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Motivation Uniformisation of a Markov chain Applications of uniformisation

Motivation for stochastic models of biochemical reactions
Example for today; a standard gene-expression model

Traditionally modelled with ODE systems

, but inherently is a (discrete)
stochastic process due to

low copy numbers of involved molecules,
reactions can be rare and take place at random times.
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Motivation Uniformisation of a Markov chain Applications of uniformisation

Motivation for stochastic models of biochemical reactions
For the remainder of the talk

ww� notation

G k−→ G + M, M ks−→ M + P, M kdm−−→ ∅, P kdp−−→ ∅,

How can we simulate this?
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Motivation Uniformisation of a Markov chain Applications of uniformisation

Simulation with Gillespie SSA

Algorithm Gillespie’s Direct Method
Input: Initial data for G , M and P
Input: Final time T

1: t ← 0
2: while t < T do
3: Generate τ , the time until the next reaction.
4: Choose which of the reactions has to fire.
5: Update G ,M and P according to the firing reaction.
6: t ← t + τ

3: Next reaction times τ are exponentially distributed with parameter
equal to the total propensity of a reaction happening.
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Motivation Uniformisation of a Markov chain Applications of uniformisation

Simulation with Gillespie SSA

G k−→ G + M, M ks−→ M + P, M kdm−−→ ∅, P kdp−−→ ∅.

To sample the next reaction time τ ;
1 define the total propensity,

e.g. a0(t) = kG(t) + ksM(t) + kdmM(t) + kdpP(t),
2 solve for τ in

Exp(1)︸ ︷︷ ︸
Standard exponential random variable with mean 1

=
∫ t+τ

t
a0(u) du.

Luckily, between reactions G , M and P are constant and thus

Exp(1) =
∫ t+τ

t
a0(u) du = a0(t)τ.

Easy to solve for τ , happy days. -
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Motivation Uniformisation of a Markov chain Applications of uniformisation

Uniformisation example

Let’s alter the system marginally

G k−→ G + M, M ks−→ M + P, M kdm−−→ ∅, P kdp−−→ ∅, ∅ ku−→ ∅.

Behaviour of G , M and P is unchanged, but why would we do this?

However, there is good news, we are free to choose ku(t) to be
whatever we want!
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Motivation Uniformisation of a Markov chain Applications of uniformisation

Uniformisation example

G k−→ G+M, M ks−→ M+P, M kdm−−→ ∅, P kdp−−→ ∅, ∅ ku(t)−−−→ ∅.

Take ku(t) = ā − a0(t), might seem quite complicated at first...

Good news; the total propensity is now equal to ā & independent of t!
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Take ku(t) = ā − a0(t), might seem quite complicated at first...
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Motivation Uniformisation of a Markov chain Applications of uniformisation

Uniformisation example

G k−→ G+M, M ks−→ M+P, M kdm−−→ ∅, P kdp−−→ ∅, ∅ ku(t)−−−→ ∅.

Take ku(t) = ā − a0(t), might seem quite complicated at first...

Good news; the total propensity is now equal to ā & independent of t!

All reactions times follow from

Exp(1) = āτ,

even better --.
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Motivation Uniformisation of a Markov chain Applications of uniformisation

EfficiencyEfficient simulation of uniformised reaction networks

Take our uniformised gene-expression system

G k−→ G+M, M ks−→ M+P, M kdm−−→ ∅, P kdp−−→ ∅, ∅ ku(t)−−−→ ∅,

and suppose we are interested in our system at some final time T .

If we can find a uniformisation rate ā for 0 ≤ t ≤ T , then we note that

P(K reactions fire in [0,T ]) = (āT )K

K ! e−āT ,

i.e. the number of reactions is Poisson distributed with rate āT .
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Motivation Uniformisation of a Markov chain Applications of uniformisation

EfficiencyEfficient simulation of uniformised reaction networks

Algorithm Gillespie’s uniformised method
Input: Initial data for G ,M and P
Input: Final time T
Input: Uniformisation rate ā

1: K ← Poisson random number with rate āT
2: for k = 1, . . . ,K do
3: Choose which of the reactions has to fire.
4: Update the G ,M and P according to the firing reaction.

No need to generate the random reaction times.
Faster than Gillespie’s SSA for the uniformised system + standard ‘tricks’
for Gillespie’s SSA can be carried over.

Potential issues:
1 Have to fire non-reactions, ∅ ku(t)−−−→ ∅, a waste of computational

effort.
2 What happens if a0(t) > ā?
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Motivation Uniformisation of a Markov chain Applications of uniformisation

EfficiencyDealing with empty-reactions

G k−→ G+M, M ks−→ M+P, M kdm−−→ ∅, P kdp−−→ ∅, ∅ ku(t)−−−→ ∅.
Let a0 again be the propensity for a non-empty reaction firing.

Which reaction will we fire next?
P (a non-empty reaction fires first) = a0

ā = α,

and
P
(
∅ ku(t)−−−→ ∅ fires first

)
= 1− α.

But firing ∅ ku(t)−−−→ ∅ does not change the propensity a0 and probability α
of the non-empty reactions, so we can start again.

In general we have that

P
(

a non-empty reaction fires, after ∅ ku(t)−−−→ ∅ fires m times
)

= (1−α)m·α,

i.e. the number of empty-reactions firing consecutively follows a
geometric distribution with parameter α = a0/ā.

Easy to sample! -
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Motivation Uniformisation of a Markov chain Applications of uniformisation

EfficiencyDealing with empty-reactions

G k−→ G+M, M ks−→ M+P, M kdm−−→ ∅, P kdp−−→ ∅, ∅ ku(t)−−−→ ∅.
Let a0 again be the propensity for a non-empty reaction firing.

Which reaction will we fire next?
P (a non-empty reaction fires first) = a0
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Easy to sample! -

12 July 2018 Casper Beentjes (beentjes@maths.ox.ac.uk) 8 / 14



Motivation Uniformisation of a Markov chain Applications of uniformisation

EfficiencyDealing with empty-reactions

G k−→ G+M, M ks−→ M+P, M kdm−−→ ∅, P kdp−−→ ∅, ∅ ku(t)−−−→ ∅.
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G k−→ G+M, M ks−→ M+P, M kdm−−→ ∅, P kdp−−→ ∅, ∅ ku(t)−−−→ ∅.
Let a0 again be the propensity for a non-empty reaction firing.

Which reaction will we fire next?

P
(

a non-empty reaction fires third, after ∅ ku(t)−−−→ ∅ fires twice
)

= (1−α)2·α,

and
P
(
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)
= (1− α)3.

In general we have that
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Motivation Uniformisation of a Markov chain Applications of uniformisation

EfficiencyEfficient uniformisation simulation

Algorithm Gillespie’s uniformised method (improved)
Input: Initial data for G ,M and P
Input: Final time T
Input: Uniformisation rate ā

1: K ← Poisson random number with rate āT
2: k ← 0
3: while k < K do
4: Choose which of the non-empty reactions has to fire.
5: Sample the number of empty-reactions, kempty, firing
6: k ← k + kempty . If k ≥ K after update break.
7: Update the G ,M and P according to the firing reaction.
8: k ← k + 1

Only fire actual reactions, so can be made at least as fast as Gillespie’s
SSA for the original system and independent of ā.
Standard ‘tricks’ for Gillespie’s SSA can be carried over.
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Motivation Uniformisation of a Markov chain Applications of uniformisation

AdapativenessAdapting the uniformisation rate

In theory with the previous approach we can take our uniformisation rate
ā as large as we want.

However, if for some reason a0 > ā occurs, can we use that sample path,
without introducing a bias?

Yes, because we can sample the time t∗ at which a0(t∗) = ā. Then we
can restart the simulation (Markov property) from t∗ with a new
uniformisation rate.
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Motivation Uniformisation of a Markov chain Applications of uniformisation

AdapativenessAdapting the uniformisation rate

Suppose we sample K reactions in [0,T ], but after K∗ reactions we see
that a0 ≥ ā.

This corresponds to a time t∗ ∈ [0,T ] which follows

t∗
T ∼ Beta (K∗,K − K∗ + 1) .

Again, easy to sample.

For the remaining time, [t∗,T ], pick a ānew, and generate the remaining
number of reactions like before.
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K∗

12 July 2018 Casper Beentjes (beentjes@maths.ox.ac.uk) 10 / 14



Motivation Uniformisation of a Markov chain Applications of uniformisation

AdapativenessAdapting the uniformisation rate
Suppose we sample K reactions in [0,T ], but after K∗ reactions we see
that a0 ≥ ā.

This corresponds to a time t∗ ∈ [0,T ] which follows
t∗
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Again, easy to sample.

For the remaining time, [t∗,T ], pick a ānew, and generate the remaining
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Motivation Uniformisation of a Markov chain Applications of uniformisation

StratificationStratification for biochemical reaction networks

G k−→ G+M, M ks−→ M+P, M kdm−−→ ∅, P kdp−−→ ∅, ∅ ku(t)−−−→ ∅.

Suppose we are interested in the protein level P at some final time T .

Uniformise with rate ā for 0 ≤ t ≤ T means the number of reactions is
Poisson distributed with rate āT .

So we can stratify with respect to the number of reactions that have
happened in [0,T ].
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G k−→ G+M, M ks−→ M+P, M kdm−−→ ∅, P kdp−−→ ∅, ∅ ku(t)−−−→ ∅.

Suppose we are interested in the protein level P at some final time T .

Uniformise with rate ā for 0 ≤ t ≤ T means the number of reactions is
Poisson distributed with rate āT .

So we can stratify with respect to the number of reactions that have
happened in [0,T ].

E [P(T )] =
∞∑

K=0
P(K reactions fire in [0,T ])E [P|K reactions fire in [0,T ]]
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StratificationStratification for biochemical reaction networks

G k−→ G+M, M ks−→ M+P, M kdm−−→ ∅, P kdp−−→ ∅, ∅ ku(t)−−−→ ∅.

Suppose we are interested in the protein level P at some final time T .

Uniformise with rate ā for 0 ≤ t ≤ T means the number of reactions is
Poisson distributed with rate āT .

So we can stratify with respect to the number of reactions that have
happened in [0,T ].

Note that we can choose to truncate the infinite sum

E [P(T )] =
Ku∑

K=Kl

P(K reactions fire in [0,T ])E [P|K reactions fire in [0,T ]]
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Motivation Uniformisation of a Markov chain Applications of uniformisation

StratificationStratification for biochemical reaction networks

Define the variance reduction factor

β = Varstratified [P(T )]
VarSSA [P(T )]

Example 1;
P 0.1−−→ ∅, ∅ 1−→ P.

start with P(0) = 10.

T β
1 0.93
10 0.94
100 0.97
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StratificationStratification for biochemical reaction networks

Define the variance reduction factor

β = Varstratified [P(T )]
VarSSA [P(T )]

Example 2;

G 50−→ G + M, M 2−→ M + P, M 0.5−−→ ∅, P 2−→ ∅

start with G(0) = 1, M(0) = 0 and P(0) = 0.

T β
1 0.98
10 0.99

Marginal gains.
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Motivation Uniformisation of a Markov chain Applications of uniformisation

Transient analysisTransient information

G k−→ G+M, M ks−→ M+P, M kdm−−→ ∅, P kdp−−→ ∅, ∅ ku(t)−−−→ ∅.

From uniformisation with rate ā we can compute and store

µ̂K ≈ E [P|K reactions fired]

Then in theory for any time t we know that

E [P(t)] ≈ µ̂(t) =
∞∑

K=0

(āt)K

K ! e−(āt)µ̂K .

Note; the calculation of this estimator does not require any new
simulations, we can just use our simulation results µ̂k and appropriately
(re-)weight them.
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Motivation Uniformisation of a Markov chain Applications of uniformisation

Transient analysisSummary

Uniformisation ...
is an intuitive technique which does not require much change in your
existing knowledge/simulations.
can be made at least as fast as Gillespie’s SSA.
can be used to create a variance reduction method by stratifying
with respect to the number of fired reactions.
can be used to get transient information over a whole time interval
[0,T ) at no extra simulation cost (just post-processing).

Thank you for your attention.
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Variance reduction via stratification

Standard Monte Carlo estimator:
Generate xi ∼ p samples for i = 1, . . . ,N and calculate

µ̂ = 1
N

N∑
i=1

f (xi )

Stratified Monte Carlo estimator:
Generate xi,j ∼ pj for j = 1, . . . J and calculate

µ̂strat =
J∑

j=1

ωj
nj

nj∑
i=1

f (xi,j)

where n1 + · · ·+ nJ = N so we have the same amount of samples.
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Variance reduction via stratification
What’s the use of the stratification?

Standard Monte Carlo estimator:

Var(µ̂) = σ2

N

Stratified Monte Carlo estimator:

Var(µ̂strat) =
J∑

j=1

ω2
j σ

2
j

nj

where σj is the variance within the j-th stratum. Again we take
n1 + · · ·+ nJ = N so we have the same amount of samples.

Note that

σ2 =
J∑

j=1
ωjσ

2
j +

J∑
j=1

ωj(µj − µ)2
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Variance reduction via stratification

What’s the use of the stratification?

Suppose we take nj = Nωj , i.e. proportional allocation of our samples.

Standard Monte Carlo estimator:

Var(µ̂) = σ2

N

Stratified Monte Carlo estimator:

Var(µ̂strat) = 1
N

J∑
j=1

ωjσ
2
j ≤

1
N

J∑
j=1

ωjσ
2
j + 1

N

J∑
j=1

ωj(µj−µ)2 = σ2

N = Var(µ̂)

So we have a reduced variance estimator!
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Simulation with Gillespie SSA
For our standard model gene-transcription model in a volume V

G k−→ G + M, M ks−→ M + P, M kdm−−→ ∅, P kdp−−→ ∅,

the total propensity a0(t) = kG(t) + ksM(t) + kdmM(t) + kdpP(t).

Suppose from step 3 we know that a reaction takes place at t∗ = t + τ .
Which reaction?

For example consider the first reaction:
A1 = {G k−→ G + M fires in [t∗, t∗ + dt)},
B = {a reaction fires in [t∗, t∗ + dt)}

Prob(A1|B) = Prob(B|A1)Prob(A1)
Prob(B) = 1 · kG(t∗) dt

a0(t∗) dt = kG(t∗)
a0(t∗)

Similar relative propensities evaluated at t∗ for the other propensities.
Easy to sample, happy days. -
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Extrinsic noise example

Let’s return to our standard gene-expression model

G k−→ G + M, M ks−→ M + P, M kdm−−→ ∅, P kdp−−→ ∅,

for the transcription of mRNA (M) from genes (G), the translation of
mRNA into protein (P) and the degradation of both the mRNA and
protein.

But maybe now the transcription of mRNA follows a 24 hour day-night
cycle so the rate of transcription is not constant in time.

For example k(t) = c(1 + sin(2πft)), where f −1 = 24h.

How can we simulate this?
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Simulation with Gillespie SSA

Algorithm Gillespie’s Direct Method
Input: Initial data for G , M and P
Input: Final time T

1: t ← 0
2: while t < T do
3: Generate τ , the time until the next reaction.
4: Choose which of the reactions has to fire.
5: Update G ,M and P according to the firing reaction.
6: t ← t + τ

3: Next reaction times τ are exponentially distributed with parameter
equal to the total propensity of a reaction happening.
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Simulation with Gillespie SSA

For our standard gene-expression model

G k(t)−−→ G + M, M ks−→ M + P, M kdm−−→ ∅, P kdp−−→ ∅,

the total propensity a0(t) = k(t)G(t) + ksM(t) + kdmM(t) + kdpP(t).

To find the next reaction time we solve

Exp(1)︸ ︷︷ ︸
Standard exponential random variable with mean 1

=
∫ t+τ

t
a0(u) du.

Again, between reactions G , M and P are constant, however

Exp(1) =
∫ t+τ

t
a0(u) du = (ksM(t)+kdmM(t)+kdpP(t))τ+

∫ t+τ

t
k(u) duG(t).

Not so easy to solve for τ generally... ,
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