Efficient adaptive uniformisation for the analysis of biochemical reaction networks

Casper Beentjes

 \boxtimes [beentjes@maths.ox.ac.uk](mailto=beentjes@maths.ox.ac.uk) \clubsuit <http://people.maths.ox.ac.uk/beentjes/>

Wolfson Centre for Mathematical Biology, University of Oxford

12 July 2018

Joint work with Ruth Baker

- ² [Uniformisation of a Markov chain](#page-11-0)
	- **•** [Efficiency](#page-19-0)
	- [Adapativeness](#page-29-0)
- ³ [Applications of uniformisation](#page-36-0)
	- **•** [Stratification](#page-37-0)
	- **•** [Transient analysis](#page-44-0)

[Uniformisation of a Markov chain](#page-11-0)

- **·** [Efficiency](#page-19-0)
- **•** [Adapativeness](#page-29-0)
- ³ [Applications of uniformisation](#page-36-0) **•** [Stratification](#page-37-0)
	- **[Transient analysis](#page-44-0)**

Motivation for stochastic models of biochemical reactions

Example for today; a standard gene-expression model

Traditionally modelled with ODE systems

Motivation for stochastic models of biochemical reactions

Example for today; a standard gene-expression model

Traditionally modelled with ODE systems, but inherently is a (discrete) stochastic process due to

- **.** low copy numbers of involved molecules,
- reactions can be rare and take place at **random times**.

Motivation for stochastic models of biochemical reactions

For the remainder of the talk

How can we simulate this?

Algorithm Gillespie's Direct Method

Input: Initial data for G, M and P

Input: Final time T

- $1 \cdot t \leftarrow 0$
- 2: **while** t *<* T **do**
- 3: Generate τ , the time until the next reaction.
- 4: Choose which of the reactions has to fire.
- 5: Update G, M and P according to the firing reaction.
- 6: $t \leftarrow t + \tau$

Algorithm Gillespie's Direct Method

Input: Initial data for G, M and P **Input:** Final time T

 $1: t \leftarrow 0$

- 2: **while** t *<* T **do**
- 3: Generate τ , the time until the next reaction.
- 4: Choose which of the reactions has to fire.
- 5: Update G, M and P according to the firing reaction.
- 6: $t \leftarrow t + \tau$

3: Next reaction times *τ* are exponentially distributed with parameter equal to the total propensity of a reaction happening.

$$
G \xrightarrow{k} G + M, \qquad M \xrightarrow{k_s} M + P, \qquad M \xrightarrow{k_{dm}} \emptyset, \qquad P \xrightarrow{k_{dp}} \emptyset.
$$

To sample the next reaction time *τ* ;

¹ define the **total propensity**, e.g. $a_0(t) = kG(t) + k_s M(t) + k_{dm} M(t) + k_{dp} P(t)$, ² solve for *τ* in

Standard exponential random variable with mean 1

$$
G \xrightarrow{k} G + M, \qquad M \xrightarrow{k_s} M + P, \qquad M \xrightarrow{k_{dm}} \emptyset, \qquad P \xrightarrow{k_{dp}} \emptyset.
$$

To sample the next reaction time *τ* ;

- ¹ define the **total propensity**, e.g. $a_0(t) = kG(t) + k_s M(t) + k_{dm} M(t) + k_{dp} P(t)$,
- ² solve for *τ* in

$$
\exp(1) = \int_t^{t+\tau} a_0(u) \, \mathrm{d} u.
$$

Standard exponential random variable with mean 1

$$
G \xrightarrow{k} G + M, \qquad M \xrightarrow{k_s} M + P, \qquad M \xrightarrow{k_{dm}} \emptyset, \qquad P \xrightarrow{k_{dp}} \emptyset.
$$

To sample the next reaction time *τ* ;

¹ define the **total propensity**, e.g. $a_0(t) = kG(t) + k_s M(t) + k_{dm} M(t) + k_{dp} P(t)$, ² solve for *τ* in

$$
\underbrace{\text{Exp}(1)}_{\text{exp}(u) \text{ div}} = \int_{t}^{t+\tau} a_0(u) \, \mathrm{d}u.
$$

Standard exponential random variable with mean 1

Luckily, between reactions G , M and P are constant and thus

$$
\mathsf{Exp}(1) = \int_t^{t+\tau} a_0(u) \, \mathrm{d}u = a_0(t)\tau.
$$

Easy to solve for τ , happy days. $\mathcal O$

² [Uniformisation of a Markov chain](#page-11-0)

- **•** [Efficiency](#page-19-0)
- [Adapativeness](#page-29-0)
- ³ [Applications of uniformisation](#page-36-0) **• [Stratification](#page-37-0)**
	- **[Transient analysis](#page-44-0)**

Let's alter the system marginally

$$
G \xrightarrow{k} G + M, \qquad M \xrightarrow{k_s} M + P, \qquad M \xrightarrow{k_{dm}} \emptyset, \qquad P \xrightarrow{k_{dp}} \emptyset, \qquad \emptyset \xrightarrow{k_u} \emptyset.
$$

Behaviour of G , M and P is unchanged, but why would we do this?

Let's alter the system marginally

$$
G \xrightarrow{k} G+M, \qquad M \xrightarrow{k_s} M+P, \qquad M \xrightarrow{k_{dm}} \emptyset, \qquad P \xrightarrow{k_{dp}} \emptyset, \qquad \emptyset \xrightarrow{k_u(t)} \emptyset.
$$

Behaviour of G, M and P is unchanged, this seems even worse, stop it!

Let's alter the system marginally

$$
G \xrightarrow{k} G+M, \qquad M \xrightarrow{k_s} M+P, \qquad M \xrightarrow{k_{dm}} \emptyset, \qquad P \xrightarrow{k_{dp}} \emptyset, \qquad \emptyset \xrightarrow{k_u(t)} \emptyset.
$$

Behaviour of G, M and P is unchanged, this seems even worse, stop it!

However, there is good news, we are **free to choose** $k_u(t)$ to be whatever we want!

$$
G \stackrel{k}{\rightarrow} G+M, \qquad M \stackrel{k_s}{\rightarrow} M+P, \qquad M \stackrel{k_{dm}}{\longrightarrow} \emptyset, \qquad P \stackrel{k_{dp}}{\longrightarrow} \emptyset, \qquad \emptyset \stackrel{k_u(t)}{\longrightarrow} \emptyset.
$$

Take $k_u(t) = \bar{a} - a_0(t)$, might seem quite complicated at first...

$$
G \xrightarrow{k} G+M, \qquad M \xrightarrow{k_s} M+P, \qquad M \xrightarrow{k_{dm}} \emptyset, \qquad P \xrightarrow{k_{dp}} \emptyset, \qquad \emptyset \xrightarrow{k_u(t)} \emptyset.
$$

Take $k_u(t) = \bar{a} - a_0(t)$, might seem quite complicated at first...

Good news; the total propensity is now equal to \bar{a} & **independent of** $t!$

$$
G \xrightarrow{k} G+M, \qquad M \xrightarrow{k_s} M+P, \qquad M \xrightarrow{k_{dm}} \emptyset, \qquad P \xrightarrow{k_{dp}} \emptyset, \qquad \emptyset \xrightarrow{k_u(t)} \emptyset.
$$

Take $k_u(t) = \bar{a} - a_0(t)$, might seem quite complicated at first...

Good news; the total propensity is now equal to \bar{a} & **independent of** t !

Thus we get the next reaction time via

 $Exp(1) = \overline{a}\tau$,

happy days \mathcal{L} .

$$
G \xrightarrow{k} G+M, \qquad M \xrightarrow{k_s} M+P, \qquad M \xrightarrow{k_{dm}} \emptyset, \qquad P \xrightarrow{k_{dp}} \emptyset, \qquad \emptyset \xrightarrow{k_u(t)} \emptyset.
$$

Take $k_u(t) = \bar{a} - a_0(t)$, might seem quite complicated at first...

Good news; the total propensity is now equal to ¯a & **independent of** t!

All reactions times follow from

$$
\mathsf{Exp}(1)=\bar{\mathsf{a}}\tau,
$$

even better \mathcal{L} \mathcal{L} .

Take our uniformised gene-expression system

$$
G \xrightarrow{k} G+M, \qquad M \xrightarrow{k_5} M+P, \qquad M \xrightarrow{k_{dm}} \emptyset, \qquad P \xrightarrow{k_{dp}} \emptyset, \qquad \emptyset \xrightarrow{k_u(t)} \emptyset,
$$

and suppose we are interested in our system at some final time T .

Take our uniformised gene-expression system

 $G \stackrel{k}{\rightarrow} G + M$, $M \stackrel{k_s}{\rightarrow} M + P$, $M \stackrel{k_{dm}}{\rightarrow} \emptyset$, $P \stackrel{k_{dp}}{\rightarrow} \emptyset$, $\emptyset \stackrel{k_u(t)}{\rightarrow} \emptyset$,

and suppose we are interested in our system at some final time T.

If we can find a uniformisation rate \overline{a} for $0 \leq t \leq T$, then we note that

$$
\mathbb{P}(K \text{ reactions fire in } [0, T]) = \frac{(\overline{a}T)^K}{K!}e^{-\overline{a}T},
$$

i.e. the **number of reactions is Poisson distributed** with rate $\bar{a}T$.

Algorithm Gillespie's uniformised method

Input: Initial data for G,M and P

Input: Final time T

Input: Uniformisation rate a

- 1: $K \leftarrow$ Poisson random number with rate $5T$
- 2: **for** $k = 1, ..., K$ **do**
- 3: Choose which of the reactions has to fire.
- 4: Update the G*,* M and P according to the firing reaction.

No need to generate the random reaction times.

Faster than Gillespie's SSA for the uniformised system $+$ standard 'tricks' for Gillespie's SSA can be carried over.

Algorithm Gillespie's uniformised method

Input: Initial data for G,M and P

Input: Final time T

Input: Uniformisation rate a

- 1: $K \leftarrow$ Poisson random number with rate $5T$
- 2: **for** $k = 1, ..., K$ **do**
- 3: Choose which of the reactions has to fire.
- 4: Update the G*,* M and P according to the firing reaction.

No need to generate the random reaction times.

Faster than Gillespie's SSA for the uniformised system $+$ standard 'tricks' for Gillespie's SSA can be carried over.

Potential issues:

 \bullet Have to fire non-reactions, $\emptyset \xrightarrow{k_u(t)} \emptyset$, a waste of computational effort.

2 What happens if $a_0(t) > \overline{a}$?

$$
G \xrightarrow{k} G+M, \qquad M \xrightarrow{k_s} M+P, \qquad M \xrightarrow{k_{dm}} \emptyset, \qquad P \xrightarrow{k_{dp}} \emptyset, \qquad \emptyset \xrightarrow{k_u(t)} \emptyset.
$$

Let a_0 again be the propensity for a non-empty reaction firing.

Which reaction will we fire next?

$$
\mathbb{P}\left(\text{a non-empty reaction fires first}\right) = \frac{a_0}{\overline{a}} = \alpha,
$$

and

$$
\mathbb{P}\left(\emptyset \xrightarrow{k_u(t)} \emptyset \text{ fires first }\right) = 1 - \alpha.
$$

$$
G \xrightarrow{k} G+M, \qquad M \xrightarrow{k_s} M+P, \qquad M \xrightarrow{k_{dm}} \emptyset, \qquad P \xrightarrow{k_{dp}} \emptyset, \qquad \emptyset \xrightarrow{k_u(t)} \emptyset.
$$

Let a_0 again be the propensity for a non-empty reaction firing.

Which reaction will we fire next?

$$
\mathbb{P}\left(\text{a non-empty reaction fires first}\right) = \frac{a_0}{\overline{a}} = \alpha,
$$

and

$$
\mathbb{P}\left(\emptyset \xrightarrow{k_u(t)} \emptyset \text{ fires first }\right) = 1 - \alpha.
$$

But firing $\emptyset \xrightarrow{k_u(t)} \emptyset$ does not change the propensity a_0 and probability α of the non-empty reactions, so we can start again.

$$
G \xrightarrow{k} G+M, \qquad M \xrightarrow{k_s} M+P, \qquad M \xrightarrow{k_{dm}} \emptyset, \qquad P \xrightarrow{k_{dp}} \emptyset, \qquad \emptyset \xrightarrow{k_u(t)} \emptyset.
$$

Let a_0 again be the propensity for a non-empty reaction firing.

Which reaction will we fire next?

$$
\mathbb{P}\left(\text{a non-empty reaction fires first}\right) = \frac{a_0}{\overline{a}} = \alpha,
$$

and
\n
$$
\mathbb{P}\left(\text{a non-empty reaction fires second, after } \emptyset \xrightarrow{k_u(t)} \emptyset \text{ fires}\right) = (1-\alpha) \cdot \alpha,
$$
\nand
\n
$$
\mathbb{P}\left(\emptyset \xrightarrow{k_u(t)} \emptyset \text{ fires twice}\right) = (1-\alpha)^2.
$$

$$
G \xrightarrow{k} G + M, \qquad M \xrightarrow{k_s} M + P, \qquad M \xrightarrow{k_{dm}} \emptyset, \qquad P \xrightarrow{k_{dp}} \emptyset, \qquad \emptyset \xrightarrow{k_u(t)} \emptyset.
$$

Let a_0 again be the propensity for a non-empty reaction firing.

Which reaction will we fire next?

 $\mathbb{P}\left($ a non-empty reaction fires third, after $\emptyset \xrightarrow{k_u(t)} \emptyset$ fires twice $\right) = (1-\alpha)^2{\cdot}\alpha,$ and $\sqrt{ }$

$$
\mathbb{P}\left(\emptyset \xrightarrow{k_u(t)} \emptyset \text{ fires three times}\right) = (1 - \alpha)^3.
$$

$$
G \xrightarrow{k} G+M, \qquad M \xrightarrow{k_s} M+P, \qquad M \xrightarrow{k_{dm}} \emptyset, \qquad P \xrightarrow{k_{dp}} \emptyset, \qquad \emptyset \xrightarrow{k_u(t)} \emptyset.
$$

Let a_0 again be the propensity for a non-empty reaction firing.

Which reaction will we fire next?

In general we have that

$$
\mathbb{P}\left(\text{a non-empty reaction fires, after } \emptyset \xrightarrow{k_u(t)} \emptyset \text{ fires } m \text{ times}\right) = (1-\alpha)^m \cdot \alpha,
$$

i.e. the number of empty-reactions firing consecutively follows a **geometric distribution** with parameter $\alpha = a_0/\overline{a}$.

Easy to sample! \bigcirc

Efficient uniformisation simulation

Algorithm Gillespie's uniformised method (improved)

- **Input:** Initial data for G,M and P
- **Input:** Final time T
- **Input:** Uniformisation rate a
	- 1: $K \leftarrow$ Poisson random number with rate $5T$

$$
2\colon\ k\leftarrow 0
$$

- 3: **while** k *<* K **do**
- 4: Choose which of the non-empty reactions has to fire.
- 5: Sample the number of empty-reactions, k_{empty} , firing
- 6: $k \leftarrow k + k_{\text{empty}}$ \triangleright If $k > K$ after update break.
- 7: Update the G*,* M and P according to the firing reaction.
- 8: $k \leftarrow k+1$

Only fire actual reactions, so can be made **at least as fast as Gillespie's SSA for the original system** and independent of \overline{a} . Standard 'tricks' for Gillespie's SSA can be carried over.

In theory with the previous approach we can take our uniformisation rate \overline{a} as large as we want.

However, if for some reason $a_0 > \bar{a}$ occurs, can we use that sample path, without introducing a bias?

In theory with the previous approach we can take our uniformisation rate \overline{a} as large as we want.

However, if for some reason $a_0 > \bar{a}$ occurs, can we use that sample path, without introducing a bias?

Yes, because we can sample the time t^* at which $a_0(t^*) = \overline{a}$. Then we can restart the simulation (Markov property) from t^* with a new uniformisation rate.

Suppose we sample K reactions in $[0,T],$ but after K^* reactions we see that $a_0 > \overline{a}$.

This corresponds to a time $t^* \in [0, T]$ which follows

$$
\frac{t^*}{\mathcal{T}} \sim \text{Beta}\left(K^*, K-K^*+1\right).
$$

Again, easy to sample.

Suppose we sample K reactions in $[0,T],$ but after K^* reactions we see that $a_0 > \overline{a}$.

This corresponds to a time $t^* \in [0, T]$ which follows

$$
\frac{t^*}{\mathcal{T}} \sim \text{Beta}\left(K^*, K-K^*+1\right).
$$

Again, easy to sample.

Suppose we sample K reactions in $[0,T],$ but after K^* reactions we see that $a_0 > \overline{a}$.

This corresponds to a time $t^* \in [0, T]$ which follows

$$
\frac{t^*}{\mathcal{T}} \sim \text{Beta}\left(K^*, K - K^* + 1\right).
$$

Again, easy to sample.

Suppose we sample K reactions in $[0,T],$ but after K^* reactions we see that $a_0 > \overline{a}$.

This corresponds to a time $t^* \in [0, T]$ which follows

$$
\frac{t^*}{\mathcal{T}} \sim \text{Beta}\left(K^*, K - K^* + 1\right).
$$

Again, easy to sample.

Suppose we sample K reactions in $[0,T],$ but after K^* reactions we see that $a_0 > \overline{a}$.

This corresponds to a time $t^* \in [0, T]$ which follows

$$
\frac{t^*}{\mathcal{T}} \sim \text{Beta}\left(K^*, K - K^* + 1\right).
$$

Again, easy to sample.

$$
\downarrow \qquad K \text{ reactions} \qquad K^* \text{Knew reactions} \qquad K_{\text{new}} \qquad K^* \qquad K^
$$

[Uniformisation of a Markov chain](#page-11-0)

- **·** [Efficiency](#page-19-0)
- **•** [Adapativeness](#page-29-0)
- ³ [Applications of uniformisation](#page-36-0)
	- **•** [Stratification](#page-37-0)
	- **•** [Transient analysis](#page-44-0)

 $G \stackrel{k}{\rightarrow} G + M$, $M \stackrel{k_s}{\rightarrow} M + P$, $M \stackrel{k_{dm}}{\rightarrow} \emptyset$, $P \stackrel{k_{dp}}{\rightarrow} \emptyset$, $\emptyset \stackrel{k_u(t)}{\rightarrow} \emptyset$.

Suppose we are interested in the protein level P at some final time T .

$$
G \xrightarrow{k} G+M, \qquad M \xrightarrow{k_s} M+P, \qquad M \xrightarrow{k_{dm}} \emptyset, \qquad P \xrightarrow{k_{dp}} \emptyset, \qquad \emptyset \xrightarrow{k_u(t)} \emptyset.
$$

Suppose we are interested in the protein level P at some final time T .

Uniformise with rate \overline{a} for $0 \leq t \leq T$ means the number of reactions is Poisson distributed with rate $\bar{a}T$.

$$
G \xrightarrow{k} G+M, \qquad M \xrightarrow{k_s} M+P, \qquad M \xrightarrow{k_{dm}} \emptyset, \qquad P \xrightarrow{k_{dp}} \emptyset, \qquad \emptyset \xrightarrow{k_u(t)} \emptyset.
$$

Suppose we are interested in the protein level P at some final time T .

Uniformise with rate \overline{a} for $0 \leq t \leq T$ means the number of reactions is Poisson distributed with rate $5T$.

So we can **stratify with respect to the number of reactions** that have happened in [0, T].

$$
G \xrightarrow{k} G+M, \qquad M \xrightarrow{k_s} M+P, \qquad M \xrightarrow{k_{dm}} \emptyset, \qquad P \xrightarrow{k_{dp}} \emptyset, \qquad \emptyset \xrightarrow{k_u(t)} \emptyset.
$$

Suppose we are interested in the protein level P at some final time T .

Uniformise with rate \overline{a} for $0 \leq t \leq T$ means the number of reactions is Poisson distributed with rate $\bar{a}T$.

So we can **stratify with respect to the number of reactions** that have happened in $[0, T]$.

$$
\mathbb{E}\left[P(\mathcal{T})\right] = \sum_{K=0}^{\infty} \mathbb{P}(K \text{ reactions fire in } [0, \mathcal{T}]) \mathbb{E}\left[P|K \text{ reactions fire in } [0, \mathcal{T}]\right]
$$

$$
G \xrightarrow{k} G+M, \qquad M \xrightarrow{k_s} M+P, \qquad M \xrightarrow{k_{dm}} \emptyset, \qquad P \xrightarrow{k_{dp}} \emptyset, \qquad \emptyset \xrightarrow{k_u(t)} \emptyset.
$$

Suppose we are interested in the protein level P at some final time T .

Uniformise with rate \overline{a} for $0 \leq t \leq T$ means the number of reactions is Poisson distributed with rate $\overline{a}T$.

So we can **stratify with respect to the number of reactions** that have happened in [0, T].

Note that we can choose to truncate the infinite sum

$$
\mathbb{E}\left[P(\mathcal{T})\right] = \sum_{K=K_l}^{K_u} \mathbb{P}(K \text{ reactions fire in } [0, \mathcal{T}]) \mathbb{E}\left[P|K \text{ reactions fire in } [0, \mathcal{T}]\right]
$$

Define the variance reduction factor

$$
\beta = \frac{\mathsf{Var}_{\mathsf{stratified}}\left[P(T)\right]}{\mathsf{Var}_{\mathsf{SSA}}\left[P(T)\right]}
$$

Example 1;

$$
P \xrightarrow{0.1} \emptyset, \qquad \emptyset \xrightarrow{1} P.
$$

start with $P(0) = 10$.

Define the variance reduction factor

$$
\beta = \frac{\text{Var}_{\text{stratified}}\left[P(T)\right]}{\text{Var}_{\text{SSA}}\left[P(T)\right]}
$$

Example 2;

$$
G \xrightarrow{50} G + M, \qquad M \xrightarrow{2} M + P, \qquad M \xrightarrow{0.5} \emptyset, \qquad P \xrightarrow{2} \emptyset
$$

start with $G(0) = 1$, $M(0) = 0$ and $P(0) = 0$.

T	β
1	0.98
10	0.99

Marginal gains.

Transient information

$$
G \stackrel{k}{\rightarrow} G+M, \qquad M \stackrel{k_s}{\rightarrow} M+P, \qquad M \stackrel{k_{dm}}{\longrightarrow} \emptyset, \qquad P \stackrel{k_{dp}}{\longrightarrow} \emptyset, \qquad \emptyset \stackrel{k_u(t)}{\longrightarrow} \emptyset.
$$

From uniformisation with rate \overline{a} we can compute and store

 $\hat{\mu}_K \approx \mathbb{E}[P|K]$ reactions fired]

Then in theory for any time t we know that

$$
\mathbb{E}\left[P(t)\right]\approx \hat{\mu}(t)=\sum_{K=0}^{\infty}\frac{(\bar{a}t)^K}{K!}e^{-(\bar{a}t)}\hat{\mu}_K.
$$

Transient information

$$
G \stackrel{k}{\rightarrow} G+M, \qquad M \stackrel{k_s}{\rightarrow} M+P, \qquad M \stackrel{k_{dm}}{\longrightarrow} \emptyset, \qquad P \stackrel{k_{dp}}{\longrightarrow} \emptyset, \qquad \emptyset \stackrel{k_u(t)}{\longrightarrow} \emptyset.
$$

From uniformisation with rate \overline{a} we can compute and store

 $\hat{\mu}_K \approx \mathbb{E}[P|K]$ reactions fired

Then in theory for any time t we know that

$$
\mathbb{E}\left[P(t)\right]\approx \hat{\mu}(t)=\sum_{K=0}^{\infty}\frac{(\bar{a}t)^K}{K!}e^{-(\bar{a}t)}\hat{\mu}_K.
$$

Note; the calculation of this estimator does **not require any new simulations**, we can just use our simulation results $\hat{\mu}_k$ and appropriately (re-)weight them.

- is an intuitive technique which does not require much change in your existing knowledge/simulations.
- can be made **at least as fast as Gillespie's SSA**.
- **•** can be used to create a **variance reduction** method by stratifying with respect to the number of fired reactions.
- can be used to get **transient information** over a whole time interval [0*,*T) at no extra simulation cost (just post-processing).

- is an intuitive technique which does not require much change in your existing knowledge/simulations.
- can be made **at least as fast as Gillespie's SSA**.
- **•** can be used to create a **variance reduction** method by stratifying with respect to the number of fired reactions.
- can be used to get **transient information** over a whole time interval [0*,*T) at no extra simulation cost (just post-processing).

- is an intuitive technique which does not require much change in your existing knowledge/simulations.
- can be made **at least as fast as Gillespie's SSA**.
- **•** can be used to create a **variance reduction** method by stratifying with respect to the number of fired reactions.
- can be used to get **transient information** over a whole time interval [0*,*T) at no extra simulation cost (just post-processing).

- is an intuitive technique which does not require much change in your existing knowledge/simulations.
- can be made **at least as fast as Gillespie's SSA**.
- **•** can be used to create a **variance reduction** method by stratifying with respect to the number of fired reactions.
- **•** can be used to get **transient information** over a whole time interval [0*,*T) at no extra simulation cost (just post-processing).

- is an intuitive technique which does not require much change in your existing knowledge/simulations.
- can be made **at least as fast as Gillespie's SSA**.
- **•** can be used to create a **variance reduction** method by stratifying with respect to the number of fired reactions.
- **•** can be used to get **transient information** over a whole time interval [0*,*T) at no extra simulation cost (just post-processing).

Thank you for your attention.

Standard Monte Carlo estimator:

Generate $x_i \sim p$ samples for $i = 1, \ldots, N$ and calculate

$$
\hat{\mu} = \frac{1}{N} \sum_{i=1}^N f(x_i)
$$

Stratified Monte Carlo estimator: Generate $x_{i,j} \sim p_i$ for $j = 1, \ldots J$ and calculate

$$
\hat{\mu}_{\text{strat}} = \sum_{j=1}^{J} \frac{\omega_j}{n_j} \sum_{i=1}^{n_j} f(x_{i,j})
$$

where $n_1 + \cdots + n_J = N$ so we have the same amount of samples.

Variance reduction via stratification

What's the use of the stratification?

Standard Monte Carlo estimator:

$$
\mathsf{Var}(\hat{\mu}) = \frac{\sigma^2}{N}
$$

Stratified Monte Carlo estimator:

$$
\text{Var}(\hat{\mu}_{\text{strat}}) = \sum_{j=1}^{J} \frac{\omega_j^2 \sigma_j^2}{n_j}
$$

where σ_j is the variance *within* the *j*-th stratum. Again we take $n_1 + \cdots + n_J = N$ so we have the same amount of samples.

Note that

$$
\sigma^{2} = \sum_{j=1}^{J} \omega_{j} \sigma_{j}^{2} + \sum_{j=1}^{J} \omega_{j} (\mu_{j} - \mu)^{2}
$$

What's the use of the stratification?

Suppose we take $n_j=N\omega_j$, i.e. proportional allocation of our samples.

Standard Monte Carlo estimator:

$$
\mathsf{Var}(\hat{\mu}) = \frac{\sigma^2}{N}
$$

Stratified Monte Carlo estimator:

$$
\text{Var}(\hat{\mu}_{\text{strat}}) = \frac{1}{N} \sum_{j=1}^{J} \omega_j \sigma_j^2 \leq \frac{1}{N} \sum_{j=1}^{J} \omega_j \sigma_j^2 + \frac{1}{N} \sum_{j=1}^{J} \omega_j (\mu_j - \mu)^2 = \frac{\sigma^2}{N} = \text{Var}(\hat{\mu})
$$

So we have a reduced variance estimator!

For our standard model gene-transcription model in a volume V

$$
G \xrightarrow{k} G + M, \qquad M \xrightarrow{k_s} M + P, \qquad M \xrightarrow{k_{dm}} \emptyset, \qquad P \xrightarrow{k_{dp}} \emptyset,
$$

the total propensity $a_0(t) = kG(t) + k_s M(t) + k_{dm} M(t) + k_{dn} P(t)$.

Suppose from step 3 we know that a reaction takes place at $t^* = t + \tau$. Which reaction?

For example consider the first reaction: $A_1 = \{G \overset{k}{\rightarrow} G + M \text{ fires in } [t^*, t^* + \mathrm{d}t)\},$ $B = \{a \text{ reaction fires in } [t^*, t^* + dt] \}$ $\mathsf{Prob}(A_1 | B) = \frac{\mathsf{Prob}(B | A_1) \mathsf{Prob}(A_1)}{\mathsf{Prob}(B)} = \frac{1 \cdot kG(t^*) \mathop{}\!\mathrm{d} t}{\mathop{}\!\mathstrut a_0(t^*) \mathop{}\!\mathrm{d} t}$ $\frac{d\cdot kG(t^*)\,{\mathrm d}t}{a_0(t^*)\,{\mathrm d}t}=\frac{kG(t^*)}{a_0(t^*)}$ $a_0(t^*)$

Similar relative propensities evaluated at t^* for the other propensities. Easy to sample, happy days. \bigcirc

Let's return to our standard gene-expression model

$$
G \xrightarrow{k} G + M, \qquad M \xrightarrow{k_s} M + P, \qquad M \xrightarrow{k_{dm}} \emptyset, \qquad P \xrightarrow{k_{dp}} \emptyset,
$$

for the transcription of mRNA (M) from genes (G) , the translation of mRNA into protein (P) and the degradation of both the mRNA and protein.

Let's return to our standard gene-expression model

$$
G \xrightarrow{k(t)} G + M, \qquad M \xrightarrow{k_s} M + P, \qquad M \xrightarrow{k_{dm}} \emptyset, \qquad P \xrightarrow{k_{dp}} \emptyset,
$$

for the transcription of mRNA (M) from genes (G) , the translation of mRNA into protein (P) and the degradation of both the mRNA and protein.

But maybe now the transcription of mRNA follows a 24 hour day-night cycle so the rate of transcription is not constant in time.

For example $k(t) = c(1 + \sin(2\pi ft))$, where $f^{-1} = 24h$.

How can we simulate this?

Algorithm Gillespie's Direct Method

Input: Initial data for G, M and P **Input:** Final time T

 $1: t \leftarrow 0$

- 2: **while** t *<* T **do**
- 3: Generate τ , the time until the next reaction.
- 4: Choose which of the reactions has to fire.
- 5: Update G,M and P according to the firing reaction.

6: $t \leftarrow t + \tau$

3: Next reaction times *τ* are exponentially distributed with parameter equal to the total propensity of a reaction happening.

For our standard gene-expression model

$$
G \xrightarrow{k(t)} G + M, \qquad M \xrightarrow{k_s} M + P, \qquad M \xrightarrow{k_{dm}} \emptyset, \qquad P \xrightarrow{k_{dp}} \emptyset,
$$

the total propensity $a_0(t) = k(t)G(t) + k_sM(t) + k_{dm}M(t) + k_{dp}P(t)$.

To find the next reaction time we solve

$$
\underbrace{\text{Exp}(1)}_{t} = \int_{t}^{t+\tau} a_0(u) \, \mathrm{d} u.
$$

Standard exponential random variable with mean 1

For our standard gene-expression model

$$
G \xrightarrow{k(t)} G + M, \qquad M \xrightarrow{k_s} M + P, \qquad M \xrightarrow{k_{dm}} \emptyset, \qquad P \xrightarrow{k_{dp}} \emptyset,
$$

the total propensity $a_0(t) = k(t)G(t) + k_sM(t) + k_{dm}M(t) + k_{dp}P(t)$.

To find the next reaction time we solve

$$
\exp(1) \qquad \qquad = \int_{t}^{t+\tau} a_0(u) \, \mathrm{d} u.
$$

Standard exponential random variable with mean 1

Again, between reactions G , M and P are constant, however

$$
\text{Exp}(1) = \int_{t}^{t+\tau} a_0(u) \, \mathrm{d}u = (k_s M(t) + k_{\text{dm}} M(t) + k_{\text{dp}} P(t)) \tau + \int_{t}^{t+\tau} k(u) \, \mathrm{d}u G(t).
$$

Not so easy to solve for τ generally...