health insurance companies when insuring in-
dividuals who are estimated to require more or more expensive health care. This is
necessary to avoid insurers avoiding certain groups or not providing them with a high
quality of service. To estimate the required costs, the government uses a number of
personal characteristics that are deemed good indicators of the general health status.
The basis for this estimator is a linear regression model that fits the real health care
costs based on the chosen parameters. It is, however, unclear whether the realized
costs are due to a difference in health status, or due to other reasons that affect the
health care expenses made. The model employed for the Dutch government is made
for prediction rather than explanation.
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We used several different techniques that investigate these differences, providing
a first step towards understanding if these differences are preferably compensated for
or not. The conclusions are somewhat diverse — in part due to how the research was
carried out. Studying the outliers in the data using a linear regression model revealed
no surprising results. We did, however, find that certain variables in the model are
of much greater importance than others. Comparing Mallow’s Cp for models using
different subsets of the variables suggests the current model might suffer from overfit-
ting. This method can help in simplifying the risk equalization model together with
the clustering approach. Work needs to be done on the impact of these methods on
the usual criteria for evaluating the risk equalization model. Elastic net regression
provides for regularization of the model parameters (and thus avoids overfitting), at
the cost of introducing a single metaparameters. With this regularization in place,
it is easier to explain the impact of various parameters on quality of the regression.
By applying clustering techniques we exposed a remarkable difference in the health
expenditure between clusters based on only a few of the prognostic variables. Differ-
ences within these clusters may provide valuable information on possible causes for
health care expenditure differences.

The techniques presented in this work all contribute to a greater understanding
of the factors influencing the health care costs. One main conclusion is that we can
leave out variables with no or limited loss of the quality of the model. The methods
we used can help in selecting variables that contribute and variables that have no
contribution. It can also help in selecting and combining variables in the current
model in order to be capable of interpreting the results of the regressions and solve
the issues with multicollinearity in the model.

6 Recommendations

Besides the methods presented above, we also have a number of suggestions for tech-
niques that may improve the prediction, or improve the understanding of the factors
at play. In particular we briefly discuss two approaches and their merits.

Since the data show significant differences across The Netherlands such as depen-
dencies on the region, on the municipality, on the geographical location, and on the
presence of academic hospitals just to name a few, it is strongly advisable to take
into account this heterogeneity when fitting a unique model on all the available data.
An option is the inclusion of random effects in a simple linear regression model, the
so-called linear mixed model of Laird and Ware (1982). The approach is similar to
linear regression, but now part of the observed effect is supposed to be due to some
random effects. Consequently, the estimate is a sum of two terms: the product of a
design matrix (i.e. a matrix of the covariates) with a vector of coefficients, the fixed
effects, and the product of another design matrix (containing the same or other co-
variates) with a vector of random coefficients drawn from a particular distribution.
Including these random effects shrinks the estimates of the first deterministic part
towards the mean. Since the second term is a random sample drawn from a wider



48 SWI 2017 Proceedings

population, this allows taking into account the effects of some variables that are only
partially observed, such as the overall health status. Furthermore, this method is
advantageous in terms of estimation. In fact, fitting a traditional regression model
including a fixed effect for each unit can become cumbersome when the chosen unit
is small, and thus the number of units and corresponding coefficients is large. The
bigger advantage of random effects model with respect to fixed effects model is the
reduction in the number of parameters. That is, if in a regression model we include
a variable for each region (province, zipcode or any other cluster) and we have n
regions, then we will have to estimate n coefficients (one for each region). Instead, if
we include the random effect for that same variable (region, province, zipcode or any
other cluster), then the number of parameters to be estimated reduces to 2 (mean
and variance) in case of assumption of normality for the random effects. I.e. the n
coefficients (one for each region) are samples from a normal distribution with mean
µ and variance sigma2.

Introducing the random effects reduces to one the number of parameters to be
estimated to account for the heterogeneity among units, namely the variance of the
random effects. For further details and implementation, see for example Verbeke and
Molenberghs (2009), Verbeke et al. (2010), and Fitzmaurice et al. (2008).

Another approach is given by the mixture model, which fit different distributions
(or the same distribution with different parameters) for each region (province, zipcode
or any other cluster). If all the data can be modelled by the same distribution, then
there is no need for mixture model - the data is homogeneous. On the other hand,
if there is heterogeneity in the data, it can be captured by this flexible model fitting
different distributions of the data on different regions.

This method can be used not only to fit a completely new model, but also to check
whether the distribution of the data of a certain supposed subpopulation is indeed
different from the others. Since it is possible to include and merge almost any desired
distribution, it results in an extremely flexible and thus powerful tool in capturing
and explaining heterogeneity.

Many statistical softwares have built-in procedures to fit both linear mixed mod-
els and mixture models, see R, SAS, STATA, SPSS and Matlab among others. As
highlighted earlier, heterogeneity is visible at different levels, thus when fitting these
models one might want to explore the effect size of various subpopulations at different
scales, such as postcode, municipality, province, and so on.
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Abstract

The problem of helicopter landing on ships has been recently studied by MARIN
(MAritime Research Institute Netherlands) with the purpose of helping the naval
crew, and in particular the HLO (Helicopter Landing Officer), to take decisions
in a fast and reliable way. The basic issue consisted in the prediction of time
intervals, called quiescent periods (QPs), where the ship motion is sufficiently
moderate for the helicopter to be able to land in safe conditions. The ingredients
at our disposal were a set of wave data that were simulated by MARIN with
their proprietary software FREDYN. Our first goal, then, was to study the
statistics of QPs and to identify patterns. The second objective was to use the
same data to make predictions on the basis of a few deterministic and stochastic
models. The results show that these models are indeed able to capture several
features of the waves, such as repetitions of special patterns and memory effects,
and surely deserve further investigation and extension. The last approach was
purely analytical: first we focus on the question whether a given sum of n
harmonics will have QPs or not. After analyzing the cases n = 1, 2, 3 in full
detail we present a general criterion for the existence of QPs for the case of
arbitrary n. We also give estimates for the frequency and probability of QPs in
a signal composed of many random harmonics.
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1 Introduction

“–Well, you must understand, signore,
that the scirocco blows for three days if it starts on Tuesday.
Nine days if it starts on Friday.
But if it hasn’t blown itself out by the tenth day,
then it goes on for 21 days.”

from L. Visconti’s screen adaptation of Death in Venice
by Thomas Mann

Marine operations, both civilian and military, often require a helicopter to land
on a ship or other vessel. Safely landing a helicopter requires the landing pad to
be approximately stationary for a period of twenty or thirty seconds. Often, such
quiescent periods (QP) alternate with periods of stronger ship motion, in which land-
ing is impossible. In such cases a Helicopter Landing Officer (HLO) on the ship is
responsible for guiding in the helicopter and coordinating its descent.

The landing operation consists of two phases. In the first phase, the HLO assesses
the general state of the sea at that moment. This is done on the bridge or inside
a cabin, and in this phase the HLO observes the sea and has access to a variety
of instruments. When the HLO decides that the frequency of quiescent periods is
sufficiently high, he signals the helicopter to approach the ship and to start hovering
above the landing pad, and takes position outside, next to the landing pad, in view
of the helicopter.

In this second phase the HLO maintains eye contact and radio contact with the
helicopter pilot, and observes the ship motion through his legs and eyes. When the
HLO believes that a quiescent period is imminent, he signals the pilot to land on
the pad. During this operation the pilot has no view of the deck, and is completely
dependent on the HLO for guidance.

MARIN (MAritime Research Institute Netherlands) is a Dutch organization with
the broad goal of studying operations and decommissioning of ships and offshore plat-
forms, bulk and surface hydrodynamics, as well as nautical training and regulations.
Currently, they have an open project on helicopter landing on ships, with which they
decided to participate in the SWI 2017. The problem posed by MARIN consists of
two questions, each related to one of the two phases described above.

First, MARIN is interested in the distribution of quiescent periods in ship mo-
tion, given a certain sea state. This would help the HLO to judge whether the ship
motion allows for the helicopter landing to take place in the following minutes with a
reasonable accuracy.

Secondly, to make the final phase both more efficient and safe, MARIN would like
to give the HLO a further instrument to predict the initiation of quiescent periods
with a very short advance, in the order of few seconds. This is why, in our work, we
developed tools for predictions, given a history of signals of ship motion.
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This report is about the properties of certain signals. We will be considering two
types of signals:

• Synthetic signals, created by adding harmonics (sines and cosines, or complex
versions of these) with varying frequencies and amplitudes;

• Data signals, given to us by MARIN, which describe the movement of the ship
in response to certain “sea states”.

In reality MARIN generated the data signals by feeding certain well-chosen synthetic
signals as “wave input” to a ship simulator called FREDYN, which outputs the move-
ment of a specific ship in response to these waves. For the purposes of this report,
however, we consider these data as “externally given”.

The data are time series of the motion of a ship under a predefined wave spectrum.
As a ship, for our purposes, may be considered as rigid body, what really matters for
us is the set of the six coordinates that fully characterize the motion. In marine
jargon, these coordinates assume specific names, which are shown in Figure 1.

Figure 1: Nomenclature for the ship motion in the marine jargon.

In Sec. 3, we will give more details on this set of data: how it has been generated,
how we have used it and what we can say about it. Before doing that, in Sec. 2, we
will give a short review of the basic theory of signals that is needed in this report,
and in Sec. 4 we will study synthetic signals from an analytical viewpoint. In Sec. 5,
we will model the data signals by means of various techniques, with the common aim
of predicting quiescent periods.
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2 Some signal theory

2.1 Signals

For us, signals are functions defined on R (as for synthetic signals) or on a discrete
set (as for the data), with values that are real or complex. Given a signal f on R, the
Fourier transform F(f) or f̂ is the complex-valued function of frequency ω given by

f̂(ω) =
1√
2π

∫

R
f(t)e−iωt dt.

As it stands, this integral is only defined if f ∈ L1(R); however, a natural exten-
sion exists Stein and Weiss (1971) to the set of all tempered distributions S ′(R), by
exploiting Parseval’s theorem

∫

R
f̂(ω)ĝ(ω) dω =

∫

R
f(t)g(t) dt. (1)

We will use this extension without mentioning it.
In the discrete case, the signal is only sampled at a finite number of points in time

x0, x1, . . . , xn−1. Usually these points are multiples of a sampling interval ∆, i.e., the
t-th sample xt is observed at time t∆. The discrete Fourier transform is then

x̂(ν) =
1

n

n−1∑

t=0

xte
−2πiνt. (2)

Similar to the continuous Fourier transform, the harmonic functions implicit in Eq. 2
are orthogonal when the frequencies are restricted to the set of Fourier frequencies,
νj = j/n,

n−1∑

t=0

e2πiνjte−2πiνkt =

{
n if j ≡ k (mod n),
0 otherwise,

and this guarantees the existence of the inverse transform,

xt =
∑

j

x̂(νj)e
2πiνjt. (3)

The discretization leads to two phenomena: frequencies higher than the Nyquist
frequency 1/(2∆) have an alias in the interval 0 ≤ ν ≤ 1/(2∆), i.e., appear as an
artificial contribution to one of these frequencies. A second undesirable phenomenon
is leakage, i.e., the appearance of a contribution in the transform at a frequency ν
because of the presence of a signal at a different frequency ν0. This happens (only)
if the frequency ν0 is not a Fourier frequency. More details about this and other
practical aspects of Fourier analysis can be found in Bloomfield (2000).
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2.2 The harmonics
The harmonic functions are an important set of examples. If f(t) = cosω0t, then
f̂(ω) =

√
π/2(δω0

+ δ−ω0
)(ω), where δω0

is the Dirac delta function at ω0; if f(t) =

sinω0t, then f̂(ω) = −i
√
π/2(δω0 − δ−ω0)(ω); and if f(t) = eiω0t, then f̂(ω) =√

2πδω0
(ω). These examples illustrate the general fact that the function f is real-

valued if and only if f̂ is conjugated-even, i.e. f̂(ω) = f̂(−ω); similarly, f is purely
imaginary iff f̂ is conjugated-odd.

Consider the function f(t) = aeiω0t, where ω0 ∈ R and a ∈ C. The number ω0 is
called the angular frequency and is expressed in radians per second. It can be written
as

ω0 = 2πν0, (4)

where ν0 is the ordinary frequency expressed in hertz. The word “frequency” can
refer to both the angular frequency ω0 or the ordinary frequency ν0, depending on
the context. The complex number a is called the complex amplitude, and contains
both the usual amplitude information and information on the phase, since (writing
a = αeiϕ, for α,ϕ ∈ R),

aeiω0t = αei(ω0t+ϕ) = α
[
cos(ω0t+ ϕ) + i sin(ω0t+ ϕ)

]
.

2.3 Energy spectra and sea states
The energy spectrum of a signal f is the real-valued function ω 7→ |f̂(ω)|2. If ‘energy’
of a function f ∈ L2 is defined as the L2-norm

∫
|f |2, then the value |f̂(ω)|2 represents

the energy of the Fourier component of f with frequency ω, since from (1) we have
∫

R
|f(t)|2 dt =

∫

R
|f̂(ω)|2 dω.

An important type of signal is related to the sea state, which is a description of
the waves at a certain moment. For our purposes, a sea state is defined by an energy
spectrum of the waves, as a function of a two-dimensional frequency (ω1, ω2), although
in the rest of this report we will mostly disregard the two-dimensionality and consider
functions of one variable only: the sea state then describes the energy spectrum of a
function f of one variable, which describes the waves. In this interpretation f can be
interpreted either as giving the wave height at a fixed point in space as a function of
time t, or as giving the wave height at a fixed moment in time as a function of a spatial
variable x. We will usually consider the former. (Again there is a difficulty here: we
want to consider “waves” as elements of L∞(R), as in the case of the harmonics, but
such waves have infinite spectrum, since |δω|2 cannot be defined as a distribution. For
these cases the concept of energy spectrum can be made meaningful by considering
large intervals and taking a limit under appropriate rescaling. We omit the details.)

The energy spectrum of a function f alone does not uniquely characterize the
function f , since it does not contain any phase information. In addition, for simulation
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purposes the spectrum needs to be discretized. This leads to constructing sample
functions f , which are assumed to be representative of the waves, of the form

f(t) =
n∑

j=1

aje
iωjt, or the real part of this f ,

where the aj and ωj are chosen randomly from the energy spectrum, in such a way
as to make |f̂ |2 approximately equal to the assumed spectrum. It is natural in such a
setup to choose the distribution of arg aj , i.e. of the phases, to be uniform on [0, 2π),
reflecting the fact that the energy spectrum contains no information about the phases.

2.4 Narrow-bandedness and its consequences

We observed that the data provided to us by MARIN is narrow-banded : the frequen-
cies present in the signal are concentrated in a fairly narrow interval (see Figure 2).
This results in a signal with a fairly recognizable period, and an amplitude that varies
on a larger scale.
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Figure 2: A representative section from heave data from MARIN (see the next Section
for details). Left is the signal as function of time, right is the spectrum.

Because of this narrow-bandedness the time course resembles an amplitude mod-
ulation of a fixed-frequency oscillation, and in the rest of this report we use this way
of viewing the signals. This has a number of consequences:

1. The essential information in the data is already encoded in the local maxima
and minima; in the data processing that we do, we thus first extract the local
maxima and minima, and use the sequence of those data points.

2. For the analysis, one would like to concentrate on the properties of the “envelope”
that appears “obvious” to the human eye, since quiescent periods of more than
a fraction of the period of the underlying oscillation are one-to-one related to
periods in which the amplitude of this envelope is small.
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Figure 3: Graphical representation of the analytic signal : the red curve is the real
signal and the blue complex curve is the corresponding analytic signal.

We now explore this second aspect more in detail. A real-valued signal has a spectrum
that is symmetric with respect to frequency 0; “narrow-banded” for a real-valued signal
means that the spectrum is concentrated around ω0 and −ω0 for some ω0 6= 0.

From any complex signal f(t) one can easily construct a real-valued signal S(t)
by taking its real part,

S(t) = Re f(t). (5)

The inverse operation is not unique, however, since there obviously exist many
complex-valued signals with the same real part. We can use this freedom of con-
structing a well-chosen complex counterpart of a given real-valued signal to make the
spectrum appear only at positive frequencies. Given a real-valued signal S, its associ-
ated analytic signal f is defined by concentrating all of the Fourier transform on the
positive frequencies, i.e. we set

f̂(ω) :=





0 ω < 0

Ŝ(0) ω = 0

2Ŝ(ω) ω > 0.

After transforming f̂ back to f , the function f is now complex-valued, and can be
interpreted as a an “interpolated” version of the function S, in the sense that (5) holds;
and it is an interpolated version that “only rotates in one direction” in the complex
plane, as shown in Figure 3. The function f can also be represented as

f(t) = S(t) + iH[S](t), (6)

where H[S] is the Hilbert transform of S.
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The analytic signal now gives us an opportunity to make the concept of “envelope”
precise. In general, from each complex-valued function t 7→ f(t) one can define the
real-valued instantaneous amplitude and instantaneous phase by writing

f(t) = A(t)eiφ(t), for some A(t), φ(t) ∈ R. (7)

If the function f is continuous, then A and φ can also be taken continuous, and A
and φ are unique up to adding multiples of 2π to the phase.

The property that f is narrow-banded corresponds to the fact that φ′(t) is close
to ω0. If f is narrow-banded, then A varies slowly (we illustrate this in Section 4.2),
and as a result we can use the function A as a working concept for the intuitive idea
of the “envelope”.

3 Data signals and their quiescent periods

In the last decades several programs have been developed to study the motion of
ships under the forcing of sea waves. MARIN uses its own software, denominated
FREDYN, which studies the dynamic behavior of a steered ship subjected to waves
and wind. A description can be found in the website MARIN. As the software is
a proprietary one, MARIN provided us with several sets of data, varying for time
length, direction and spectrum of the waves.

The input of the program was a train of waves given by randomly sampling a
well-defined spectrum, typical of the North Sea. The output that was relevant for us
consisted of six time series of the six coordinates of ship motion, sampled at regular
time intervals.

In our analyses, we mostly focused on the heave coordinate at the landing pad,
since – together with the roll – it is the most important variable for helicopter landing.
Although operative conditions for helicopter landing on ships are not well defined by
any regulation, there exist such rules for landing on offshore platforms. According to
the latter, MARIN suggested the following requirements for a quiescent period:

• peak-to-trough amplitude of heave < 3 m;

• single roll amplitude < 3◦;

• time duration of at least 30 s.

These represent rather strict requirements, which might be relaxed, and are surely
too stringent for navy operations.

The first question that MARIN asked us concerns the distribution of quiescent
periods. In the present section, we will address this problem by looking at the data
signals that we received from MARIN. Some of the data sets were not representative
enough either in time duration, or wave spectra didn’t include non-quiescent periods.
Thus, we considered only a few representative data sets, collected in Table 1.
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Alias U µ Hs Tp T Motion sensor
D1 10 kn 180◦ 3m 8 s 18000 s HELI
D2 10 kn 180◦ 3m 8 s 7200 s HELI
D3 10 kn 180◦ 3m 8 s 1800 s HELI (wave spreading)
D4 10 kn 180◦ 5m 8 s 1800 s HELI

Table 1: Data sets generated by the computer program FREDYN. The meaning of
the simulation parameters is as follows: U - ship speed, µ - wave direction, Hs -
significant wave height, Tp - peak wave period, T - simulation time.

3.1 Distribution of Quiescent Periods

In this section, we will describe the procedure of data pre-processing and the idea
of finding QPs in the considered system. According to MARIN’s definition of QPs
explained above, only several data sets were suitable for this analysis as for some data
sets the system never went out of the quiescent state.

First of all, roll and heave are chosen as the most representative coordinates. Due
to the definition of the QPs, only extrema of the signals of these two coordinates are
taken into account as points lying between extrema don’t contribute to the analysis.
For purposes of convenience, we suggest to work with absolute values of signals. In
this case, the single amplitude is the height of the peak; the peak-to-trough amplitude
is the sum of heights of two neighboring peaks.

In Figure ?? one can see the absolute values of the signals for the roll and heave
coordinates from the data set D4 of Table 1. It appeared that in all data sets the
signal for the roll coordinate was not exceeding the threshold of 3◦. Thus we agreed
with MARIN to lower the threshold for single roll amplitude from 3◦ to 2◦ in order
to illustrate the whole QP search procedure. Green asterisks denote those peaks that
do not fall into the definition of the QP for the considered coordinate. Thus, the QPs
are those areas, which lie between green asterisks. In the plot we illustrate QPs with
an indicator function, which takes the value 1 if extrema are in a QP, and 0 otherwise:

1QP =

{
1, x ∈ QP
0, otherwise.

As we have separate QPs for roll and heave, we can determine QPs for the whole
system. For this purpose, we take an intersection of these areas for both signals.
According to the definition, we consider only those periods that last longer than 30
seconds.

Further, we would like to look at the distribution of the duration of QPs. From
Figure 5 we can see that the statistics of QPs is not good enough. Thus, we apply the
same search procedure on the data set from the longer simulation of 18000 seconds
(D1). On the upper plot in Figure 5 we can see how often QPs with different duration
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Figure 4: Example of quiescent periods found in a raw data set from the simulation
of 1800 seconds for roll (up) and heave (down) signals. QPs are illustrated with an
indicator function (red line), which takes the value 1 if absolute values of extrema are
in a QP, and 0 otherwise. Green asterisks indicate extrema which do not fall into the
definition of s QP for roll and heave respectively.

appear in the system. The lower plot in Figure 5 corresponds to the distribution of
the time intervals when the system is not in a QP.

From the plot in Figure 5 we notice that the distribution of the time intervals
for QPs reminds of the shape of the probability density function of the exponential
distribution, in which case one could model the occurrences of random events as a
Poisson process. This observation may be verified by statistical hypothesis testing,
which has not been done in the current work. Furthermore, the histogram of the
durations of QPs captures the information about the sea state in a specific time
interval. Thus, it could help the HLO to judge the behavior of the sea and estimate
how many QPs one might expect in the current situation.

3.1.1 Summary

The aim of this section was to examine the data signals generated by FREDYN from
a descriptive standpoint and gain an idea about the nature of the occurrences of QPs
in waves. Upon analyzing the histogram of the durations of QPs, one may assume
that the data follows an exponential distribution. However, to conclude this, we
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Figure 5: Distribution of the duration of quiescent (up) and non-quiescent (down)
periods in a data set D1. The upper plot shows the number of occurrences of QPs
with different time duration from the considered simulation. The lower plot depicts
how many non-QPs fall in the bins for different duration in the same simulation.

would need to analyze longer simulations with more variations in the wave profile and
perform a statistical hypothesis test. If the test confirms the exponential distribution,
one might consider to model the occurrences of QPs according to a Poisson process.

3.2 Qualitative patterns

An interesting way of studying qualitative patterns in the signal related to QPs is
the use of event-related analysis. After QPs have been defined and identified in the
signal, one cuts the time series into short segments around the beginning of each QP
and aligns these periods such that the QPs start at the same relative time (or lag).
An example is shown in Figure ?? for the extrema of the heave signal in the data set
D2. In fact, only the absolute values of the extrema were used in this analysis, as
otherwise QPs starting with negative or with positive extrema would be mixed and
the relevant information would be averaged out. The start of the QP, i.e., the event
used for the alignment of the signals, is marked with a vertical red line. The condition
imposed by the event is that the first extremum before the event has to lie above the
threshold (marked by the horizontal red line), and the first extremum inside the event
has to lie below it.
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Figure 6: Transition to quiescent period in the data set D2. Shown are subsequent
absolute values of extrema of the heave signal, conditional on the event that a qui-
escent period starts (marked by red vertical line). For simplicity, here the quiescent
period has been defined to be at least 30 seconds of heave signal below a threshold
value of 1.2 m. The mean and standard deviation of the individual time traces are
indicated (blue curves), as well as the overall mean and standard deviation of the
(absolute values of) extrema (black lines).

What is somewhat unexpected, and therefore interesting, is that the extrema seem
to have been higher than average already for about 5 waves (equal to 10 extrema)
before the event, on average. The length of this period corresponds to the average
length of the QP in this case, which is also about 5 waves – although this might be a
coincidence. After the QP, the statistical properties of the extrema quickly approach
the overall distribution indicated in the figure (i.e., the blue curves approach the black
lines), within about 4 extrema.

This and related figures (e.g. for different conditions imposed on the extrema)
can provide important hints for what patterns are present in the signals and how to
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exploit these. One example of a more quantitative analysis of these patterns will be
given in Sec. 5.4.2.

4 Distribution of QPs by analytic estimates
The motion of the ship is the net result of the mechanics of the ship and the forces
exerted on the ship by the waves. Exactly characterizing the forces on the ship that
result from the waves is non-trivial, and beyond our scope. Instead of focusing on the
ship, we have therefore focused on the waves.

More precisely, we have addressed the question

Given a signal on R with specified spectrum and random amplitudes and
phases, what is the distribution of quiescent periods?

Again, this requires specification, since a typical spectrum has a full support. Instead
we consider signals with discretized spectra, of the form

f(t) =
n∑

j=1

aje
iωjt, (8)

for some finite n, where aj are complex amplitudes chosen such that the spectrum of f
resembles a given spectrum, and such that the phases are uncorrelated. As discussed
in Section 2.4 this complex signal f can be 1-to-1 related to a real signal S, which is
simply obtained from f by taking its real part (see (5)),

S(t) =
n∑

j=1

αj cos(ωjt+ φj), (9)

where αj = |aj | and φj = arg aj . We emphasize that for any real-valued signal S of
the form (9) its associated complex signal f is uniquely defined and should be seen
as its analytic representation (see Section 2.4).

In the software FREDYN the ship model is driven by one or more of such signals,
representing wave trains from different directions. In this case n ≈ 100, but we will
also address the small-n case; it turns out that interesting insight can be gained from
n = 2 and n = 3, for instance.

4.1 Definition of quiescent periods
In the context of a general signal of the form (8), describing the behaviour of waves,
it does not make much sense to consider a quiescent period as defined by an absolute
criterion. Instead we consider quiescent periods as defined by a relative criterion,
characterized by two parameters and a choice of norm:

Definition 4.1. Let τ > 0 and θ > 0 be given. Given a signal of the form (8) a
quiescent period is defined by the property

‖f‖[t,t+τ ] ≤ θ ‘average’
(
‖f‖[t′,t′+τ ]

)
. (10)
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Here ‖f‖[t,t+τ ] can be any norm of f that is calculated over the time section
[t, t+ τ ]; we will consider two different norms below. The parameter θ is a threshold:
a quiescent period is a period in which the norm of f over that period is less than θ
times the average value of the norm. The ‘average’ can be interpreted in two ways –
either the average over times t′, or the expectation of the randomly chosen coefficients.
We will use both below.

4.2 The narrow bandwidth assumption

It is unclear to us how to characterize the rate of occurrence of quiescent periods in a
completely arbitrary signal. In order to make the question more amenable to analysis
we concentrate in all of Section 4 on the case of narrow bandwidth, as discussed in
Section 2.4: we assume that there exists a reference frequency ω > 0 and a bandwidth
ε ≥ 0 such that

|ωj − ω| ≤ ε� ω for all j = 1, 2, . . . , n. (11)

We refer to Figure 7 for a graphical illustration of this assumption.

Figure 7: All angular frequencies ωj are ε-close to the reference frequency ω.

Using the narrow-bandedness assumption, we rewrite the complex signal f(t) defined
in (8) as

f(t) = eiωtf0(t) (12)

so that the function f0 can be written in terms of the real-valued amplitudes αj > 0
and phases φj as

f0(t) =
n∑

j=1

αje
i[(ωj−ω)t+φj ]. (13)

Since f0(t) only differs by a factor eiωt from f(t), its polar form

f0(t) = A(t)eiφ0(t) (14)

has the same instantaneous amplitude A(t) as f(t), whereas the instantaneous phases
φ(t) and φ0(t) are related by

φ(t) = ωt+ φ0(t). (15)

This implies that the corresponding real signal S(t) = Re f(t) can be written as

S(t) = A(t) cosφ(t) = A(t) cos(ωt+ φ0(t)). (16)
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If the bandwidth ε is small, the value f0(t) moves slowly through the complex plane
since it follows from (11) and (13) that its velocity is bounded by

|f ′0(t)| ≤ ε
n∑

j=1

αj .

This allows us to bound the time derivatives of both the instantaneous amplitude
A = |f0| and the reduced phase φ0. Differentiating (14) we find

f ′0(t) = A′(t)eiφ0(t) + iφ0(t)A(t)eiφ0(t),

so that
A′(t) + iφ′0(t)A(t) = f ′0(t)e−iφ0(t).

Splitting the left-hand side into real and imaginary parts, we find that the instanta-
neous amplitude A(t) = |f0(t)| is slowly changing,

|A′(t)| ≤ |f ′0(t)| ≤ ε
n∑

j=1

αj ,

and also that the phase rate φ′0(t) of f0(t) is small,

|φ′0(t)| ≤ |f
′
0(t)|
A(t)

≤ ε
∑n
j=1 αj

A(t)
,

provided f0(t) stays away from the origin. In that case it follows from (15) that the
phase rate φ′(t) of f(t) is approximately equal to the reference frequency ω,

φ′(t) = ω + φ′0(t) ≈ ω. (17)

We conclude that the real signal S(t) = Re f(t) can be written in the form (16), where
the instantaneous amplitude A(t) is the modulus of the slowly varying complex-valued
function f0(t) defined in (13), and the instantaneous (angular) frequency ω(t) = φ′(t)
is approximately equal to the reference frequency ω (see (17)).

This remark allows us to refocus our attention. The reference time period associ-
ated with the reference frequency ω is given by

T =
2π

ω
. (18)

In practice, the minimal length τ of a quiescent period is significantly longer than T .
This implies that the real-valued signal S can only be small over a time τ if the
amplitude A also is small over that period (i.e., the smallness can not come from the
cosine in (16); it has to come from A). Therefore, in our quest for suitable quiescent
periods we can limit ourselves to time intervals where the instantaneous amplitude
A(t) is small; or equivalently, we can focus on f0 instead of f . Our aim therefore
becomes
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Find periods (or characterize the probability of periods) such that the
modulated signal f0 is small over a period τ .

In the following we will first take a “deterministic” approach, which is followed by
a “stochastic” approach. In the “deterministic” approach, we derive criteria for the
existence of quiescent periods for arbitrary real signals S of the form (9) (and their
complex counterpart f defined in (8)). In dedicated subsections we first consider
the cases n = 1, n = 2 and n = 3 in detail before we analyze the case of arbitrary
n. After completing the “deterministic” case we turn our attention to the stochastic
case, where the complex amplitudes aj of the complex signal f in (8) are stochastic
variables. In that case we will study quiescent periods of randomly sampled signals.

4.3 The deterministic case for n = 1

If n = 1, the real signal S(t) defined in (9) consists of a single cosine,

S(t) = α1 cos(ω1t+ φ1), α1 > 0, φ1 ∈ R. (19)

In this case the bandwidth is equal to ε = 0 and the reference frequency is equal to
ω = ω1. Quiescent periods longer than the reference value T defined in (18) only
occur if α1 is small enough, and in that case the quiescent period lasts forever.

For completeness we note that the associated complex signal f(t) defined in (8)
has instantaneous amplitude A(t) ≡ α1 and instantaneous phase φ(t) ≡ ω1t + φ1,
showing that f(t) moves on a circle with radius α1 centered around the origin with
uniform angular velocity ω1. In contrast, the complex signal f0(t) defined in (13)
is constant, and corresponds to a fixed point in the complex plane. In Figure 8 we
have displayed the signal S(t) and the (constant) instantaneous amplitude A(t) of its
associated complex signal for n = 1, α1 = 1, ω1 = 1, φ1 = 1.

Figure 8: For n = 1, α1 = 1, ω1 = 1, φ1 = 1 we have displayed the real signal S(t) and
the instantaneous amplitude A(t) of its associated complex signal for t ∈ [−100, 100].
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4.4 The deterministic case for n = 2

If n = 2 we assume without loss of generality that ω1 < ω2. We set ω = ω1 so that
the bandwidth equals ε = ω2 − ω1. The complex signal f0(t) defined in (13) is given
by

f0(t) = α1e
iφ1 + α2e

i(εt+φ2), α1, α2 > 0, φ1, φ2 ∈ R. (20)

Clearly f0(t) moves on a circle with center at α1e
iφ1 and radius α2 with a relatively

low constant velocity given by
|f ′0(t)| = α2ε. (21)

For the corresponding instantaneous amplitude A(t) = |f0(t)| we find

A(t) = |α1e
iφ1 + α2e

i(εt+φ2)| = |α1 + α2e
i(εt+∆φ)|

=
√
α2

1 + α2
2 + 2α1α2 cos(εt+ ∆φ),

where
∆φ = φ2 − φ1.

Clearly, A is a periodic function (with period 2πε−1) that varies between its minimum
|α1 − α2| and its maximum α1 + α2. Quiescent periods only occur if this minimum
is small enough. This is the case if α1 is sufficiently close to α2. In Figure 9 we have
displayed such an example with α1 ≈ α2, ε = 0.11 and ∆φ = −1.

Figure 9: A typical example of a real signal S(t) and the instantaneous amplitude
A(t) of its associated complex signal for t ∈ [−100, 100]. Here we have chosen n = 2,
α1 = 1, α2 = 1.1, ω1 = 1, ω2 = 1.11, φ1 = 1, φ2 = 0.

4.5 The deterministic case for n = 3

If n = 3 we assume without loss of generality that ω1 < ω2 < ω3. We define ε1 =
ω2 − ω1 and ε3 = ω3 − ω2 (see Figure 10).
Setting ω = ω2 the complex signal f0(t) defined in (13) is given by

f0(t) = α1e
i(−ε1t+φ1) +α2e

iφ2 +α3e
i(ε3t+φ3), α1, α2, α3 > 0, φ1, φ2, φ3 ∈ R. (22)



68 SWI 2017 Proceedings

Figure 10: For j = 1, 3 the distance |ωj − ω2| is denoted by εj .

This shows that the trajectory of f0(t) is the result of the superposition of two circular
motions with relatively low angular velocities (−ε1 and ε3). In Figure 11 we have
displayed two such trajectories.

Figure 11: The trajectory of the complex signal f0(t). In the left figure we have
chosen n = 3, α1 = 0.4, α2 = 1, α3 = 0.7, ω1 = 0.95, ω2 = 1, ω3 = 1.02, φ1 = 1,
φ2 = 2, φ3 = 3. In the right figure we have only slightly changed ω1 from 0.95 into
0.951.

In general we can distinguish the following two cases:

• The “rational” case: the ratio ε3/ε1 is a rational number

• The “irrational” case: the ratio ε3/ε1 is irrational

Both cases displayed in Figure 11 are ‘rational’ since the ratios ε3/ε1 are 2/5 and
20/49, respectively. In the general ‘rational’ case there exist two positive integers k
and ` such that

ε3

ε1
=
`

k
, (23)

where we may assume, without loss of generality, that k and ` are relatively prime.
One easily verifies that in this case the complex signal f0(t) has a periodic orbit with
period

∆t = 2πkε−1
1 = 2π`ε−1

3 . (24)

For the two cases displayed in Figure 11 the periods are ∆t = 200π and ∆t = 2000π,
respectively. For the graphs of the corresponding real signals S(t) we refer to Figures
12 and 13. In Figure 12 (which corresponds to the left trajectory in Figure 11) we
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see that the amplitude A(t) has indeed a period ∆t = 200π and that each period has
exactly one quiescent period. In Figure 13 (which corresponds to the right trajectory
in Figure 11) we have limited the time window to [−300, 2700], which is less than half
the period ∆t = 2000π of the amplitude A(t). Comparing the latter figure to Figure
12, we see that both graphs are very similar for times in the interval [−300, 500],
including the two quiescent periods marked with a black arrow. This is not surprising
since the only difference between both cases is a slightly different value of ω1. For
later times, the difference between both graphs becomes more pronounced, which also
illustrates the fact that the period of the amplitude A(t) in the second graph is 10
times as large as the amplitude of A(t) in the first graph.

Figure 12: For the case displayed in Figure 11 on the left, this is the graph of the real
signal S(t) (in red) and the instantaneous amplitude A(t) = |f0(t)| of its associated
complex signal (in blue) for t ∈ [−300, 500]. The period of the amplitude function A
is 200π, which is exactly the distance between two quiescent periods.

Figure 13: For the case displayed in Figure 11 on the right, this is the graph of the real
signal S(t) (in red) and the instantaneous amplitude A(t) = |f0(t)| of its associated
complex signal (in blue) for t ∈ [−300, 2700].

We finally discuss the “irrational” case, where the number ε3/ε1 is not a rational
number. In this case, as opposed to the rational case, the trajectory of the complex
signal f0(t) is not periodic. One easily verifies directly from its definition in (22) that
the trajectory of f0(t) is contained in the complex annulus Ω given by

Ω = {z ∈ C : |α1 − α3| ≤ |z − α2e
iφ2 | ≤ α1 + α3}. (25)

With some imagination, such an annulus can already be recognized in Figure 11 on the
right. Indeed, if we change the value ω1 = 0.951 in the right example into an arbitrary
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irrational number close to 0.951, the corresponding trajectory would “densely” fill the
complete annulus Ω. This means that for each z ∈ Ω, T > 0, ε > 0 there exists a
time t > T with |f0(t)− z| < ε.

The existence of quiescent periods for the irrational case depends on the proximity
of the origin to the annulus Ω. If the distance d(0,Ω) is small (which is the case, for
example, if 0 ∈ Ω), there will exist infinitely many quiescent periods, but the spacing
of these periods will be chaotic (as opposed to the regular spacing in the rational
case). It easily follows from the definition of the annulus in (25) that the proximity
criterion for the existence of quiescent periods is given by

|α1 − α3| ≤ α2 ≤ α1 + α3, (26)

which is equivalent to the more symmetric condition that each of the numbers α1, α2,
α3 is less than or equal to the sum of the other two. The latter condition can further
be rewritten into the single condition

max(α1, α2, α3) . 1

2
(α1 + α2 + α3). (27)

4.6 The deterministic case for arbitrary n

We consider an arbitrary real signal S of the form (9) with angular frequencies ωj > 0,
real amplitudes αj > 0 and phase shifts φj ∈ R. By renumbering we can assume
without loss of generality that

α1 ≥ α2 ≥ ... ≥ αn. (28)

Setting ω = ω1 and εj = ωj − ω1 (j = 2, 3, ..., n), the complex signal f0(t) defined in
(13) is given by

f0(t) = α1e
iφ1 +

n∑

j=2

αje
i(εjt+φj). (29)

We make again a distinction between the “rational” and “irrational” case. In the
rational case the numbers ε2, ε3, ..., εn are rationally dependent, which means that
there exist integers k2, k3, ..., kn, not all zero, such that

k2ε2 + k3ε3 + ...+ knεn = 0. (30)

In the irrational case the numbers ε2, ε3, ..., εn are rationally independent, which
means that the only way for (30) to hold is that all integers k2, k3, ..., kn are zero.

We first deal with the irrational case. In that case it follows from Kronecker’s
theorem (Hardy and Wright, 1979, Theorem 444) that the trajectory of f0(t) is con-
tained in and densely fills the set

Ω = {α1e
iφ1 +

n∑

j=2

αjzj : zj ∈ C, |zj | = 1}. (31)
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One easily verifies (with induction) that the set Ω is a (closed) annulus in the complex
plane with center z = α1e

iφ1 and (external/internal) radii given by

rext = α2 + α3 + ...+ αn

rint = max(0, α2 − α3 − ...− αn).

It follows that the distance from the origin to the set Ω is equal to

d(0,Ω) = max(0, α1 − α2 − ...− αn). (32)

Since quiescent periods are periods in which A(t) = |f0(t)| ≈ 0, there exist quiescent
periods if and only if d(0,Ω) ≈ 0, which is equivalent to the condition

α1 − α2 − ...− αn . 0.

Hence we have shown that in the irrational case there exist quiescent periods if and
only if

max(α1, α2, ..., αn) . 1

2
(α1 + α2 + ...+ αn). (33)

In the rational case (which should be seen as exceptional) the situation is slightly
different. In that case the trajectory of f0(t) is still contained in the set Ω, but it
does not densely fill that set. Hence condition (33) is necessary but not sufficient for
the existence of quiescent periods.

4.7 Random sampling of signals for arbitrary n

We now turn to the case of an arbitrary number n of harmonics, still under the
narrow-bandwidth assumption. The case of arbitrary n arises when representing a
“general” signal with a certain given spectrum. In practice, e.g. for the simulation tool
FREDYN, frequencies ωj and complex amplitudes aj are drawn randomly from a dis-
tribution modeled on the spectrum. Since the spectrum does not contain information
about the phases, the phases are chosen following a uniform distribution.

We mimic this situation as follows. First we assume that a set of frequencies
ωj ∈ R, j = 1, . . . , n are given, once and for all. Next we assume that a1, . . . , an are
independent, centered, complex Gaussian random variables, i.e. aj ∼ CN (0, σjI2), for
some C > 0 and σj > 0, where I2 is the two-dimensional identity matrix. We then let
f0 be given by

f0(t) =
n∑

j=1

aje
i(ωj−ω)t. (34)

The above-mentioned slower time scale of f0(t) corresponds to the fact that |ωj−ω| ≤
ε� ω.

By choosing the coefficients to be random variables in C, the functions f and f0 be-
come random variables in L∞(R;C); the assumption that the coefficients are normal
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makes the functions f and f0 Gaussian processes.1 Because time translation corre-
sponds to multiplying the coefficients by unit-length complex numbers, and because
the coefficients are normally distributed with mean zero and isotropic covariance, the
process is stationary.

4.8 The level-crossing approach for arbitrary n

The study of extremes of a stochastic process has been a topic of great interest in
engineering. For stationary processes, the main tool has been Rice’s formula for the
expected number of level crossings Rice (1944) and its generalizations. The most
recent account of this theory has been given by Lindgren (2013). For a Gaussian
stationary process Xt with zero mean, as we’re considering here, the number of up-
crossings of the level u > 0 per unit time is given by

µ+(u) =
1

2π

√
λ2

λ0
e−u

2/(2λ0),

where λk =
∫∞
−∞ |ω|kS(ω) dk are the spectral moments of Xt; here, if we choose X = f

as in (8), then we have

λk =
n∑

j=1

|aj |2|ωj |k.

The up-crossings of the mean level define themean period T2 = 1/µ+(0) = 2π
√
λ0/λ2.

Using this approach, Cramér and Leadbetter (1967) have studied the following
problem: A process Xt is said to fade below a level u if the envelope Rt of Xt has a
downcrossing of the level u. The length of the fade is the time between a downcrossing
and the next upcrossing of the level u by Rt. This corresponds closely to our notion
of a quiescent period (for a single variable, e.g. the heave signal).

Let us quote Lindgren here (Lindgren, 2013, p.261): ‘One of the most intrigu-
ing problems in stationary process theory is that of the distribution of the length of
excursions above a critical fixed level. Even for Gaussian processes, no explicit solu-
tion is known, except in a few cases.’ However, Lindgren then goes on to present ‘a
method to numerically calculate the exact distributions of excursion length’, based on
the evaluation of an infinite dimensional expectation for the so-called Slepian model.
Unfortunately this is beyond the scope of this report, but could be very useful for the
first problem posed by MARIN. Some of the numerical calculations are available in
the WAFO Matlab toolbox The WAFO group (2011).

Generalizing the analysis to vector processes, Lindgren even mentions the phe-
nomenon of the seventh wave, i.e. “the observation that waves on a shore or on the
ocean seem to have a typical regularity of one big wave followed by six smaller ones”
(Lindgren, 2013, p.271). The expected number of u-upcrossings of the envelope R(t)

1A Gaussian process is a stochastic process whose finite marginals are distributed according to
multivariate normal distributions.
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per unit time interval is given by

µ+
R(u) =

√
λ2(1− ρ2)

2πλ0

u√
λ0

e−u
2/(2λ0),

=

√
λ0λ2 − λ2

1

2πλ3
0

ue−u
2/(2λ0),

where ρ2 = λ2
1/(λ0λ2) is the squared correlation between Hilbert transform and

derivative of the process. The inverse of this corresponds to the result given by
Cramér and Leadbetter (1967) for the mean length of a fade. And the average num-
ber of envelope u-upcrossings per mean period is

T2µ
+
R(u) =

√
2π(1− ρ2)

u√
λ0

e−u
2/(2λ0),

and this corresponds to the inverse of the average number of waves per envelope
upcrossing.

4.9 Alternative estimates for arbitrary n

In this report we also derive a different type of estimate. As remarked above,
the modulus |f(t)| equals the modulus |f0(t)| for all t. We exploit this by choos-
ing the norm ‖f‖[t,t+τ ] in Definition 4.1 to be the sup-norm of f on [t, t + τ ], i.e.
‖f‖L∞(t,t+τ) := sups∈[t,t+τ ] |f(s)|. Then, it follows that ‖f‖L∞(t,t+τ) = ‖f0‖L∞(t,t+τ);
also, since the process is stationary, the distribution of ‖f‖L∞(t,t+τ) is independent
of t, so that E(‖f‖L∞(t,t+τ)) is independent of t. In this context we interpret the
“average” mentioned in Definition 4.1 as this expectation.

Then the probability of a quiescent period of length τ at time t equals

P
(
‖f‖L∞(t,t+τ) ≤ θE(‖f‖L∞(t,t+τ))

)
= P

(
‖f0‖L∞(t,t+τ) < θE(‖f0‖L∞(t,t+τ))

)
,

(35)

and as we already mentioned this probability is independent of t.
As it is difficult to analyse ‖f0‖∞ directly, we first focus on the L2-norm ‖f0‖2L2(t,t+τ) :=

∫ t+τ
t
|f0(t′)|2 dt′ ≤ τ‖f0‖2L∞(t,t+τ). We prove the following theorem:

Theorem 4.2 (Estimate of the distribution of the L2-norm). Let f0 be the Gaussian
process that we construct above, and assume that ε� 2π/τ . Then

P
(
‖f‖2L2(t,t+τ) ≤ θ2E(‖f‖2L2(t,t+τ))

)
≈ 1− e−θ2 . (36)

Note that the condition ε � 2π/τ is stronger than the earlier narrow-bandedness
assumption ε � ω = 2π/T , whenever τ > T (see the discussion on page 65). Under
this assumption, over an interval (t, t + τ), the signal looks like a single harmonic
(whose amplitude and phase can be viewed both as random for fixed t, or alternatively
as t-dependent for each realization).
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Proof. The L2-norm of f0 is readily computed. We have

‖f0‖2L2(0,τ) =

∫ τ

0

f0(s)f0(s) ds =
∑

j,k=1,...,n

ajak

∫ τ

0

ei(ωj−ωk)s ds =
∑

j,k=1,...,n

Ajk ajak,

where

Ajk =

∫ τ

0

ei(ωj−ωk)s ds =

{
1

i(ωj−ωk)

(
ei(ωj−ωk)τ − 1

)
j 6= k

τ j = k.

Since ε� ω, we replace Ajk by its limit τ , i.e. Ajk = τ for all j, k. Then

‖f0‖L2(0,τ) = τ

∣∣∣∣
n∑

j=1

aj

∣∣∣∣
2

.

Next we determine the distribution of |∑n
j=1 aj |2. Note that the aj ’s are assumed

to be independent and centered complex Gaussian variables with variance matrices
σ2
j I2, and therefore we have:

n∑

j=1

aj ∼ CN (0, σ2I2),

where σ2 = Σnj=1σ
2
j . It follows that:

∣∣∣∣
n∑

j=1

aj

∣∣∣∣
2

∼ σ2(Z2
1 + Z2

2 ) ∼ 2σ2Z,

where Z1, Z2 are independent, standard normal random variables and Z follows a
standard exponential distribution (the sum of the squares of two independent standard
normal random variables is exponentially distributed with mean 2). In other words,
the squared norm ‖f0‖2L2(t,t+τ) follows an exponential distribution with parameter
2τσ2.

Therefore, using the formula for the exponential cumulative distribution function
we obtain:

P
(
‖f‖2L2(0,τ) < θ2E‖f‖2L2(0,τ)

)
= P

(
‖f0‖2L2(0,τ) < θ2E‖f0‖2L2(0,τ)

)

≈ P
(
τ
∥∥∥

n∑

j=1

aj

∥∥∥
2
< 2θ2τσ2

)
= 1− e−θ2 .

If we prefer to have an estimate of the norm ‖f‖L∞(t,t+τ) = ‖f0‖L∞(t,t+τ), then we
can use the Gagliardo-Nirenberg interpolation inequality (Nirenberg, 2011) to derive
this from the previous estimate. This inequality gives an estimate of the supremum
norm in terms of the L2-norms of f0 and f ′0. Although there are various versions in
the literature, we prove our own because it gives us control over the constants:
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Lemma 4.3. For any f ∈ C1([0, τ ];C),

1

τ
‖f‖2L2(0,τ) ≤ ‖f‖2L∞(0,τ) ≤

2

τ
‖f‖2L2(0,τ) + τ‖f ′‖2L2(0,τ). (37)

Proof. The first inequality is immediate. For the second, we write for any s, t ∈ [0, τ ]

|f(t)|2 = |f(s)|2 + 2 Re

∫ t

s

f(σ)f ′(σ) dσ ≤ |f(s)|2 +
1

τ
‖f‖2L2(0,τ) + τ‖f ′‖2L2(0,τ).

Integrating left and right over s ∈ [0, τ ], and taking the supremum over t ∈ [0, τ ], we
find

τ‖f‖2L∞(0,τ) ≤
∫ τ

0

|f(s)|2 ds+‖f‖2L2(0,τ) +τ2‖f ′‖2L2(0,τ) = 2‖f‖2L2(0,τ) +τ2‖f ′‖2L2(0,τ).

This proves the result.

From this inequality we deduce the following theorem.

Theorem 4.4 (Estimates of the distribution of the infinity-norm). Assume the same
conditions as Theorem 4.2. Setting θ̃2 := θ2τ−1E(‖f‖2L2(t,t+τ)), we have

P
(
‖f0‖2L∞(t,t+τ) ≤ θ̃2

)
. 1− e−θ2

P
(
‖f0‖2L∞(t,t+τ) ≤ θ̃2

)
& 1− e−θ2/2.

Note the scaling of θ̃: since ‖ · ‖22 scales as τ , and ‖ · ‖∞ scales as 1, we rescale the
L2-norm by τ in the definition of θ̃ in order to make θ̃ τ -invariant.

Proof. Above we already calculated that

‖f0‖22 =
∑

j,k=1,...,n

Ajk ajak.

Similarly, we see that

‖f ′0‖22 =
∑

j,k=1,...,n

ajaki(ωj − ω)i(ωk − ω)

∫ τ

0

ei(ωj−ωk)s ds =
∑

j,k=1,...,n

Ãjk ajak,

where

Ãjk := (ωj − ω)(ωk − ω)Ajk.

Therefore, using Lemma 4.3,
∑

j,k=1,...,n

Ajk ajak ≤ τ‖f0‖2L∞(0,τ) ≤
∑

j,k=1,...,n

Bjk ajak,
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where B = 2A+ τ2Ã, i.e. Bjk = (2 + τ2(ωj − ω)(ωk − ω))Ajk.
As before we use the narrow-bandedness assumption that ε� 2π/τ , which implies

that Ajk ≈ τ and Bjk ≈ 2Ajk ≈ 2τ ; then the inequalities above reduce to

∣∣∣∣
n∑

j=1

aj

∣∣∣∣
2

≤ ‖f0‖2L∞(0,τ) ≤ 2

∣∣∣∣
n∑

j=1

aj

∣∣∣∣
2

.

In the proof of Theorem 4.2 we already observed that |∑n
j=1 aj |2 is exponentially

distributed with parameter 2σ2; therefore

P
(
‖f0‖2L∞(t,t+τ) ≤ θ̃2

)
≤ P

(∣∣∣∣
n∑

j=1

aj

∣∣∣∣
2

≤ θ̃2

)
≈ 1− e−θ̃2/2σ2

,

and

P
(
‖f0‖2L∞(t,t+τ) ≤ θ̃2

)
≥ P

(
2

∣∣∣∣
n∑

j=1

aj

∣∣∣∣
2

≤ θ̃2

)
≈ 1− e−θ̃2/4σ2

.

The assertion of the theorem follows from remarking that θ̃2 = θ2τ−1E‖f0‖2L2(0,τ) =

θ2 2σ2.

4.10 Discussion

The various results mentioned above all give partial characterizations of the proba-
bility of the appearance of quiescent periods in a narrow-banded signal.

For the “deterministic” case, the small-n results illustrate how quiescent periods
may or may not recur in deterministically chosen sums of harmonics, and show how
a precise characterization quickly becomes complex as the number n of harmonics
increases. For the generic “irrational” case, however, we were able to derive a general
necessary and sufficient condition for the existence of QPs.

For the “stochastic” case with arbitrary n, by choosing random coefficients, with
uniformly distributed phases and normal amplitudes, we can leverage the property
that the signal is a Gaussian process to characterize rates of upcrossings; possibly
the Slepian-model can lead to a more precise characterization of the distribution of
quiescent periods.

We also derived some estimates of our own for the probability distribution of
quiescent periods defined by the L2 and the L∞ norm, under the assumption of
strong narrow-bandedness. Although each of these various results covers only part
of the picture, together they do give some insight into the occurrence of quiescent
periods in sums of harmonics.
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5 Deterministic and stochastic models for prediction
of QPs

As a second main step, MARIN would like to help the HLO to predict quiescent
periods with high confidence. We pursued several approaches to this problem, by both
deterministic and stochastic models, with different levels of success. The underlying
hope is that the signal in a finite time interval contains enough information to allow
for forecasts in the very near future. This means that certain patterns are repeating
in the ship motion.

5.1 Fourier continuation of the signal

The ship motion is assumed to be a second-order stationary stochastic process Xt that
can be described by a continuous spectrum S(f). In fact, as the sea surface elevation
can be considered a Gaussian process, and the ship dynamics can be assumed to be
linear, the resulting ship motion response is also a Gaussian process. In simulations,
e.g. the ones performed by MARIN, realizations of this process are generated in the
form of time series that share the same second-order statistical properties. The most
common method is superposition of a large number of frequency components with
randomized phases

f(t) =
∑

k

√
2S(ωk)∆ωk cos(ωkt+ δk), (38)

where δk are drawn from the uniform distribution on the interval [0, 2π]. This
method can be readily extended to the multivariate setting Shinozuka and Jan (1972).
Mathematically, there is thus a difference between the simulated signals and ship
motions that are measured in reality.

Nevertheless, in both cases the underlying structure of the signals suggests that
Fourier analysis might be a useful tool to understand – and possibly predict – the
signals in question. Naively, one would suspect that if one estimated the Fourier
decomposition of the signal, i.e. the frequencies, amplitudes and phase angles, one
could simply continue the signal and predict its future evolution. For example, in
Eq. 38 the randomness appears only in the phases. Each realization of this process,
however, is a deterministic function. Of course, for real-world data the situation is
more unclear, but let us focus on the simpler case of simulated data for now.

The main difficulty in practice is that such an analysis is based only on a finite
time series (x0, x1, . . . , xn−1), whereas the underlying signal is defined on all of R.
The discrete Fourier transform can be used to estimate the frequency components of
the signal, but it is essentially a Fourier series. Since Fourier series of a non-periodic
function are really the Fourier series of the periodic extension of the function, this as-
sumes that the past history of the ship motion (x0, . . . , xn−1) is repeated periodically.
In other words, prediction based on Fourier continuation of the signal consists of triv-
ially repeating the signal from the start of the analysis period. This is illustrated in
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Figure 14: Discrete Fourier transform of ship heave signal. Prediction is based on
periodic continuation of the signal (see text).

Figure 14. The continuation therefore depends on the length of the past history that
is used. It is not clear how this can lead to a usable predictor of future ship motions.
One might average over different lengths of the past of the signal, but the resulting
variance in the prediction is too large to be useful.

5.2 Prediction in stationary processes
Prediction in stationary processes has been studied already by Kolmogorov. A very
accessible introduction is given by Fristedt et al. (2007). An extensive treatment was
given in Yaglom (1962), and the following is simply an application of his approach. Let
us consider here the extrapolation problem for a stationary random sequence (xi)t∈Z,
with the mean square extrapolation error as error criterion. This is the problem of
minimizing

σ2
m,n = E

[
|xt+m − g(x−1, x−2, . . . x−n)|2

]
(39)

over all extrapolation functions g. We restrict ourselves here to the class of linear
extrapolation functions

g(x−1, x−2, . . . , x−n) = α1x−1 + α2x−2 + · · ·+ αnx−n.
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If the sequence xi is a Gaussian process (which can be assumed here) this is no
restriction: it can be shown that in this case the best linear extrapolation formula
coincides with the best possible extrapolation formula (Yaglom, 1962, ch.20).

Let us assume that we know the the correlation function

C(j, i) = E[xjxi]

of the sequence xi. Because of stationarity, this does not depend on time i, but only
on the lag k = j − i, such that

C(k) = E[xi+kxi]

for any i ∈ Z.
The normal equations corresponding to the minimization problem in Eq. 39 are

∂σ2
m,n

∂αk

∣∣∣∣∣
α1=a1,...,αn=an

= −C(m+ k) +

n∑

i=1

aiC(k − i) = 0 (k = 1, 2, . . . , n). (40)

This is simply a linear system of n equations in n unknowns, which under the
conditions assumed here always has a unique solution. The best linear extrapolation
formula is then

x̂t+m = a1xt−1 + a2xt−2 + · · ·+ anxt−n

and the corresponding mean square error is given by

σ2
m,n = C(0)−

n∑

k=1

αkC(m+ k).

Yaglom remarks that this approach is impractical since the solution of Eq. 40
is tedious for n > 10 and continues to develop a spectral theory of the solution,
applicable whenever the correlation function or spectral density is a known rational
function, as well as the theory for the case of continuous time. However, this was
written at a time when mainframe computers had only 10 KB of memory. For our
purposes, the above approach seems the most direct and useful.

Testing this approach with the time series consisting of the extrema of the heave
signal, we start by looking at the autocorrelation function in Figure 15. The alter-
nating nature of the extrema process hides the relevant information, and it becomes
more natural to consider the absolute extrema. It can be seen that after about 4 val-
ues the absolute extrema are not correlated anymore, within the estimated statistical
uncertainty. Note that we removed the mean of the signals before the analysis, so
subsequent results are for zero-mean processes.

Setting up the linear prediction for the absolute extrema process is straightfor-
ward. Figure 16 shows the one-step ahead prediction (top) and the three-step ahead
prediction (bottom). As expected for this linear method, the n-step ahead prediction
approaches the mean value (of zero) for increasing n, and the prediction becomes less
reliable.
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Figure 15: Autocorrelation of extrema process and absolute extrema process.
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Figure 16: Linear prediction of absolute extrema process. An example for two different
values of the step ahead m are shown. In both cases a long history (n = 400) was
used. Root mean square error estimates are shown in addition.
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Figure 17: Accuracy of linear prediction for different lengths n of past history. Root
mean square error (RMSE) against number of prediction steps.

Figure 17 gives an indication of the accuracy of prediction that can be achieved
with this method, in terms of root mean square error between prediction and known
signal. It can again be seen that prediction beyond 4 steps ahead (amounting to about
two waves) is not really possible.

5.3 Statistical modeling of ship movements
In this section we consider the approach of fitting a stochastic model to the data on
ship movements that can be used to predict or test for the occurrence of a quiescent
period. In practice, the HLO appears to base his decision as to when to call the
helicopter in for a landing attempt on the ship movements that occurred during the
recent past. This suggests that it ought to be possible to predict the occurrence of a
quiescent period based on past observations. In this section we concentrate on linear
models, and outline some preliminary ideas on which models may be useful. We focus
on the modeling of the wave envelope by considering observations of the ship motion
of the recent past.

In Section 5.3.1 we consider autoregressive moving average (ARMA) models, which
are commonly used to model economic time series but have widespread applications
in other areas (Brockwell and Davis, 2009). We also provide a preliminary example in
which we fit an ARMA model to the sequence of extrema of the heave data set pro-
vided by MARIN. In Section 5.3.3 we explain how one can use sequential hypothesis
testing as an aid to decide whether or not a quiescent period has commenced, given
a fitted ARMA model. In Section 5.3.2 we propose a variant of a logistic regression
model as a possible improvement to the ARMA model for the problem at hand. We
provide a brief summary in Section 5.3.4.
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5.3.1 Autoregressive Moving-Average model

The basic ARMA model is defined as follows. We assume time is slotted into time
epochs of equal length that we index by t ∈ N. Let (Zt) ∈ Rd denote a sequence of
Gaussian independent and identically distributed (i.i.d.) random variables with zero
mean and variance σ2. Such a sequence is often referred to as white noise process.
Suppose the data sequence of interest is a realization of a stochastic process (Xt) ∈ Rd.
Then the process is referred to as ARMA(p,q) process if it satisfies the recursion

Xt = c+

p∑

i=1

AiXt−i +

q∑

j=0

BjZt−j , (41)

where c ∈ R, and Ai and Bj are coefficient matrices of suitable dimensions. For
background on ARMA modeling see, for example, Brockwell and Davis (2009).

It is a virtue of the ARMA model that forecasting based on this model is partic-
ularly easy. Given the observations up to time t, we can predict the next vector of
data points by

X̂t = c+

p∑

i=1

Aixt−i +

q∑

j=1

Bjzt−j ,

where we have replaced Zt by its expected value zero. Thus, the model can be used
to predict the magnitude of the ship movements in the near future.

We now provide a small example where we fitted a univariate ARMA model to
the series of heave data. We focussed on this data series because the magnitude
of consecutive heave movements seems to be particularly important for the decision
of the HLO to initiate a landing attempt. We expect, however, that the predictive
capability of the model can be improved by including other relevant time series.

First, we recall that the relevant information for predicting a quiescent period is
included in the envelope. We therefore extract the sequence of local extrema of the
heave data series. We then take the absolute value of the extrema and center the
resulting time series by subtracting the mean value: indeed, the amplitude is what
affects the helicopter landing.

To estimate the model parameters, we used the package “forecast” in the statisti-
cal computing language R. We fitted the model to a training set of 200 data points,
resulting in an ARMA(2,0). With this model specification and the estimated coeffi-
cients, we ran diagnostic tests on the residuals to verify that the latter are Gaussian
white noise. We then used the model to predict the subsequent 10 data points, see
Figure 18.

We remark that the accuracy of the prediction did not improve with a larger
training set; seemingly, the series can be modeled as ARMA only locally. Further
testing with multivariate ARMA is needed to optimize the data to be included in the
model: we included only the extrema of the heave data series, but other data such as
roll and pitch motion may be significant as well. It is also possible to attempt to model
the amplitude of the wave heaves rather than the absolute value of each extreme point
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Forecasts from ARIMA(2,0,0) with non−zero mean
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Figure 18: Example of a forecast for heave extrema based on an ARMA(2,0). The
shaded area indicates the 90% (dark grey) and 95% (light grey) confidence intervals.

as we did in this preliminary experiment. It may also be that predicting the actual
value of the time series based on simple linear models is not possible with sufficient
accuracy. In the next section therefore we suggest a logistic regression model that
can be used to decide whether or not a quiescent period has commenced or is about
to commence.

5.3.2 Logistic regression

In the preliminary experiment we presented in Section 5.3.1, the forecasts we obtained
with the ARMA model corresponded to rather large confidence intervals. We sug-
gested a number of steps that may help to remedy this issue. Note, however, that
our objective is to decide whether or not to expect a quiescent period; predicting
the actual value of the time series is not strictly necessary for this purpose. As an
alternative to the ARMA model we therefore propose the following logistic regression
model.

Let Y denote a discrete random variable taking values in {0, 1}, where the re-
alization 1 indicates that the current time period is quiescent. Let π denote the
probability that Y = 1. We now seek to explain the realization of π by current and
past observations. For example, consider

log

(
π

1− π

)
=

p∑

j=1

k∑

i=0

βi,jXi,t−j , (42)

where βi,j denote the coefficients. Here, Xi,t−j denotes the random variable corre-
sponding to an observation obtained at time t−j of a particular type of ship movement
labelled by i.
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A simple logistic regression model can be estimated using maximum likelihood
techniques that are readily available in any standard statistical programming lan-
guage; see (Kabacoff, 2015, Section 13.2) for an example using R. Note, however,
that the sequence (Xi,t−j)j is not independent; therefore care has to be taken that
the correlation between included variables is not too strong. If variables are nearly
perfectly correlated, the matrix of coefficients is nearly singular, which can lead to
problems with standard estimation procedures (this is known as multicollinearity).

In order to estimate a model for explaining Y , we need to label each data point of
the training set by 1 or 0 depending on whether or not it lies within a quiescent period.
We remark that for a period to qualify as quiescent, it must be of sufficient length,
say T = 5. Thus, if we collect measurements every ∆ time units, where ∆ < T , then,
we must observe nearly perfect positive correlation between values of Yt: If Yt = 1
then we must have that neighbouring points also have realization 1. Furthermore,
Yt is not necessarily measurable at time t: We only know whether or not we should
label Yt as quiescent after we observed a period of length T , during which the waves
were quiet. Suppose, for example, that ∆ = 1/T and consider the first observation we
collect (at time ∆, that is), which we denote by Y∆. Then we need to observe T − 1
more data points before we can determine whether Y∆ is part of a quiescent period.
Therefore, we cannot use Y∆ to predict the value of Y2∆, say. This explains why we
did not include past observations Yt as explanatory variables on the right-hand side
of Eq. 42.

A possible alternative is to group data into sliding windows such that for each
new observation arriving the oldest observation is discarded. If the size of the win-
dows coincides with the minimum length of a quiescent period, then windows are
not perfectly correlated, and we can determine whether or not the previous window
was quiescent, namely, if all observations in the previous window corresponded to a
quiescent period. This alternative framework leads to a model of the form

log

(
π

1− π

)
=

p∑

j=1

k∑

i=0

βi,jXi,t−j +

q∑

k=1

γkY
w
t−k, (43)

where Y wt denotes the random variable describing whether or not the collection of
data points belonging to the window that ends at time t.

To gain more certainty as to whether or not a quiescent period has commenced,
the predicted future values of the relevant time series may be supplemented by the
outcome of a statistical hypothesis test. We briefly discuss such a procedure in the
next section for the ARMA model example.

5.3.3 Change point detection

In this section we explain how change point detection procedures can be applied to
test a stationary ARMA time series for a change in the mean value. Specifically, we
focus on the popular CUSUM method that was originally suggested by Page (1954).
Similar procedures have been considered in Basseville and Nikiforov (1993); Chen and
Gupta (2012); Robbins et al. (2011).
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First, note from Eq. 41 that setting the initial white noise terms equal to zero, the
sequence of residuals can be extracted from the sequence of observations as

Ẑt = xt − c−
p∑

i=1

AiXt−i −
q∑

j=1

Ẑt−j .

A shift in the mean value of size µ in the sequence of observations therefore results
in a shift in the mean value of the innovations Ẑt. Apart from the jump in the mean
value, this sequence is i.i.d. Gaussian, so that we can focus on the easier problem of
testing a sequence of independent Gaussian random variables. For further details on
this and a comparison to the approach of testing the sequence of observations directly,
see Basseville and Nikiforov (1993); Kuhn et al. (2014); Robbins et al. (2011).

The CUSUM method is essentially a sequential application of a log-likelihood ratio
test. Consider testing the data in sliding windows of fixed size n. We wish to test
whether at any time within the window the mean value of the sequence (Zt) has
changed from θ0 to θ1, say. Denote the hypothesis that such a change in mean has
occurred at time k by H1(k). Thus, under H1(k) we have E[Zt] = θ0 for t < k and
E[Zt] = θ1 otherwise. Instead, under the null hypothesis H0 we have E[Zt] = θ0 for
all t ∈ {1, . . . , n}.

Denoting by pθ a normal density with mean θ, the log-likelihood ratio test statistic
for testing the first window is

Sk :=
n∑

t=k

Yt :=
n∑

t=k

log

(
pθ1(Ẑt)

pθ0(Ẑt)

)

(note that Yt = 0 for t < k since for such t the distribution of Zt is equal under H0

and H1(k)). Obviously, the ratio of likelihoods pθ1(Ẑt)
/
pθ1(Ẑt) is large if pθ1(Ẑt) >

pθ1(Ẑt), that is, if it is more likely to observe Ẑt assuming that H1(k) is true. We
would thus decide in favor of H1(k) if the test statistic Sk is large in some sense.

In order to decide whether a change point has occurred at some point k within
the current window, we therefore need to check whether there is a k ∈ {1, . . . , n}
such that Sk exceeds a certain critical value, b, say. As a result, the statistic for the
composite test (that is, H0 versus

⋃k
i=1H1(k)) is

tm := max
k∈{m−n+1,...,m}

Sk(m), (44)

where m is the label of the current window, and Sk(m) denotes the test statistic
corresponding to the innovations in the m-th window. Then, for a given threshold
b > 0, the CUSUM method raises an alarm (indicating that a change has occurred)
at time ta, with

ta := inf [m : tm ≥ b] . (45)

The name of the test is explained by noting that the test statistic tm can be rewritten
in terms of the cumulative sums Tk :=

∑k
t=1 log pθ1(Ẑt)/pθ0(Ẑt) as follows,

tm = Tm − min
k∈{m−n+2,...,m}

Tk−1.
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This is convenient with respect to computational efficiency since Tm equals Tm−1 +
Ym, and computing mink∈{m−n+2,...,m} Tk−1 only involves comparing the minimum
computed at time m − 1 with Tm−1. The choice of the threshold b can be based on
simulation, or using approximations to the false alarm probability (see Kuhn et al.
(2016)). For an example with multivariate data sequences see Kuhn et al. (2014).

5.3.4 Summary

The methods suggested in this section require more extensive testing. In particular,
for the ARMA modelling approach other variables should be included besides the ex-
trema of the heave movements. The logistic regression approach may be more suitable
given that the objective is to discern between quiescent and non-quiescent periods,
and should also be investigated based on numerical experiments. As suggested, one
may use a change-point-detection procedure as a further indicator as to whether a
quiescent period has commenced. Assuming that the HLO is risk averse, we would
recommend that a quiescent period is then only announced if both the test and the
predicted values indicate that such a period has started.

5.4 Short-term forecasting
In this section we will investigate a possibility of short-term forecasts of quiescent
periods by solely analysing the ship motion data. That is to say we regard the motion
data as a discrete-time stochastic process with memory. In this process, the states at
time points ti, i ≥ 0 are correlated with the previous states at ti−1, ti−2, . . . , ti−k, 0 <
k < i. Since the original motion data is not supplied in a form of discrete states but
as samples of a continuous-time function, one needs to convert the sampled signal
into a discrete time series first. All in all, three questions crystallise as central to this
analysis:
1) How to define patterns in data?
2) What correlation between the patterns is observable?
3) How good are the forecasts that can be made on the basis of observed patterns?
Let f(t) ∈ C2[0,∞) represent one component of the measured signal. Without loss of

generality we assume the signal f(t) has zero mean value,
∞∫
0

f(t) dt = 0. Furthermore,

for the sake of simplicity we restrict our attention to local extrema of f(t), that are
in view of the smoothness class isolated points,

F =

{
f(t) :

d
dξ
|f(ξ)|ξ=t = 0 and

d2

d2ξ
|f(ξ)|ξ=t < 0

}
.

Occurrence times t naturally induce a strict order on F which allows us to speak of a
sequence Fi, i = 1, 2, . . . In this way, each peak is characterised by a couple (Fi, Ti) ∈
(0,∞)2, and the whole signal by a sequence of peaks: S = ((F1, T1), (F2, T2), . . . ),
where Fi denotes the peak height and Ti = ti+1−ti−1

2 the duration. Furthermore, a
configuration for d consecutive peaks, that is a d-tuple s = ((F1, t1), . . . , (Fd, td)), is a



Quiescent Periods during Helicopter Landings on Ships 87

point in Ω = (0,∞)2d. We will now consider the probability space (Ω,F , µF ), F = 2Ω,
containing the d-tuples as outcomes. For given p ∈ F , the probability measure µF p
tells us how often the elements of p occur in the signal,

µF p := lim
n→∞

1

n− d
n∑

i=d

1p(Si−d:i),

where Si−d:i denotes a fragment of the signal S, and 1p is the indicator function for
event p. Some events from F can be represented as a union tensors products. Let,

P d =





m⋃

i=1

pi : pi ∈
d⊗

j=1

[aj , bj ], 0 < aj < bj



 ⊂ F .

We refer to events p = p0 × p1, p0 ∈ P d1 , p1 ∈ P d2 , d1 + d2 = d as patterns. For
each pattern p there is a signal F such that µF p > 0, which is not generally the
case for events that are not patterns. For a given pattern p, we will now quantify its
suitability for forecasting. Suppose one finds a d0-tuple representing p0 in the data. Is
the expectation that a d1-tuple from p1 will follow immediately after a good forecast?
Formally, the answer to this question unfolds into three distinct statistical estimates:
a) probability to find p0, is simply given by P0(p) = µF p0;
b) probability that p0 is followed by p1, P1(p) = µF p

µF p0
;

c) probability that p1 is preceded by p0, P2(p) = µF p
µF p1

.
The estimate P0 tells us how often we can perform the forecast based on this pattern.
The estimate P1 tells us how reliable this forecast will be, and the estimate P2 tells us
what fraction of all p1 in the signal is predictable via the pattern. For example, it may
happen that p0 is always followed by p1 which makes this combination of patterns
a reliable prediction (P1 = 1). If in the same time, p1 is preceded by many other
patterns, then (p0×p1) is reliable but not very efficient combination (P2 ≈ 0). Finally,
if besides the above-stated, p0 alone is not frequently observed then the prediction
is reliable but practically useless, as one has to wait long, before the opportunity to
assert a forecast comes (P0 ≈ 0). And so the problem of good forecasting given a
sample of the signal shapes as a search for such p ∈ F that scores high on all three
estimates P0, P1, P2. Below, we will consider a few semi-heuristic choices on how such
a search can be performed.

5.4.1 Markov model

Let WF = {[bi−1, bi], i = 1, . . . , n : bi > bi−1, bi ∈ (0,∞)}, WT = (0,∞) and d = 2.
We search for patterns from p ∈ (WF × WT )d ⊂ F . We are discretising the peak
height into n bins and ignore the duration of the peaks completely.

This way, the prediction scheme with d = 2 becomes identical to a Markov chain.
To do this, we classify the wave heights in a number of bins and then count how often
transitions between bins occur. We can also include a finite history, by classifying
wave heights of two successive extrema and counting transitions between pairs of
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n 1 2 3 4 5
Bin 0-0.198 0.198-0.323 0.323-0.448 0.448-0.607 0.607-1.47

Number of extrema 1041 1042 1043 1042 1043

Table 2: Numbers of peaks in each bin from the chosen system of 5 bins

extrema or by counting for how many successive extrema the waves are above a
certain threshold before a quiescent period is entered. An optimised combination of
bin widths, number of bins and history depth will be needed for the best possible
prediction, but a full exploration of all these algorithmic choices is beyond our scope
here.

We consider the wave heights for a run of 5 hours. In these 5 hours there are 5212
extrema in the data, with the largest deviation from the mean equal to 1.47 meters.
We choose to use 5 bins, with the limits on the bins such that each of the 5 intervals
specified by the bins has equal numbers of extrema. This is summarized in Table 2.
The slight variation in numbers of extrema is due to rounding on the bin widths. We
now simply count the transitions between bins and use this to construct a matrix M̂2

that, at index (n,m), counts how often a wave of height n evolves into height m:

M̂2 =




620 294 104 24 0
291 353 252 122 24
99 266 344 261 73
26 105 273 399 238
5 24 70 236 708



. (46)

It is clear that there is some structure in the wave pattern, namely that waves of a
certain height are likely to be followed by waves of comparable height.

The question whether it is sufficient to only consider a history depth of one ex-
tremum may be raised. This assumption underlying the analysis leading to M̂2 may
simply be tested using the data. To do this we first normalise the columns of M̂2 to 1,
which makes it into a probability transition matrix M2. The normalisation is chosen
such that if we are in a state and multiply it from the left with M2, we always go to
some other state and the total probability of being in any state is conserved. We can
then compute M2

2 , which models the process of taking two steps with our Markov
model M2, and compare it to the transition matrix that skips over one extremum,
Ms

2 . Then, if the assumption that only the current state matters for forecasting holds,
we should have that M2

2 = Ms
2 . These two matrices are shown in below:

M2
2 =




0.44 0.29 0.17 0.08 0.02
0.29 0.27 0.22 0.16 0.07
0.17 0.22 0.25 0.23 0.13
0.08 0.15 0.23 0.28 0.26
0.02 0.06 0.13 0.26 0.52



, Ms

2 =




0.31 0.29 0.22 0.13 0.05
0.30 0.25 0.18 0.17 0.11
0.20 0.21 0.22 0.22 0.15
0.14 0.15 0.22 0.25 0.24
0.05 0.10 0.16 0.23 0.46



.

(47)
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It can be seen from Eq. 47 that M2
2 and Ms

2 are not identical. The question is
then if this is just because we do not have enough data, or because our modelling
choice of having the bins in Table 2 and considering a state space of only the current
extremum is not good enough. To test this properly, we need a way of comparing these
matrices while taking into account that due to statistical fluctuations we expect the
estimation of transition probabilities of rare events to be worse than the estimation
for common events. Furthermore, we would like to be able to compare matrices of
different sizes, because changing the number of bins or history depth changes the size
of the state space and hence the dimensions of the matrices. Let n = 5212 be the
number of extrema, M̂s

2 the unnormalised version of Ms
2 , × the element-wise product

of matrices, and ||.||F the Frobenius norm and define

e(M̂s,Ms,M, n) := ||M̂s × (Ms −M)× (Ms −M)||F /n. (48)

Then e(M̂s
2 ,M

s
2 ,M2, 5212) = 0.0021. To interpret this number we shall compare it to

the Markov model for the state space with the same bins, but with a history of two
extrema. The corresponding 25 × 25 transition probability matrices are not shown
here, but inspection of their entries shows that after a sharp decline in extremum
height the likelihood of multiple low extrema is highest. The estimation quality is
given by e(M̂s

4 ,M
s
4 ,M4, 5212) = 0.00046. We conclude that the data are better

described by taking a longer history depth and that multiple low extrema are most
likely if a sharp decline in extremum height is found.

5.4.2 Counting waves

An obvious way to account for longer history is to simply increase the pattern length
d in the previous approach. Such decision will quickly lead us to a big number of
patterns each with a very low frequency of occurrence and hence poorly represented
in finite samples of the signal. We will instead construct a heuristic system of patterns
that covers a big part of the whole configurational space and is a formalization of the
already observed strategy described by the HLO: counting peaks.

A pattern for a single peak with a height below a quiescent threshold, bq, is given
by

pq = (0, bq]× [0,∞).

If a peak belongs to this pattern, its height Fi ∈ (0, bq] and the duration is arbitrary
Ti ∈ (0,∞). In a similar fashion we define a pattern with non-zero number of peaks
having all the heights below bq and the total duration exceeding tq.

pQ =
∞⋃

k=1

⋃
∑
qi≥tq

k⊗

i=1

(0, bq]× [qi,∞).

If – on a signal fragment S – µS pQ > 0, then µS pq > 0. Consider now a sequence of
k+ 2 peaks that consists of: a peak below the quiescence threshold bq, k peaks above
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Figure 19: A sample of the signal from dataset D1 together with a matched system
of patterns.

the threshold bs, and again a peak below the threshold bq. The corresponding pattern
is given by

pk = pq × ([bs,∞)× (0,∞))
k × pq.

Now the idea is to investigate the occurrence of patterns pk × pQ for k = 1, . . . This
idea has a very simple practical interpretation.
Suppose one is counting all peaks above the threshold bs. Every time a peak with
amplitude below bq < bs comes, one resets the counter to zero. We would like to know
whether the count number at the resetting helps in predicting long quiescent periods.

An example of matching patterns from this system to the data is given in Figure 19.
As before, we investigate the efficiency of the forecasting according to three measures:
P0, P1, P2. Figure 20 presents results for dataset D1 (see Table 1). The figure rates
patterns pk according to measure P1 (top panel) and T/P0 (bottom panel), where
T is the average distance between peaks. There are a few empirical observations to
make here. Firstly, not all patterns are equally good in the prediction. Secondly, the
longer a pattern is, the less frequently it is represented in the signal. Thirdly, we
see an artefact caused by the finite size of the signal sample: pattern p9 predicts the
quiescence period with probability one precisely because it occurred only once in the
sample. On another hand, p6 leads to very certain predictions, yet its average waiting
time, approximately 30 min, is longer than practical limitations. In principle, one can
combine p6 with a pattern that occurs more frequently but has a lower prediction rate,
say p1, to compromise on predictability and reduce the waiting time. Additionally,
the partition into patterns is based on parameters bq, bs, tq. While bq and tq define
the quiescent period and cannot be adjusted, bs is a free parameter that may influence
the quality of the predictions. This motivates the following optimization procedure.
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Figure 20: Efficiency of forecasts due to patterns pk, as measured according to forecast
certainty P1 and waiting the time 1/P0. The values for method parameters are: bs =
1.72.

Let ωk = P0(pk)
∞∑

k=1

P0(pk)
are relative frequencies for pattern k, then the cost function

c(k1, k2, . . . ) =

∞∑
i=1

ωkiP1(Pki)

∞∑
i=1

ωki

gives the average prediction rate for a union of patterns pki , where ki form a subset in
N. The task is to choose such a subset of indexes that the union of the corresponding
patterns has best expected prediction rate. These requirements are crystallized as the
following optimization problem,

c(k1, k2, . . . )→ min,

{k1, k2 . . . } ⊂ N,

wt
(⊗

i

pki

)
≤ wmax

bs ∈ [bq,∞),

where wt(p) denotes the waiting time for a pattern p, and wmax is the upper constrain
on the waiting time, in this report wmax = 2 min unless stated otherwise.

Figure 21 features the prediction rates and waiting times for patterns after such
an optimisation has been carried out for dataset D1 (see Table 1). The resulting
optimal subset of indexes is So = {1, 2, 4, 5, 6, 7, 9, 10} and the optimal value for
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Figure 21: Efficiency of forecasts due to patterns pk, as measured according to forecast
certainty P1 and waiting the time 1/P0. The values for method parameters are: bs =
1.545.

bs = 1.5750. The optimal set of parameters leads to the expected prediction rate 0.74;
the occurrences of the combined prediction pattern

⊗
k∈So

pk are separated by average

waiting time of 1.85 min. In total, 78% of all quiescent periods are predictable via
this combined pattern. This frequency of predictable events is limited by two factors:
the choice for the pattern, which is in part heuristic and thus can be improved; the
randomness of the signal that is a feature of data and cannot be manipulated.

All in all, we performed prediction tests/optimisation of the patterns on four
datasets, shortly referred to as D1, D2, D3, D4, as shown in Table 1.

Table 3 provides the quality measures for all combination of optimisation/prediction.
Data sets D1, D2 are two finite uncorrected samples produced for the same model
parameters. One notices that the prediction quality changes little if we optimise on
D1 and then predict on D2 or D3 (the first line of Table 3) as opposed to the scenario
when we optimise and predict on the same dataset (the diagonal of Table 3). This
may suggest that the optimised pattern grasps some universal property of the data.
The situation changes when we analyse datasets with distinct simulation parameters,
e.g. comparing dataset D1 to D4, that features larger wave height. In this case, when
trained on D1, the prediction certainty on D4 is much smaller. When trained on D4
and then predicting on D1 the prediction certainty is relatively high but the waiting
time is a magnitude larger. This scenario demonstrates that the optimised pattern
does depend on the software parameters (that, in turn, mimic the sea state).

Optimisation on D4 results in no solution unless we increase the upper constraint
on the waiting time. Such behaviour is connected to the fact that there are not many
quiescent periods in this dataset.
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Optimize

Predict

D1 D2 D3 D4

D1
χ = 0.804
t = 1.33
f = 0.30

χ = 0.68
t = 2.0
f = 0.79

χ = 0.53
t = 3.0
f = 0.55

χ = 0.12
t = 5.0
f = 0.75

D2
χ = 0.73
t = 1.73
f = 0.83

χ = 0.71
t = 1.87
f = 0.87

χ = 0.58
t = 2.30
f = 0.72

χ = 0.12
t = 7.5
f = 0.5

D3
χ = 0.74
t = 2.0
f = 0.7

χ = 0.71
t = 2.10
f = 0.78

χ = 0.74
t = 1.87
f = 0.89

χ = 0.09
t = 10
f = 0.37

D4∗
χ = 0.76
t = 17.60
f = 0.08

χ = 0.76
t = 15.0
f = 0.1

χ = 0
t = n/a
f = 0

χ = 0.67
t = 7.5
f = 0.5

Table 3: Prediction and pattern optimisation on various datasets. The prediction
quality is measured by certainty χ, pattern waiting time t (min) and fraction of
predictable events, f . ∗For optimisation on dataset D4 the upper constrain on average
waiting time was relaxed to wmax = 8 min.
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5.5 Summary

Instead of processing the full data from the motion sensor, we narrowed our attention
to the sequence of extrema values (the peaks). Patterns in such a sequence are defined
as a subsequence of peaks with heights that fall within specific bounds. From this
point of view a pattern is a manifold in the the peak configuration space. Given an
observed sequence, the frequency of pattern occurrence can be computed as number
of times such manifold was hit by samples from the data. Special interest present
those patterns that combine non-quiescent period followed by a quiescent one.

Software-simulated data were analyzed for occurrence of patterns. Similar patterns
were found in uncorrelated sample data that were produced with the same simulation
parameters specifying the sea state. The patterns differ when different sea-state
parameters are used. A somewhat naive choice for patterns as a tensor product
allows one to assert predictions on quiescent period with 80% certainty and acceptable
(from operation time point of view) frequency on some datasets. We expect that the
certainty can be improved by a cleverer choice for pattern manifolds.

6 Conclusions

Given several simulations of ship motion, we tried to identify the distribution and
initiation of quiescent periods (QPs) by various techniques with the common aim
of pattern recognition. Moreover, within reasonable assumptions on the response of
the ship to the forcing of the sea waves, we claimed that studying the more general
problem of finding QPs in a sum of (deterministic or random) harmonics is relevant
to make statements about the occurrence of QPs in ship motion.

The first thing we realized is that the essential information of the motion is con-
tained in the extrema of the waves, and that this is encoded in the Hilbert transform
of the signal. We then gave a statistical description of the distribution of QPs and a
qualitative picture of the typical ship motion around a QP. While the former suggests
modeling the occurrence of QPs by a Poisson process (even though this argument has
still to be statistically tested), the latter information constitutes the first tool that we
have for prediction of QPs.

Whenever ship motion is essentially coincident with the sea motion and its spec-
trum is narrow-banded, we gave analytical estimates of both probability and frequency
of quiescent periods in a sum of deterministic and random harmonics. We reviewed
the cases of one, two and three deterministic harmonics: the second one encodes the
phenomenon of beating and is the prototype to have a first understanding and defini-
tion of a quiescent period; the third case already contains a lot of the features of the
most general case, for which we derived a general criterion for the existence of QPs.

We then considered the case of arbitrarily many random harmonics. First, we
applied existing methods to characterize rates of upcrossing of a fixed threshold. Next,
we gave estimates for the distribution of QPs according to two different definitions of
a QP and in terms of both the hight and the length of a QP.
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The methods of fast prediction of quiescent periods are based on recognizing pat-
tern in the time series via Fourier continuation and a few stochastic models for sta-
tionary processes. While the former, at this level of analysis, doesn’t seem to be
useful, the latter look promising. Indeed, we were able to identify several structural
properties in the data.

The methods via the extrapolation problem perform well in the case of short-
term prediction, but deteriorate when prediction is sought for longer futures. The
autoregressive models are able to provide a reasonable forecast in some cases, but
with rather scarce statistical confidence. A logistic regression was proposed, too, but
it has still to be tested, together with a change-point-detection procedure. We remark
that the simulations we have performed are limited to the data series of the heave
coordinate. We feel that the inclusion of other variables may help the predictive power
of such models.

The final approach described in this report is looking at the data from the stand-
point of the theory of Markov processes. We were able to identify a few waves patterns,
interpret the data as a random sequence of patterns, investigate the “memory con-
tent” of that stochastic process, and implement prediction. Some patterns gave rise
to fairly good predictions, specifically when a series of particularly high waves are
followed by a QP. We expect that this could be improved further by a better choice
of the patterns themselves.
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1 Introduction
During the Study Mathematics with Industry held in Amsterdam we worked on a
challenge formulated by Shell about the mixing of fluids in curved pipelines. The
question originates from a problem that can occur when transporting oil and gas
through pipelines. This transportation of hydrocarbon fluids through pipelines in a
safe and efficient way is a major challenge for the petrochemical industry. Especially
in rough conditions like the ones that are present on the bottom of the ocean where
temperatures typically lie around 4◦C. Many oil and gas fields lie beneath inland
waters and offshore areas around the world, and the exploration, drilling and devel-
opment of oil and gas fields in these underwater locations is called subsea. When oil
and gas flow out of a subsea well the fluids are transported through pipelines on the
ocean floor to offshore production platforms. These pipelines, can stretch for many
kilometres, forming a large infrastructure. Because the seabed is not perfectly flat,
there are segments of pipeline which will not lie horizontal but under an angle or even
vertical.

When oil and gas are produced from a well, it is usually a mixture of the two which
is often co-flowing with water, sand particles and other contaminants. A phenomenon
related to the presence of water that can cause a lot of problems is hydrate formation,
typically gas hydrates. These hydrates are solids which are crystalline water-based:
they consist of a gas molecule (e.g. methane, ethane, propane and carbon dioxide)
which is trapped in a water cavity composed of hydrogen bonded water molecules.
Macroscopically, hydrates form a slurry which is quite similar to wet snow. Single gas
hydrates can cluster together and form structures. When these structures grow, they
can form a hydrate plug that blocks the full cross sectional area of the pipe.
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Hydrates only form under specific circumstances, namely at low temperatures
and high pressure. These circumstances arise, for instance, when an oil and gas well
(re-)starts production and the pipeline is filled with cold fluids, including water. To
prevent hydrates from forming the pipeline is usually flushed with a hydrate inhibitor.
Such a hydrate inhibitor chemically acts the same as the antifreeze fluid one uses in
a car. A common hydrate inhibitor is methanol. In general, the aim is to use as little
methanol as possible, since it is both an expensive and dangerous fluid. That is one
of the reasons why Shell wants to be able to better predict how methanol will mix
into a pipeline filled with water.

1.1 Problem description

For our study, we start with a pipeline filled with water. Then, from one entrance of
the pipeline, methanol is flushed into it at a constant speed. The challenge that Shell
posed was:

What is the concentration of methanol along the pipeline as a function of time and
space, when looking at different geometries of the pipe such as the presence of curves
and sections of the pipeline under an angle?

Determining this concentration is not straightforward since there are several effects
that have to be taken into account. The first one is the difference in the densities:
the density of methanol is approximately 800 kg/m3, whereas that of water is ap-
proximately 1000 kg/m3. Because of this density difference, the methanol tends to
‘float’ on the water. This results in different behaviour of the methanol in the water
along the various sections of the pipeline. In downward sloped sections, the density
difference will result in a stable front of methanol that moves down. In horizontal or
upward sloped sections a layer of methanol will form and float on top of the water.
When observing a cross section of the pipe, one can see a distinct region of a ‘light’
fluid on top of a ‘heavy’ fluid. This phenomenon is called stratification.

In addition, we have to take into account that water and methanol are miscible.
This means that they are able to fully dissolve in one another. This in contrary to
immiscible fluids (e.g. oil and water) for which there will always exist a distinct layer
between the two fluids. There are some additional effects (e.g. viscosity differences,
surface tension) which will play a role in reality, but these will not be accounted for
in this study.

This report is structured as follows: First, a physical background in fluid dynamics
is presented with the relevant equations and their derivation. In section 3 appropriate
notations and conventions are introduced. The problem is then approached from two
different angles: in section 4 a 3D tranformation of coordinates is studied, intended
to focus on the mixing interface of the miscible fluids. In section 5 a 1D model reduc-
tion approach is proposed, in which the along-pipeline direction is the only remaining
spatial coordinate in the resulting model. This 1D model is solved numerically, as dis-
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cussed in section 6. Results from simulations with this numerical model are presented
in section 7.

2 Navier-Stokes

In this section we provide a brief description of the Navier-Stokes equations. The con-
tents of this section are not meant as a detailed exposition of the field but should rather
be thought of as a simple and heuristic introduction to fluid dynamics. Furthermore,
the idea’s presented in this section are standard and no originality is claimed. The
interested reader is referred to Chorin and Marsden (1979) for a more comprehensive
introduction into the field of fluid dynamics.

Suppose Ω ⊂ R3 is an open subset which contains a fluid with mass density ρ(t, x),
where t ≥ 0 and x ∈ Ω. Let u(t, x) denote the velocity of a fluid particle starting at
x ∈ Ω at time t. In other words, the trajectory t 7→ ϕ(t, x) of a fluid particle starting
at x satisfies the differential equation

d

dt
ϕ (t, x) = u (t, ϕ(t, x)) .

The Navier-Stokes equations are based on two basic principles: conservation of
mass and Newton’s second law. In order for the computations in the following sections
to be valid we shall henceforth assume that ρ, ϕ and u are sufficiently smooth.

2.1 Conservation of mass

In this section we derive an equation for the conservation of mass. To this end, suppose
B ⊂ Ω is an open subset. Then the rate of change of mass of the fluid contained in
B is given by

d

dt

∫

B

ρ dV =

∫

B

∂ρ

∂t
dV.

We assume that the change of mass in B is only caused by fluid flowing in from Ω\B
or flowing out from B. In particular, the rate at which fluid comes in or escapes
through ∂B is

−
∫

∂B

〈ρu,n〉 dA = −
∫

B

div (ρu) dV,

where 〈·, ·〉 is the standard Euclidian product on R3 and n is the outward (unit)
normal vectorfield on ∂B. Therefore, conservation of mass is equivalent to

∫

B

∂ρ

∂t
dV = −

∫

B

div (ρu) dV. (1)
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In turn, this implies that

∂ρ

∂t
+ div (ρu) = 0, (2)

since (2) holds for any open subset B ⊂ Ω.

2.2 Newton’s second law
In this section we use Newton’s second law and the conservation of mass to derive an
equation for the velocity field u. The idea is straightforward: we simply compute the
rate of change of momentum of the fluid, the net force acting on the fluid, and then
use Newton’s second law to relate the two.

Rate of change of momentum The acceleration of a fluid particle at x ∈ Ω at
time t is given by

d2

dt2
ϕ (t, x) =

∂u

∂t
(t, ϕ(t, x)) + u · ∇u (t, ϕ(t, x)) ,

where

u · ∇u :=

3∑

j=1

∂u

∂xj
uj .

Let B ⊂ Ω be an open subset as before and set Bt := ϕ(t, B). Then the momentum
of the fluid initially contained in B at time t is given by

∫

Bt

ρu dV =

∫

B

(ρu) ◦ ϕ · detDxϕ dV.

The conservation of mass (2) and a tedious (but straightforward) computation can
now be used to show that the rate of change of momentum is given by

d

dt

∫

Bt

ρu dV =

∫

Bt

ρ

(
∂u

∂t
+ u · ∇u

)
dV. (3)

Forces acting on the fluid Next, we explain how to model the forces acting on
the fluid. One can separate these forces into two categories:

(i) forces which act “directly” on the fluid particles in Bt,

(ii) forces which act on Bt through its boundary.

It is out of the scope of this text to give a detailed treatment of all the forces acting on
the fluid. Instead, we have chosen to give two simple but representative examples of
how to model forces of either type. We will use these examples to derive a simplified
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equation for the rate of change of momentum. In the next section we will then
proceed by stating the full Navier-Stokes equations with the understanding that the
forces appearing in the equation are derived by using the principles presented in this
section.

A simple example of a force of type (i) is gravity. Indeed, gravity is a force which
acts “directly” on each fluid particle in Ω. In the easiest case, the force on Bt due to
gravity is given by

Fg =

∫

Bt

ρg dV,

where g ≈ 9.81 m/s2 is the gravitational acceleration.
The general procedure for modeling forces of the second type is to derive an integral

formulation of the force by using the Divergence Theorem. Let us, for example,
consider the internal force Fp which corresponds to the fluid pressing on itself. One
could attempt to model this force by assuming the existence of a function p : [0,∞)×
Ω→ R, usually called the pressure, so that the force on ∂Bt due to the fluid outside
of Bt is given by

Fp = −
∫

∂Bt

pn dA = −
∫

Bt

∇p dV,

where n is the outward unit normal on Bt. We remark, however, that in reality there
is also another non-tangential force acting on the boundary of Bt which contributes
to the internal force and is related to the viscosity of the fluid.

If gravity and internal pressure are the only forces acting on the fluid, i.e. Fnet =
Fg + Fp, then

∫

Bt

ρ

(
∂u

∂t
+ u · ∇u

)
dV =

∫

Bt

(ρg −∇p) dV (4)

by Newton’s second law and (3). Hence

ρ

(
∂u

∂t
+ u · ∇u

)
= ρg −∇p, (5)

since (4) holds for any open subset B. The latter equation is essentially an infinitesi-
mal formulation of Newton’s second law.

2.3 Navier-Stokes equations
In this section we combine the conservation of mass and Newton’s second law to state
the Navier-Stokes equations. We start with the simplified considerations from the
previous section and explain why the resulting system is ill-posed. We then resolve
this issue by introducing the notion of incompressiblity. Finally, we state the full set
of Navier-Stokes equations for an incompressible fluid.
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An ill-posed Navier-Stokes equation The equations for the conservation of mass
and Newton’s second law from the previous sections yield the following simplified
system:





ρ

(
∂u

∂t
+ u · ∇u

)
= ρg −∇p,

∂ρ

∂t
+ div (ρu) = 0.

(6)

The unknowns in (6) are the the mass density ρ, the internal pressure p and the
three components of the velocity field u. Note, however, that the system in (6) is
underdetermined, since we have five unknowns but only four equations. A possible
solution to this problem is to take the conservation of energy into account.

The total energy of the physical model consists of kinetic and internal energy. The
kinetic energy of the fluid is simply the classical energy related to the motion of the
fluid on a macroscopic level. More precisely, the kinetic energy of the fluid initially
contained in B at time t is given by

Ekin (t, B) =
1

2

∫

Bt

ρ ‖u‖2 dV,

where ‖·‖ denotes the Euclidian norm on R3.
The internal energy Ein is related to the potential energy and microscopic motion

of the fluid molecules. A detailed treatment of the internal energy requires thermody-
namical considerations and is out of the scope of this text. We remark, however, that
it is possible to balance the number of equations and unknowns by adding a scalar
equation based on the conservation of energy:

dE

dt
= 0, E := Ekin + Ein.

The incompressible Navier-Stokes equations Another strategy for balancing
the number of equations and unknowns is to introduce a so-called equation of state,
providing an algebraic relation between the pressure and the fluid properties, the
density in this case. A simple approach is to assume that the fluid is incompressible,
i.e., ϕ preserves volume. This is equivalent to requiring that div (u) = 0. It depends
on the properties of the fluid whether this assumption is realistic or not. For water
and methanol in liquid state, this is generally a suitable assumption.

If the velocity field is divergence free, then the equation for the conservation of
mass (2) can be explicitly solved. To see this, suppose that div (u) = 0, then

∂ρ

∂t
+ div (ρu) =

∂ρ

∂t
+ 〈∇ρ,u〉 = 0,

where 〈·, ·〉 denotes the Euclidian inner product on R3. Consequently,

d

dt

∫

Bt

ρ dV =

∫

Bt

(
∂ρ

∂t
+ 〈∇ρ,u〉

)
dV = 0,



Modelling of fluid mixing and dynamics in curved pipelines 103

by the same computation as in (3). In other words, if u is divergence free, then ϕ
preserves mass (the converse holds as well), i.e.,

∫

B

ρ(0, x) dV =

∫

Bt

ρ(t, x) dV =

∫

B

ρ (t, ϕ (t, x)) detDxϕ(t, x) dV,

for all t ≥ 0. Therefore,

ρ (t, ϕ (t, x)) =
ρ(0, x)

detDxϕ(t, x)
= ρ(0, x), t ≥ 0, x ∈ Ω, (7)

since B was arbitrary and detDxϕ(t, x) ≡ 1 (because div (u) = 0). In particular, the
mass density is independent of time along trajectories of the fluid.

We are now ready to state the incompressible Navier-Stokes equations:



ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p+ µ∆u + ρg,

div (u) = 0,

(8)

where (t, x) ∈ [0, T ]× Ω and

• p : [0,∞)× Ω→ R is the internal pressure,

• µ is the dynamic viscosity of the fluid,

• g ≈ 9.81 is the acceleration of gravity,

• T > 0 is a prescribed integration time.

The unknowns in (8) are the internal pressure p and the velocity field u. The mass
density ρ is explicitly given by the initial and boundary conditions, as can be inferred
from (7). Therefore, the number of unknowns and equations in (8) is balanced.
Finally, the system should be supplemented with an initial condition u0 : Ω → R3

and suitable boundary conditions. These are dictated by the physical model under
consideration.

3 Notation and conventions

Here we introduce the coordinates/variables as seen in Figure 1. The pipeline is fully
described using the following coordinates:

• s is tangential to the central line of the pipeline. It is oriented along the flow,
which we chose to be from left to right (water flowing in from the left entrance)

• w is the vertical direction starting from the the central line. It is normal to the
central line and the radial direction q but not to the mixing layer.
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• q is normal to both s and w. It is pointing out of the paper in the sketch shown
in Figure 1. We will ignore this coordinate in all our subsequent transformations
since we assume that the liquid is homogeneously distributed along a vertical
cross section (the mixing layer is horizontal).

• α denotes the angle that the central line makes with the horizontal. It is positive
in case the pipeline is sloping downwards and negative in case the pipeline is
sloping upwards (see sketch).

• c and A denote the concentration of methanol in the fluid and the area of
the fluid (see Figure 1), respectively. Since we only have two components, the
concentration of water c̃ satisfies c̃ = 1− c.

• The subscripts u and l denote the upper and lower regions, with respect to the
vertical position of the fluids.

• Dw is the normal diffusion coefficient in the w-direction.

• ψ is a mixing term that will be used in the 1D model in section 5.

Figure 1: Sketch of the 3D pipeline and a cross-section of the pipeline in the vertical
direction.
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4 3D Approach: Coordinate transformation along
the central line

4.1 3D co-moving frame
The non-trivial curvature of pipelines makes it difficult to model the flow of different
fluids and the change in concentration. To account for this, we suggest to perform a
coordinate transformation that allows us to focus on the specific needs: computing
the concentration in the case of miscible fluids. In this section we discuss how such
a transformation can be carried out. Although not fully complete at this point, the
ideas presented in this section may provide a useful approach when worked out in
more detail. We leave a more detailed exploration of these ideas for future study.

The performed coordinate transformation follows the fluid interface and allows
for a stretching in the direction normal to the flow (so where the diffusion is highest
between the two fluids), a method also known as asymptotics. We assume that the
fluids are evenly distributed along a vertical cross-section, as depicted in Figure 1.
Therefore, the y-direction can be omitted when it comes to the spatial distribution of
the fluids. Therefore, our 3D model reduces to a 2D model, centred along the central
line of the pipe s. The height of the interface between the fluids, can be parametrized
as a (non-trivial) function of position and time. Define h(s, t) as the height of the
interface surface, oriented along the w-direction, which is defined to be normal to the
interface surface. Then, for any time t, the interface at point s0 has height h(s0, t).

For immiscible fluids, the concentration of methanol is represented by a Heaviside
function, with changing point at h(s, t):

c0(s, t) =

{
0 if w < h(s, t)
1 if w > h(s, t)

(9)

Note that the immiscible solution has a discontinuous volume fraction c0. The mass
fraction can only be 1 or 0, because there is no mixing. The velocity and pressure
fields are continuous, but there may be discontinuities in their derivatives.

Due to the discontinuity in the volume fractions, the advection-diffusion equations
only hold in integrated form.

4.2 Immiscible and miscible solutions
We will try to find the solution of the miscible system

ρ
∂~v

∂t
+ ρ~vT∇~v = µ∇2~v −∇p+ ρ~g, (10)

∇ · ~v = 0, (11)
∂c

∂t
+ ∇ · c~v = D∇2c. (12)

where D is small. The first two equations are the incompressible Navier-Stokes equa-
tions (8) discussed before. The third equation is the advection-diffusion equations for
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c, with the flow velocity ~v from (10)-(11).

Because the interface moves with the fluid, the time derivative of the water height
is given by the kinematic boundary condition for the interface in two dimensions. :

(
0, 0,

∂h

∂t

)
· ~n = ~v · ~n ⇔ ∂h

∂t
+
∂h

∂s
v0,s = v0,w. (13)

A (non-unit) upward normal vector ~m to the interface is given by

~m :=

(
−∂h
∂s
, 1

)
. (14)

The unit upward normal vector ~n is found by scaling ~m:

~n :=
~m

|~m| . (15)

The directions parallel to the interface are called ~a and ~b:

~a :=
(1, ∂h∂s )

|(1, ∂h∂s )| , ~b := ~n× ~a. (16)

Introduce the coordinate transformation:

s̃(s, χ, t) = s− ∂h(s, t)

∂s
χδ (17)

w(s, χ, t) = h(s, t) + χδ (18)

where χ represents the stretching along the w-axis. Then the derivatives in terms of
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the new coordinates become:

∂c

∂s
=

∂χ

∂s̃

∂s̃

∂s

∂c

∂χ
+
∂s̃

∂s

∂c

∂s̃
(19)

=

(
−∂h
∂s
δ

)−1(
1− ∂2h

∂s2
χδ

)
∂c

∂χ
+

(
1− ∂2h

∂s2
χδ

)
∂c

∂s̃
(20)

∂c

∂w
=

∂χ

∂w

∂c

∂χ
+
∂s̃

∂χ

∂χ

∂w

∂c

∂s̃
(21)

= δ−1
∂c

∂χ
− ∂h

∂s

∂c

∂s̃
(22)

∂2c

∂s2
=

∂2h

∂s2
δ

(
∂h

∂s
δ

)−2(
1− ∂2h

∂s2
χδ

)
∂c

∂χ
+

(
−∂h
∂s
δ

)−1(
−∂

3h

∂s3
χδ

)
∂c

∂χ
(23)

+

(
∂h

∂s
δ

)−2(
1− ∂2h

∂s2
χδ

)2
∂2c

∂χ2
− ∂3h

∂s3
χδ
∂c

∂s̃
(24)

+ 2

(
∂h

∂s
δ

)−1(
1− ∂2h

∂s2
χδ

)
∂2c

∂χ∂s̃
+

(
1− ∂2h

∂s2
χδ

)
∂2c

∂s̃2
(25)

∂2c

∂w2
= δ−2

∂2c

∂χ2
+

(
∂h

∂s

)2
∂2c

∂s̃2
− 2δ−1

∂h

∂s

∂2c

∂χ∂s̃
(26)

(27)

Then the LHS of equation (12) for the concentration becomes:

∂c

∂t
+∇ · c~v =

∂c(s̃, w̃, t)

∂t
+∇ · c(s̃, w̃, t)~v (28)

=
∂c(s̃, w̃, t)

∂t
+
∂c(s̃, w̃, t)

∂s
· vs +

∂c(s̃, w̃, t)

∂w
· vw (29)

=
∂c(s̃, w̃, t)

∂t
+

((
−∂h
∂s
δ

)−1(
1− ∂2h

∂s2
χδ

)
∂c

∂χ
(30)

+

(
1− ∂2h

∂s2
χδ

)
∂c

∂s̃

)
· vs +

(
δ−1

∂c

∂χ
− ∂h

∂s

∂c

∂s̃

)
· vw (31)
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Furthermore, the RHS of (12) becomes:

Dw∇2c = Dw

(
∂2c(s̃, w̃, t)

∂s2
+
∂2c(s̃, w̃, t)

∂w2

)
(32)

= Dw ·
(
∂2h

∂s2
δ

(
∂h

∂s
δ

)−2(
1− ∂2h

∂s2
χδ

)
∂c

∂χ
(33)

+

(
−∂h
∂s
δ

)−1(
−∂

3h

∂s3
χδ

)
∂c

∂χ
(34)

+

(
∂h

∂s
δ

)−2(
1− ∂2h

∂s2
χδ

)2
∂2c

∂χ2
− ∂3h

∂s3
χδ
∂c

∂s̃
(35)

+ 2

(
∂h

∂s
δ

)−1(
1− ∂2h

∂s2
χδ

)
∂2c

∂χ∂s̃
+

(
1− ∂2h

∂s2
χδ

)
∂2c

∂s̃2
(36)

+ δ−2
∂2c

∂χ2
+

(
∂h

∂s

)2
∂2c

∂s̃2
− 2δ−1

∂h

∂s

∂2c

∂χ∂s̃

)

These expressions can lead to the advection-diffusion equation in the new coordi-
nates. Further work is needed to apply a similar approach, using the same coordinate
stretching, to equations (10)-(11). As mentioned at the start of this section, such a
further exploration is beyond the scope of this report, and is left for future study.

5 1D approach: Averaging over the concentrations

5.1 A two-layer model with one space dimension

In this section we discuss a simple model for mixing and diffusion of fluids in a pipeline.
We consider a situation with two layers with different fluid mixtures, one above the
other. This vertical stratification can be the result of e.g. density differences, with the
heaviest mixture in the lower layer and the lightest in the upper layer. Furthermore,
we assume that each layer contains a mixture of two fluids, methanol and water.
We remark that two natural extensions of this simple set-up are (i) to model more
than two layers in the vertical, or even consider a situation of continuous vertical
stratification, and (ii) to let each mixture consist of more than two fluids. Clearly,
the number of layers and the number of mixture components need not be the same.

The fluid mixtures in the upper and lower layers have different horizontal velocities.
The time evolution of the fluid mixtures are governed by 1-dimensional advection-
diffusion equations for the upper and lower layer separately. The spatial coordinate
in these advection-diffusion equations is s, the coordinate along the central line of the
pipe. The two layers exchange fluid at the layer interface, modelled with source/sink
terms in the horizontal advection-diffusion equations. These source/sink terms are
derived from a vertical diffusion equation. For simplicity, we ignore here the angle of
the pipeline, and assume that the pipeline is oriented horizontally so that a vertical
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cross-section forms a perfect circle in a plane orthogonal to the direction of s. The
circle has the diameter of the pipe, denoted D, so we have 0 ≤ w ≤ D for the vertical
coordinate w. We denote by h the height of the layer interface, i.e. the lower layer
extends from w = 0 to w = h, and the upper layer from w = h to w = D.

From here on, we use notations with subscripts u and l to denote quantities for the
upper and lower layer, respectively. The cross-sectional area of the upper layer is Au,
and that of the lower layer is Al. Clearly Au+Al = A with A the total cross-sectional
area A = πR2 and R = D/2 the pipe radius. Given the layer interface height h, we
have

Au = R2 cos−1((h−R)/R) + (R− h)
√

2hR− h2 and Al = πR2 −Au . (37)

5.2 Coupled advection-diffusion equations
We denote by cu the volume fraction of methanol in the upper layer. By construction,
the volume fraction of water in the upper layer, denoted by c̃u, satisfies c̃u = 1− cu.
Likewise, the lower layer methanol and water fractions are denoted cl and c̃l, satisfying
cl + c̃l = 1. Furthermore, let uu and ul be the fluid velocities (in the s-direction) in
the upper and lower layer. We model the time evolution of the fractions cu(s, t) and
cl(s, t) with advection-diffusion equations coupled by a source/sink term:

∂t(cuAu) + ∂s(uucuAu) = ∂s(Du∂s(cuAu)) + ψ (38a)
∂t(clAl) + ∂s(ulclAl) = ∂s(Dl∂s(clAl))− ψ (38b)

We denote partial derivatives with respect to s and t by ∂s and ∂t, respectively.
The velocity fields uu(s, t) and ul(s, t) are given. We assume that the effective axial
diffusion coefficients (Du and Dl) are constant in s and t, and that they are identical
in the upper and lower layer, i.e. Du = Dl. Finally, the term ψ is a source/sink term
that accounts for the exchange/mixing of fluids between the two layers. Below, we
derive an expression for ψ based on a diffusion equation in the vertical direction.

As can be seen, the volume fractions cu, cl depend only on (s, t) in our model
set-up here. Thus, these fractions are assumed constant over the upper (w > h) and
lower (w < h) parts of the pipe cross-section. Any exchange of fluids between the
layers, as modelled by ψ, is assumed to be mixed instantaneously within each layer
in the directions perpendicular to s. This will guide the derivation of ψ.

5.3 Exchange between layers: a source/sink term from the
heat equation

In our model set-up, there is no advection in the vertical direction, only diffusion.
We start our derivation of ψ by considering the methanol volume fraction in a pipe
cross-section (i.e., s is fixed) to be a function of both the vertical coordinate w and
time t, so c = c(w, t). The time evolution is governed by the diffusion equation

∂tc = ∂w(Dw∂wc) (39)
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with diffusion coefficient Dw. Let the initial state of c be the piecewise-constant
(in w) profile with cu in the upper layer and cl in the lower layer. Thus, c(w, 0) =
cl + H(w − h)(cu − cl) with h the interface height and H(.) the Heaviside function.
We assume cu > cl so that the lower layer fluid mixture is heavier than the mixture
in the upper layer (as water is heavier than methanol).

If Dw is independent of w, (39) reduces to the heat equation in 1-d. Below, we use
a simple analytical solution for the heat equation on R, although strictly speaking,
the domain for our problem is finite since w is bounded by the pipe wall. A more
refined treatment, beyond the scope of this report, would be to take account of this
finite domain size (note that the curvature of the pipe wall makes the characterization
of the finite domain complicated). We remark that our primary interest is in diffusion
over small time intervals, so that most of the exchange is (very) close to the layer
interface and effects of finite domain size may not have much impact.

Consider the following standard initial value problem for the heat equation on R:

∂t v = κ ∂2x v , x ∈ R , v(x, 0) =

{
1 if x > 0

0 if x < 0
(40)

with diffusion constant κ > 0. The solution at time t > 0 is

v(x, t) =
1

2
+

1

2
erf
(

x√
4κt

)
(41)

with erf(.) the error function Temme (1996). From the solution at t we can calculate
the amount of exchange over the time interval [0, t] across the interface at x = 0 in
this standard problem:
∫ ∞

0

[v(x, t)− v(x, 0)] dx = lim
x∗→∞

1

2

∫ x∗

0

[
erf
(

x√
4κt

)
− 1

]
dx

= lim
x∗→∞

1

2

[√
4κt

π

(
e−(x

∗)2/(4κt) − 1
)
− x∗ + x∗erf

(
x∗√
4κt

)]

= −
√
κt

π
(42)

where we have used that erf(x)→ 1− exp(−x2)

x
√
π

as x→ +∞ Oldham et al. (2009).

Transforming the standard problem above to the diffusion equation (39) of interest
to us, we obtain for the exchange over a time interval dt the following:

∫ ∞

h

[c(w, dt)− c(w, 0)] dw = −(cu − cl)
√
Dw dt

π
(43)

To obtain an expression for the source/sink term ψ from this, we must take into
account that the vertical exchange takes place over the layer interface with length
2
√

2hR− h2, hence it should be proportional to this length.
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Furthermore, an important assumption is that the amount of exchanged fluid is
instantaneously mixed throughout the upper and lower parts of the pipe cross-section,
with cross-sectional areas Au and Al, respectively. Thus, if we consider the upper layer
at location s and time t, the change in cu over a time interval dt due to fluid exchange
between the layers is

cu(s, t+ dt) =
cu(s, t)Au(s, t) + exchange

Au(s, t)

= cu(s, t)− [cu(s, t)− cl(s, t)]
√
Dw dt/π 2

√
2h(s, t)R− h2(s, t)

Au(s, t)

= cu(s, t)− [cu(s, t)− cl(s, t)]F (s, t)
√
Dw dt

Au(s, t)
(44)

where F is dependent on the interface height h(s, t) :

F (s, t) = 2

√
2h(s, t)R− h2(s, t)

π
(45)

We note that Au depends on (s, t) through h(s, t), see (37). Also, we neglect the
(presumably small) change in h(s, t) (and thus Au) over the time interval dt.

The advection-diffusion equations (38) describe the time evolution of cuAu and
clAl rather than cu and cl. As a result, the factor Au in (44) drops out and we obtain
for the source/sink term

ψ(s, t) = lim
dt↓0

−[cu(s, t)− cl(s, t)]F (s, t)

√
Dw

dt
(46)

Note that ψ diverges in the dt→ 0 limit, a consequence of our set-up with a sharp layer
interface at which the mixture fractions are discontinuous. It implies that ψ should
be interpreted in a weak or distributional sense. For numerical time integration with
time step ∆t we will use ψ(s, t) ∆t ≈ −[cu(s, t)− cl(s, t)]F (s, t)

√
Dw ∆t.

We conclude this section with some remarks about the vertical diffusion coefficient
Dw. Above, we assumed it to be independent of w to obtain an expression for ψ from
the 1-dimensional heat equation. It would make sense to let Dw depend on the (local)
shear, i.e. the horizontal velocity difference between the two layers, |uu(s, t)−ul(s, t)|.
A large shear may generate small-scale turbulence at the layer interface, enhancing
the effective vertical diffusivity. We leave further exploration of this issue for future
study.

6 Implementation
In this section we provide a concise description of the numerical method employed to
approximate solutions of the coupled 1-d advection-diffusion equations presented in
the previous section. For notational convenience, we will replace the subscripts u and
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l by the integers 1 and 2, respectively, and refer to the upper and lower region as the
first and second region, respectively.

The system of equations to be solved is




∂

∂t
(Aici) +

∂

∂s
(uiAici) =

∂

∂s

(
Di

∂

∂s
(Aici)

)
+ (−1)

i+1
ψ,

ci (t, 0) = αi,
∂ci
∂s

(t, L) = βi,

ci (0, s) = c0i (s),

(47)

for 1 ≤ i ≤ 2, where

• T > 0 is the integration time,

• L > 0 is the length of the pipe,

• ui : [0, T ]× [0, L]→ R is the prescribed speed of the mixture in the i-th region
in the direction of the pipe,

• Di ∈ R is the diffusion coefficient of methanol in the i-th region,

• ψ : [0, T ]× [0, L]× R× R→ R models the diffusion across the interface,

• c0i : [0, L]→ R is the initial concentration of methanol,

• αi, βi ∈ R≥0.

The Dirichlet-boundary conditions at s = 0 correspond to a constant stream of
methanol being pumped into the pipe. The Neumann-boundary conditions at s = L
are used to model the outward flux of methanol at the end of the pipe.

The strategy is to first discretize (47) in space by using the Finite Volume Method
(FVM). This results in a system of nonlinear ODEs. The solution of this ODE is then
approximated by using the so-called θ-method. Both methods are discussed in more
detail below.

6.1 Discretization in space

In this section we explain how to discretize (47) in space by using the FVM. The
main idea of the FVM is to approximate the averages of (ci)

2
i=1 instead of the point-

wise values. To this end, partition [0, L] into N ∈ N subdomains of equal size and
let
{
sj := δs

(
j − 1

2

)
: 1 ≤ j ≤ N

}
denote the midpoints of these subdomains, where

δs = L
N (see Figure 2). The objective is to approximate the averages

c̄i,j(t) :=
1

δs

∫ s
j+1

2

s
j− 1

2

ci(t, s) ds, 1 ≤ i ≤ 2, 1 ≤ j ≤ N,
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0 L

s1 sj sNs0 sN+1

δs

Figure 2: The interval [0, L] is subdivided into N subdomains of size δs = L
N . The

boundaries of these subdomains are depicted as black vertical lines. The red dots
correspond to the associated midpoints (sj)

N
j=1. The additional grid-points s0 = − δs2

and sN+1 = L+ δs
2 are needed to approximate

∂ci
∂s

(t, 0), and
∂ci
∂s

(t, L), respectively,
with central differences.

on each subdomain at some prescribed points in time {0 = t0 < t1 . . . < tm = T}.
Observe that if δs is sufficiently small and ci is sufficiently regular, the averages c̄i,j
constitute accurate approximations of the point-values (ci (t, sj))

N
j=1.

Let 1 ≤ i ≤ 2, 1 ≤ j ≤ N and take the average of (47) around sj to obtain the
following equation:

Ai


dc̄i,j
dt

+
(uici)

(
t, sj+ 1

2

)
− (uici)

(
t, sj− 1

2

)

δs




=
AiDi

δs

[
∂ci
∂s

(
t, sj+ 1

2

)
− ∂ci
∂s

(
t, sj− 1

2

)]

+
(−1)

i+1

δs

∫ s
j+1

2

s
j− 1

2

ψ (t, s, c1 (t, s) , c2 (t, s)) ds. (48)

We will now explain how to discretize the latter equation in space for fixed time t. In
order for the following arguments to make sense, we will henceforth assume that δs is
sufficiently small.

Discretization of the spatial derivatives To approximate the spatial derivatives
in the righthand-side of (48) we would like to use the (second order) central difference
approximation

∂ci
∂s

(
t, sj+ 1

2

)
≈ ci (t, sj+1)− ci (t, sj)

δs
≈ c̄i,j+1(t)− c̄i,j(t)

δs
(49)

for 0 ≤ j ≤ N . However, the latter approximation only makes sense for 1 ≤ j ≤ N−1,
since c̄i,0 and c̄i,N+1 are undefined. In order to make sense of (49) for j = 0 and j = N
we formally introduce additional ghost nodes s0 = − δs2 and sN+1 = L+ δs

2 , see Figure
2.
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The value of c̄i,0 is determined by taking an average over the two neighboring
nodes and using the boundary condition at s = 0. In other words, since

αi = ci (t, 0) ≈ ci (t, s1) + ci (t, s0)

2

we set c̄i,0 := 2αi − c̄i,1. Similarly, the value of c̄i,N+1 is determined by using the
Neumann-boundary condition at s = L. That is, since

βi =
∂ci
∂s

(t, L) ≈ ci (t, sN+1)− ci (t, sN )

δs
,

we set c̄i,N+1 := δsβi + c̄i,N . We can now use (49) to approximate the spatial deriva-
tives for 0 ≤ j ≤ N .

Approximation of the nonlinearity If the map s 7→ ψ (t, s, c1(t, s), c2(t, s)) is
sufficiently regular (at the very least L1), then

1

δs

∫ s
j+1

2

s
j− 1

2

ψ (t, s, c1 (t, s) , c2 (t, s)) ds

≈ ψ (t, sj , c1 (t, sj) , c2 (t, sj))

≈ ψ (t, sj , c̄1,j(t), c̄2,j(t)) , (50)

for 0 ≤ j ≤ N . Alternatively, one could use numerical quadrature to approximate the
integral. The latter could potentially yield more accurate approximations provided
s 7→ ψ (t, s, c1(t, s), c2(t, s)) is sufficiently smooth.

Approximation of the advection term To approximate the advection term in
(48) we simply approximate the average of ci, as before, by using its values at the
neighboring nodes:

(uici)
(
t, sj+ 1

2

)
≈ ui

(
t, sj+ 1

2

) ci (t, sj+1) + ci (t, sj)

2

≈ ui
(
t, sj+ 1

2

) c̄i,j+1(t) + c̄i,j(t)

2
, (51)

for 0 ≤ j ≤ N . Recall that we are assuming that ui is known, in the sense that we
can evaluate it at any (t, s) ∈ [0, T ]× [0, L] on the computer.

6.2 Discretization in time
In this section we explain how the spatial discretizations from the previous section
can be used to approximate solutions of (47). Substitution of (49), (50), and (51)
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into (48) yields a system of nonlinear equations of the form




dc̄i
dt

= Q · c̄i + (−1)
i+1

Ψ (t, c̄1, c̄2) , t ∈ [0, T ],

c̄i (0) =
[
c0i (sj)

]N
j=0

,

1 ≤ i ≤ 2, (52)

where c̄i :=
[
c̄i,0 . . . c̄i,N

]T , Q is the (N + 1)× (N + 1) matrix which encodes the
linear part of the equations (i.e. it is the discretization of the advection and diffusion
term), and Ψ : [0, L] × RN+1 × RN+1 → RN+1 corresponds to the nonlinear part
associated to (50).

For notational convenience, we introduce the map F : [0, T ]×R2(N+1) → R2(N+1)

defined by

F (t, c̄) :=

[
Q · c̄1 + Ψ (t, c̄1, c̄2)

Q · c̄2 −Ψ (t, c̄1, c̄2)

]
,

where c̄ :=

[
c̄1
c̄2

]
. Then (52) can be rewritten as





dc̄

dt
= F (t, c̄) , t ∈ [0, T ],

c̄(0) = c0,

(53)

where

c0 =
[
c01 (s0) . . . c01 (sN ) c02 (s0) . . . c02 (sN )

]T
.

Finally, the solution of (53) is approximated at the times (tk)
m
k=0 by using the θ-

method:

c̄ (tk+1) = c̄ (tk) + δk

[
θF (tk, c̄ (tk)) + (1− θ)F (tk+1, c̄ (tk+1))

]
,

where 0 ≤ k ≤ m− 1, δk = tk+1 − tk, and θ ∈ [0, 1] is a fixed parameter.

7 Numerical results
In this section we investigate the behavior of the 1-d model developed in Section 5 with
the aid of numerical simulations. There are many interesting aspects of the proposed
model to investigate; both from a numerical point of view and from a modeling point
of view. Here we restrict our attention to studying the influence of the coupling
term ψ. More precisely, we investigate the dependence of the model on the height
h ∈ (0, D) of the layer interface for two different scenarios. To accomplish this, we
fix all other parameters throughout this section. We note that there are many more
interesting parameter dependencies to investigate and leave this as a topic of future
research.
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Physically relevant parameters We set the length of the pipe and the radius
of its cross-sections equal to L = 2 and R = 1, respectively. The constant volume
fractions of methanol pumped into the upper and lower regions of the pipe are set to
α1 = 1 and α2 = 1

10 , respectively. For the sake of simplicity, we choose the initial
distribution of methanol in both the upper and lower part of the pipe to be constant
throughout the pipe, i.e., c01, c02 : [0, L] → R are constant. Therefore, due to the
Dirichlet boundary conditions at the left-end of the pipe, we must necessarily set
c0i ≡ αi. We impose a Neumann boundary condition at the right end of the pipe
by setting β1 = β2 = 0. Finally, we choose the horizontal and vertical diffusion
coefficients to be the same in each coordinate direction: Dw = D1 = D2 = 10−2.

Computational parameters We use the same computational parameters in all
numerical simulations (see Section 6 for the implementation details). The parameters
associated to the discretization sizes in time and space are set to δk ≡ δ = 10−3 and
N = 200, respectively. The latter corresponds to a uniform spatial discretization of
size L

N . Furthermore, we use θ = 0 to perform the time integration, which corre-
sponds to a backward Euler scheme. Finally, in each numerical simulation, we set the
integration time to T = 10. This particular choice was motivated by the observation
that in all numerical experiments the solutions approached a steady state within this
time frame.

We consider the following two scenarios:

(i) The velocity in the upper part of the pipe is smaller than in the lower part:
u1 = 1

10 , u2 = 1.

(ii) The velocity in the upper part of the pipe is larger than in the lower part:
u1 = 1, u2 = 1

10 .

For each scenario, we have performed numerical simulations for different choices of
the height of the layer interface; we have considered

h ∈ ∆ :=

{
hj :=

5 + j

100
: 0 ≤ j ≤ 95

}
.

7.1 Case (i)

We start with the case in which u1 < u2. In all scenarios, i.e., for all h ∈ ∆, the
volume concentrations of methanol in the upper and lower part of the pipe converged
to a steady state. We have shown the typical behavior of c1 and c2 in Figure 3 for three
different choices of h. The results show that the volume fractions of methanol in the
upper part of the pipe evolved into a decreasing function of s as time progressed. In
particular, the concentration profiles transitioned more quickly into these decreasing
“states” as the height of the layer interface increased. Furthermore, the time in which
c1 approached a steady state decreased as h increased.
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The volume fraction of methanol in the lower part of the pipe evolved into an
increasing function of s as time progressed. For relatively small t, the fractions were
relatively high “near” the right-end of the pipe (the part of the pipe which corresponds
to the green regions in Figures 3d, 3e and 3f). Furthermore, the fractions in these
regions decreased as time progressed. In particular, the rate at which this decrease
occurred (with respect to time) slightly decreased as h increased.

We have depicted the steady states to which c1 and c2 converged in Figure 4
for h ∈ ∆. In all scenarios the steady states were constant in a relatively large
region of the pipe. Furthermore, the size of these regions increased as h increased.
Moreover, the “final” volume fractions of methanol in these parts of the pipe were
(approximately) the same in both the upper and lower region and increased as h
increased from h = 0.05 to h = 1.

(a) h = 0.05 (b) h = 0.2 (c) h = 1

(d) h = 0.05 (e) h = 0.2 (f) h = 1

Figure 3: Case (i): (a), (b), (c) The values of c1 on [0, T ]× [0, L] for various choices
of h. (d), (e), (f) The values of c2 on [0, T ]× [0, L] for various choices of h.

To quantify the assertion that c1 and c2 approached a steady state more quickly
as h increased, recall that we approximated the volume fractions at the following
discrete moments in time: t ∈ T :=

{
kδ : 0 ≤ k ≤ 104

}
, where δ = 10−3. Let ε > 0

be a given tolerance and set

Ti(h) := min
{
t ∈ T : ‖ci (t, ·)− ĉi‖L2([0,L]) < ε

}
, i ∈ {1, 2}, h ∈ ∆,
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Figure 4: Case (i): numerical approximations of the steady states to which c1 and c2
converged for various values of h ∈ ∆. (a) The steady states associated to the upper
part of the pipe. For h close to h0 = 0.05, we have colored the corresponding steady
states in light blue. As h increased to 1, we have used increasingly darker shades of
blue. (b) The steady states associated to the lower part of the pipe. For h close to
h0 = 0.05, we have colored the corresponding steady states in orange. As h increased
to 1, the color of the steady states transitioned from orange to red.

where ĉi : [0, L] → R is a numerical approximation of the steady state to which ci
converged. In practice, we set ĉi = ci (T, ·). We remark that it would be more accurate
to determine an approximation ĉi by directly solving the steady state equation (an
ODE). In any case, if ĉi is a sufficiently accurate approximation of the steady state
in question (which we are assuming) and ε > 0 is sufficiently small (but not too
small), then Ti can be used to substantiate the above assertion. More specifically,
if Ti (h1) < Ti (h2), then we have numerical evidence for the claim that the solution
associated to h1 approached a steady state more quickly than the solution associated
to h2.

We have depicted the points {(h, Ti(h)) : h ∈ ∆} on the graph of Ti for ε = 10−5

and i ∈ {1, 2} in Figure 5. The results support our claim and show that c1 and c2
approached a steady state more quickly as h increased.

7.2 Case (ii)

Finally, we consider the case in which u1 > u2. The typical behavior of the fractions
is shown in Figure 6. In each scenario, the observed behavior was similar (but not
entirely the same) as in the previous case. In particular, c1 and c2 both approached
a steady state as time progressed. The steady state associated to the upper part of
the pipe was decreasing in s and the one associated to the lower part was increasing.
Furthermore, both steady states were constant in a relatively large part of the pipe.
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Figure 5: The dependence of Ti on the height of the interface for i ∈ {1, 2}. The
depicted curves were obtained by sampling Ti on ∆.

A key difference in this case is that the volume fraction of methanol “near” the
right-end of the pipe (the “upper” green regions in Figure 6) increased as time pro-
gressed, whereas in the previous case it decreased. Furthermore, on average, the
methanol fraction throughout the pipe was higher than in the previous case. Another
noticeable difference is that the values of the steady state solutions decreased as h
increased in those regions of the pipe where the “final” fractions were constant, see
Figure 7.
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(a) h = 0.05 (b) h = 0.2 (c) h = 1

(d) h = 0.05 (e) h = 0.2 (f) h = 1

Figure 6: Case (ii) (a), (b), (c) The values of c1 on [0, T ]× [0, L] for various choices
of h. (d), (e), (f) The values of c2 on [0, T ]× [0, L] for various choices of h.



Modelling of fluid mixing and dynamics in curved pipelines 121

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

s

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

c 1
(T

;"
)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

s

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

c 2
(T

;"
)

Figure 7: Case (ii): numerical approximations of the steady states to which c1 and c2
converged for various values of h ∈ ∆. (a) The steady states associated to the upper
part of the pipe. For h close to h0 = 0.05, we have colored the corresponding steady
states in light blue. As h increased to 1, we have used increasingly darker shades of
blue. (b) The steady states associated to the lower part of the pipe. For h close to
h0 = 0.05, we have colored the corresponding steady states in orange. As h increased
to 1, the color of the steady states transitioned from orange to red.
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1 Introduction

Understanding how traffic incidents affect the flow of traffic is a problem of great
importance. It is of interest to both the general public as well as to many private
companies that rely heavily on transportation. Disturbances to traffic come in an
enormous number of varieties and are very sensitive to a large number of different
situational and environmental factors. A complete understanding is therefore far from
feasible at this present time as many individual aspects are still not well described.

In this note, we focus on a very specific problem inside of the general theory. Given
a traffic incident that inhibits vehicles to travel freely, as in normal conditions, how
does the gradual build up of slow moving vehicles congesting the road behave? There
are several basic questions to investigate in relation to this situation:

(a) How quickly does traffic congestion build upstream from the incident given the
nature of the disruption?

(b) If this back up progresses all the way back to an intersection, will it cause back up
on other roads? (When traffic backs up onto another road, it is called spillback)
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(c) If this is the case, can the roads that will also suffer significant congestion be
predicted?

(d) How many vehicles can be expected to avoid the road on which the disturbance
has occurred and which alternative roads will thus see an inflow of traffic as
rerouting begins to occur?

(e) How will an individual driver make the decision to wait in traffic versus finding
an alternative route?

As evidenced by the large number of complex questions above, even this simple
situation is unlikely to have a single consistent pattern. We now explicitly draw
attention to two distinct effects that occur when a traffic disturbance is present, as
can already be seen in the questions above. Namely:

Effect 1. Those drivers who will remain in the congested area until they can pro-
ceed along their originally intended route, contributing to a back up on the affected
motorway.

Effect 2. Those drivers who will seek to avoid the affected road altogether and deviate
from the initial route onto different routes.

The latter phenomenon is very dynamic and difficult to predict. The former effect
can be studied easily with some simplifying assumptions. This effect will be present
if there is essentially no choice for the drivers in their route given their origin and
destination. For example, one might expect a long stretch of road connecting different
cities to be more prone to backup. If such a road becomes affected by a traffic incident,
it is not uncommon that any other route linking the two cities will be a significant
deviation in time and distance, likely involving travel to a completely different city.
This is because of the relative sparsity of roads between cities in contrast to roads
within a city area that makes long traffic jams more likely.

However, such intuition may not be reflected in reality and the aforementioned
roads need not be the only ones on which drivers will feel that any alternative route
would be such a deviation that the only realistic choice is to wait in traffic. Roads with
this property will be called vulnerable. Leaving out circumstantial causes that may
affect the drivers choice, it should be clear that vulnerability of a road is a property
of the road network itself.

The problem then becomes how to identify such roads and to formulate some
measure of road vulnerability. If an incident occurs on a very vulnerable road, then
we should expect Effect 2 to be negligible. In this case, understanding how traffic
behaves becomes less complex. The follow-up problem is then to describe how traffic
behaves in this simpler type of scenario.

This paper is organized as follows. In Section 2 we address the notion of link
vulnerability. In order to do so, we first describe the model of the road network that
we use in Section 2.1. Then, in Section 2.2, we define several vulnerability measures
for roads in the network. Some definitions of road vulnerability have been considered
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before in Freeman et al. (1991); Jenelius (2009, 2010); Knoop et al. (2008). Their
primary focus was on roads on which an incident causes the maximum disruption of
traffic in the whole network. Our notion of vulnerability however is orthogonal to the
amount of traffic flow on the road. It captures how much choice a driver taking that
road has in choosing an alternative route.

Subsequently, in Section 3, we use vulnerability to make some actual predictions.
In Section 3.1 vulnerability as well as some additional time-dependent parameters
are used to estimate the rate of people rerouting in case of an event on a fixed road.
Lastly, in Section 3.2 local order-destination information is used to predict spillback
on highly vulnerable roads.

2 Link vulnerability

2.1 The model
We consider the Dutch road network to be a weighted undirected graph G “ pV,Eq,
where each edge (or link) represents a part of the motorway and each vertex (or node)
represents a junction of motorways. Only the motorways, which in the Netherlands
are indicated by the letter A followed by a number, and a few provincial roads, which
are important for the global structure of the road network, are taken into account. In
this paper, we will refer to the chosen network as the ’motorway network’. A more
comprehensive model would also include all provincial and city roads. We assume
that at each node one has the possibility to move to any motorway incident with
that node. For e P E, let `peq denote the time it takes to travel from one endpoint
of e to the other. In this paper these times are computed using Google Maps at a
specific time (2pm on a weekday without traffic incidents). A more accurate weight
is obtained by averaging over different times on several days. The weighted graph is
shown in Figure 1.

The reason for restricting the network to motorways and a few important roads is
that we have access to detailed data on the traffic on these roads. There are thousands
of sensors throughout this part of the Dutch road network, recording the number of
cars passing and their velocity every minute of the day. In Section 3.2 we use this
data to analyse how quickly traffic backs up after an incident occurs.

For any path P Ď E, let `pP q be length of P , i.e., `pP q “ ř
ePP `peq. Whenever

we speak of a path, it is assumed to be simple, i.e, without repeated edges or vertices.
For i, j P V , we define P pi, jq to be the set of paths connecting the vertices i and j.
Then we define the length cpi, jq of a shortest path between i and j as

cpi, jq :“ mint`pP q | P P P pi, jqu.
As we are also interested in alternative routes, for any e P E we furthermore define
cpi, j, eq to be the length of the shortest path from i to j in the graph G when the
edge e is missing,

cpi, j, eq :“ mint`pP q | P a path from i to j in the graph obtained by removing eu.
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Figure 1: The Dutch motorway network.

Let i, j P V and k P Rě1. We define P pi, j, kq as the set of all paths from i to j whose
length is at most k times the length of the shortest path between i and j,

P pi, j, kq :“ tP P P pi, jq | lpP q ď k ¨ cpi, jqu. (1)

For e P E, we are also interested in the subset of P pi, j, kq consisting of paths that
contain e,

P pi, j, k, eq :“ tP P P pi, j, kq | e P P u. (2)

We define the set of order-destination pairs that suffer from the fact that the link e
becomes inaccessible,

Speq :“ tpi, jq P V 2 | there exists a shortest path from i to j that contains eu. (3)

Lastly, whenever we will speak of free flow on an edge e, we mean that all lanes at e
are open and that the average speed of the cars on e is at least 10 km/hr.

2.2 Vulnerability measures

In this section a vulnerability measure is assigned to each link that indicates whether
or not there are good alternative routes available if a link becomes inaccessible. We
define these measures to satisfy the following properties:

1. The vulnerability should be a number between 0 and 1. A rate of 0 implies that
many alternative routes are available. A rate of 1 implies that no alternative
roads are available.
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2. The vulnerability can be computed using the network topology, taking into
account the travel time on each link assuming free flow. Hence, this rate does
not depend on the current traffic situation, and only needs to be computed once
using the graph G defined in Section 2.1.

We will define two different vulnerability measures that all satisfy the above prop-
erties. For definitions and notation, see Section 2.1. The first measure generalizes
the notion of (edge-)betweenness centrality, a network theoretic concept that has been
formally defined first by Freeman (1977).

Definition 2.1 (Vulnerability measure 1, based on edge-betweenness centrality). Let
e P E and k P Rě1. Then we define

V1pk, eq :“ 1

|V |p|V | ´ 1q
ÿ

i‰jPV

|P pi, j, k, eq|
|P pi, j, kq| , (4)

where the sum runs over all distinct vertices i and j.

The factor in front of the sum normalizes the sum of the ratios to ensure the
measure V1 is a number between zero and one. In practice, only the cases 1 ď k ď 2
are interesting, as we do not expect drivers to reroute if the alternative route would
take more than twice as long as usual.

The second vulnerability measure that we define considers drivers that suffer from
the closing of link e. We compute the average fraction of time that is lost by closing
link e. Note that when e is not on any shortest path, we define V2peq “ 0, as no one
suffers from deleting this link. On the other hand, if deleting e would disconnect the
network (i.e, if e is a bridge), we set V2peq “ 1.

Definition 2.2 (Vulnerability measure 2, based on edge deletion I). Let e P E. Then
we define

V2peq “

$
’&
’%

0 if e is not in any shortest path,
1 if e is a bridge,

1
|Speq|

ř
pi,jqPSpeq

cpi,j,eq´cpi,jq
cpi,j,eq otherwise.

(5)

Note that V2peq is well-defined as both |Speq| and cpi, j, eq are nonzero if e is on a
shortest path and not a bridge. The two different vulnerability rates are depicted in
Figure 2.

Notice that the vulnerability measures V1 and V2 take on completely different
values on bridges that are on the fringe of the network. Our current implementation
of V1 is too slow to compute the vulnerability rates of the complete motorway network
of the Netherlands. Figure 3 depicts the vulnerability rate V2 for this network.

One could improve these measures by considering weighted sums, where the weights
are defined as the number of times an order-destination pair pi, jq is traveled. One
difficulty there is that these order-destination pairs are hard to determine from data.
Locally, however, this can be done and this method is exploited in Section 3.2. An
easier approach is to define the weights proportionally to the travel time, assuming
more people drive shorter routes.
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Unweighted Weighted
Edge V1 V2 V1 V2

t1, 2u 0.104 0.271 0.087 0.043
t1, 3u 0.104 0.500 0.101 0.645
t2, 3u 0.104 0.271 0.106 0.353
t2, 4u 0.250 1.000 0.250 1.000
t4, 5u 0.180 0.327 0.168 0.258
t4, 7u 0.180 0.252 0.164 0.347
t5, 6u 0.180 0.194 0.178 0.218
t6, 7u 0.180 0.172 0.178 0.323
t6, 8u 0.111 1.000 0.111 1.000
t7, 9u 0.111 1.000 0.111 1.000

Table 1: The values of the vulnerability measures V1 with k “ 2 and V2 for the
network in Figure 2. The unweighted values are computed for the network with all
edge weights equal to 1, the weighted values are computed using the edge weights as
shown in Figure 2.

Figure 2: From left to right: weighted example network where edge thickness corre-
sponds to edge weights, the edges of the network are colour coded by the vulnerability
rate V1 for k “ 2, the edges of the network are colour coded by the vulnerability rate
V2.
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>

Figure 3: The vulnerability rate V2 of the motorways network of the Netherlands.
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3 Vulnerability in practice

3.1 Predicting rerouting
In this section we estimate the amount of people that will take an alternative route,
and the number of commuters that will stick with their initial route in case of a
traffic incident. In order to do so, we need more than only the vulnerability measure.
The percentage of drivers deviating from their original routes is also affected by the
current flow in comparison with the capacity of the link, and the size of the accident
(in terms of the number of lanes that are closed).

Let e P E. Then by ftpeq we denote the number of cars on e that at time t are in
free flow. We call ftpeq the flow of e at time t. The maximum number of cars in free
flow on e is called the capacity of e and is denoted by cpeq. By lanespeq we denote the
number of lanes on e. We write opentpeq for the number of open lanes on e at time t.

Using the notions defined above we will now describe a function F that is an
estimate of the percentage of people on a road e that will reroute in case at time t
an incident happens and causes lanespeq ´ opentpeq lanes to close, given a flow that
equals ftpeq at that time. The function F furthermore depends on the capacity and
the vulnerability measure. Fix a k P Rě1 and set V1peq :“ V1pk, eq for e P E. Given
e P E and a time t, we first define the function

htpeq :“
#
1 if ftpeq ď cpeq,
0 else.

Then we define F as follows

Ftpe, iq :“ α1 ¨ Vipeq ` α2 ¨ popentpeq{lanespeqq ` α3 ¨ htpeq
α1 ` α2 ` α3

, (6)

where i P t1, 2, 3u and where α1, α2, α3 P Rą0. The parameters α1, α2 and α3, which
at present do not depend on time, correlate the variables involved in the function F
and will need to be determined from the actual data. The function F then returns
the rate of people that will stay on their original route. In Section 4 we discuss ways
of refining equation (6).

3.2 Predicting spillback
In this section, we assume that we have correctly identified a link as highly vulnerable.
How do we expect back-up and spillback to happen? This is the question we now
seek to address.

The first problem is to identify how quickly traffic will back up once an incident
happens. The detection of a disturbance can occur within a matter of minutes from
the induction loop detectors placed on the motorway. A sudden and significant drop
in average speed is sufficient for this purpose.

If one plots a graph with axes corresponding to position and time, and each point
color-coded based on the average speed of traffic as given by the induction loop
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detectors, it is a well known empirical phenomenon that traffic incidents cause a
parallelogram shape to appear in the colors of low speeds. This tells us that backup
on a road accumulates linearly. As such, the rate of backup can be quickly determined
using the first few minutes of incoming data after the accident has been detected.

An example of such a parallelogram is shown in Figure 4. The slope of side of the
parallelogram running roughly in the vertical direction indicates the rate of backup
of the traffic.

Figure 4: In this picture, the color blue represents a reduced speed. The parallelogram
corresponding to the traffic congestion resulting from an incident has been framed.
In this particular example, the road in question was a ring and so the graph should
be viewed as on a cylinder, hence why the parallelogram is split in the picture.

Of course, it is an altogether different question to try and predict how long such an
incident will take place and whether or not backup will reach an intersection. On this
point, we make no comment. Instead, let us focus on what we expect to happen in the
event that the backup does reach the nearest intersection. To make this prediction, we
will define the local traffic matrix for an intersection which will depend on empirical
data concerning the typical traffic behavior. In fact, one should have many matrices
associated to an intersection, one for each time of day/week/year as these conditions
can greatly affect what would be considered “normal traffic”.

Now let vertex v denote the intersection in question. Let I be the set of those
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edges incoming to v and O those that are outgoing. Then the local traffic matrix,
Mpvq, will be a matrix with rows indexed by I and columns indexed by O. For i P I
and o P O, the entry in Mpvqi,o will be the average percentage of traffic that turns
from road i to road o at v. Such a matrix should be computable given sufficient data
and if there are sensors placed on entry and exit ramps between motorways.

Given that traffic on a vulnerable road o backs up to the intersection v, we would
expect those roads i such that Mpvqi,o is large to also experience congestion. Indeed,
one would expext that if x% of traffic on i turns onto o at v, it will experience x% of
the rate of backup that road o is experiencing.

If the traffic spills back onto another vulnerable road, then after enough time it may
reach another intersection and the same method of prediction is possible. However, it
seems naive to expect this spillback to continue indefinitely given enough time. One
would expect that eventually people would begin canceling trips altogether as news
of such a major accident spread. Additionally, if a truly large amount of spillback
is occuring, officials may close the road altogether, again forcing people to cancel
their trip. These effects would mitigate spillback onto more motorways even if the
motorway on which the incident occured was very vulnerable.

4 Discussion

In this section we address the assumptions that were made throughout the paper
and discuss ways to verify them from the data. Furthermore, we investigate how to
improve the vulnerability measures defined in Section 2.2 and the function (6) defined
in Section 3.1.

4.1 Improvements on the vulnerability measures

In Section 2 we defined the graph that represents the Dutch road network. As men-
tioned there, all motorways are included but the provincial and city roads have not
been included. This results in the fact that for instance the motorway A2 between
Weert and Maastricht (in the southern part of the Netherlands) is a bridge, and there-
fore maximally vulnerable in our model. However, in practice there is a very good
alternative for that piece of road in the event of a traffic accident, namely the N276
(this is a provincial road).

In order to account for these kind of alternatives, we strongly recommend to in-
clude the provincial and city roads in further research that uses our model. From
a graph theoretic point of view, this would make the graph far more complex. The
vulnerability measure 2, as defined in equation (5), can still be computed efficiently,
as there exists a fast algorithm to compute shortest paths in graphs. The time needed
to compute vulnerability measure 1 (see equation (4)), would increase exponentially.
However, the vulnerability measure only need to be computed once (for every edge).
Therefore, we consider it still worthwile to explore this extended graph.

With respect to the function Ftpe, iq, defined in equation (6), computationally
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nothing changes. The only real-time data it depends on is the number of open lanes
and the current flow, both of which can be computed quickly from the data. There
are however some refinements that we want to address. For instance, note that in
computing Ftpe, iq, preferably one would also take the time after the accident in con-
sideration. Drivers will only reroute if they are aware of the accident and if there is
still time to take the alternative route. A more sophisticated approach would be to
consider a dynamical system in which the value of the function F at a specific time
depends on the value F at an earlier time and, in turn, serves as input for computa-
tions of F at later times.

Another way to improve upon the function Ftpe, iq is to investigate quadratic
or higher-order dependencies. In the current formula, the function depends on Vipeq,
opentpeq and htpeq linearly. This may be a good first-order approximation but higher-
order terms certainly will make the function more accurate.

Another potential issue is the disparity between objective understanding of the
Dutch road network and the perception of drivers. While the measure of vulnerability
should be solely a network measure, its definition fundamentally hinges on the notion
of driver choice. As such, there are subjective factors at play and the network that
should be measured should be, in some sense, the network as people imagine it, as
opposed to how it actually is. If this difference is great, then it seems unlikely to craft
a measure simply from geospatial information and a closer investigation of driver
behavior will have to be taken into account.

4.2 Implicit assumptions and testable hypthoses

The analysis in Section 3.2 rested on some silent assumptions that should not be
simply taken as axioms. We outline these assumptions here as testable hypotheses,
to be confirmed or denied using available empiral data.

(a) We have tried to divorce our notion of vulnerability from the amount of traffic
flow typical on a given motorway. While it seems clear that the ability to reroute
is indeed independent of such considerations, the perceived ability to reroute may
not be. It may be that roads most susceptible to back up are very short stretches
of road that are very heavily traveled. Even though there may be many alternative
routes, the shortness of the stretch of road could make people believe that they
can push through in a short amount of time.

(b) We expect that incidents are 1) more common at intersections and 2) the accidents
occuring near intersections will cause the greatest amount of spillback because of
their proximity to other roads in the network. If this is true, then instead of
focusing on the vulnerability of links, it may be more prudent to consider the
vulnerability of intersections.

(c) If spillback occurs, how frequently does it occur across two or more upstream
intersections? Our hypothesis is that this is an incredibly rare occurence and that
after traffic has spilled back across one intersection, the knowledge and increased



134 SWI 2017 Proceedings

visibility of the accident will cause significant rerouting, mitigating the upstream
backup. If this is the case, it makes predicting spillback much simpler, although
the question of rerouting related congestion remains complicated.

(d) Can the severity of spillback be dichotomized according to intercity versus in-
tracity incidents? Or do highly vulnerable roads exist in both situations?
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