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Abstract

In this thesis we investigate the loading of elastic sheets, which are patterned with a
square array of circular holes. An elastic buckling instability due to this loading in-
duces a pattern transformation in the material, which breaks symmetries of the mate-
rial. The pattern transformation is accompanied by a drastic change in the mechanical
response, which we investigate through extensive FEM simulations, applying uni-axial
as well as bi-axial loading. We find that the pre- and post-buckling response shows
similarities to (thick) beam-behaviour, and therefore, we propose to model the material
as single effective beams under a load. In the post-buckling phase a negative stiffness
is found for certain hole sizes, which results in snap-through buckling behaviour.
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Chapter 1
Introduction

A common cause of failure in structures is the buckling process. In this process, slender objects
which are under a load, experience a sudden large deformation when the load slightly increases.
Since large deformations can lead to a breakdown in structures such as trusses, this process can
have disastrous impacts in, for example, construction frameworks. It is for this reason that in
engineering much effort has been devoted to the study of buckling. A mathematical framework
for buckling was already set up in the late 17th century and the 18th by bright minds such as
the Bernoullis and Leonard Euler[1]. Here the focus is on describing the cirtical buckling con-
ditions. The aftermath of buckling, in contrast, is not of much interest to the engineer, since
structures often loose their function after failure. It is for this reason that the post-buckling
behaviour has received less attention historically. However, as recent developments (see be-
low) have shown, this post-buckling phase can actually yield some very intriguing effects when
placed in a different context.

Figure 1.1: Holey Sheet: Elastic sheet with a periodic pattern of circular holes cut out following
[2]. The structure is in equilibrium without external compression. The hole size is 8.5 mm in
diameter, the filament thickness 1.5 mm and the depth of the structure is 35 mm.

In 2007 Mullin et al.[2] proposed a specific design for a so-called meta-material. This is a class
of materials who gain their characteristic properties not from their intrinsic material properties,
but from their specifically designed (microscopic) structures. Mullin et al. took an elastomeric
sheet and constructed a specific architecture, consisting of a regular pattern of circular holes, as
depicted in figure 1.1. Their meta-material is often dubbed, with a sense of humour, the ”Holey
Sheet”. Its specific periodic structure results in interesting mechanical effects when the material
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is loaded, such as negative stiffness and a negative Poisson’s ratio, which will be explained soon
hereafter.
In [2] and other follow-up articles [3, 4], several peculiar properties of the Holey Sheet were
discovered. It was observed that under compression a pattern transformation arises at a certain
critical point, see the difference between figure 1.2a and 1.2b. This critical point precisely co-
incides with the point where the filaments in between the circular holes start to buckle. Since
the Holey Sheet is made of elastic material, the deformations are reversible, which is not only
advantageous for experiments but also for possible applications. The observed pattern trans-
formation alone is an interesting phenomena to observe, but a more striking property can be
observed as well.

(a) I: The applied compression is smaller
than the critical displacement and only
small deformations are present.

(b) II: The applied compression is larger
than the critical displacement and the Ho-
ley Sheet has buckled, resulting in large
displacements.

Figure 1.2: Photos taken during compression of the Holey Sheet in figure 1.1 in an Instron
machine.

When normal materials get compressed along an axis, the material will expand in the two
transversal directions. This effect is known as the Poisson effect, named after Siméon Pois-
son. A measure can be constructed for this effect, known as the Poisson’s ratio ν. When we
define the strain ε of a material as the relative elongation (positive or negative) of the material,
then the Poisson’s ratio ν is given by:

ν = −εtransversal
εaxial

. (1.1)

From this definition one can see that for normal materials ν will be a positive number. However,
for the Holey Sheet we observe something counter-intuitive, see figure 1.2b. When we com-
press in the vertical direction, the structure shrinks in the horizontal direction as well, resulting
in a negative Poisson’s ratio. Materials with this non-standard behaviour upon compression
are known as auxetic materials and are only known to exist in man-made form since 1987[5].
Although multiple articles have been published related to this meta-material, the precise under-
lying mechanisms explaining its behaviour are still unknown.
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When the force needed to compress the Holey Sheet is plotted against the compression, typical
non-linear behaviour can be observed, see figure 1.3. A linear regime seems to describe the be-
haviour up to the critical point. After this linear part, a peak can be observed. This observation
is quite surprising as the buckling predictions by Euler don’t have such a peak. It is this distinct
and non-linear feature of the Holey Sheet that we try to understand in this thesis. An interesting
question one could ask is whether the nature of this peak can be tuned, for example by set-
ting different control parameters in the design of the Holey Sheet. In this way a programmable
meta-material could be constructed, with a specifically designed geometry to ensure the desired
response.

Figure 1.3: Plot of the experimentally observed force F versus the displacement, or compres-
sion, u, as measured for the Holey Sheet depicted in figure 1.2. The red dots correspond to the
pictures in 1.2; I to 1.2a and II to 1.2b. A clear peak and non-linear behaviour in the F − u
curve can be seen in the red box.
The two different curves originate from the fact that the experiment compresses the sample and
then returns progressively to the original uncompressed state. The return is observed to be
slightly different from the compression.

The design parameters for the Holey Sheet are basically restricted to the amount of holes and
the size of the holes. For reasons to be shown shortly hereafter, the effect of the hole-size was of
primary interest in this thesis and therefore the specific design parameter was chosen to be the
radius of the holes, or equivalently the thickness t of the filaments separating the holes. In order
to study the tunability of the response one would then like to perform a parameter study to see
whether, and if so how, the response of the Holey Sheet changes under variation of t. Since the
process of creating the Holey Sheets is rather involved, it would be very time-consuming to ex-
plore the parameter space of t in this way. Therefore we take a different angle for this thesis, we
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simulate the Holey Sheet using numerical methods. The numerical exploration of the problem
is complementary to the experimental work being a much more flexible approach concerning
the exploration of the parameter space. It is also complementary in the sense that it provides
us with a way of performing experiments which might help us to understand the Holey Sheet,
but which are hard to perform in the laboratory. For instance, a uniform compression at all the
sides of a sheet, known as a bi-axial compression test, is rather difficult to attain in experiments.
However, it can be easily implemented in numerics. This bi-axial test is not just a pathological
example, it can in fact be useful when studying the influence of symmetries on the system as it
is one of the few mechanical tests which invoke buckling in the Holey Sheet (see chapter 2).
This thesis will start with a a short treatise on the symmetries of the Holey Sheet, which ob-
viously play a major role in the peculiar behaviour it displays. This is followed by a concise
and necessary introduction into the field of continuum mechanics. Using this formulation of
mechanics the equations governing the elastic behaviour of the Holey Sheet can be derived. In
chapter 4 we introduce the numerical method of finite elements (FEM), which will be applied
to study the Holey Sheet. Due to the non-linearity of this problem, the study of the response
under a load is a challenging numerical problem and the methods to deal with this non-linearity
are presented in chapter 4 as well. At last, chapter 5 will be devoted to the actual results from
the numerical simulations and the interpretation of the data.
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Chapter 2
Role of symmetries

The Holey Sheet has a lot of internal symmetries, for instance a translation symmetry due to the
periodic lattice structure. Another symmetry that is present is a rotational symmetry because of
the circular pattern placed in a square array.
One way of classifying symmetries in periodic two-dimensional objects is by making use of the
wallpaper group[6]. This group consists of all the 17 possible two-dimensional periodic struc-
tures which have some rotational or reflection symmetry in addition to a translational symmetry
due to its periodicity. As we will see in the chapter 4, the symmetry can have a huge influence on
the numerical simulations, by either preventing or stimulation collapse due to buckling. This is
closely related to the fact that the symmetries play a major role in the bifurcation of these sym-
metric objects. Bifurcations, and pitchfork bifurcations in particular, often involve symmetry
breaking. This chapter will explore the symmetries of both the undeformed and the deformed
Holey Sheet as well as the additional role of the external forcing. To begin with, we will discuss
the computational domain chosen for the numerical study of the Holey Sheet.

2.1 Computational domain
Upon glancing at the experimental force-displacement curve 1.3, one might see that the be-
haviour after buckling seems quite irregular and there might therefore be multiple processes
simultaneously responsible for the precise response. It is for this reason that we decided to
zoom in on the problem. The decision that we made in this project is to neglect all large length
scale deformations and inhomogeneities. An example of this can be observed in 1.2b, where we
can see that at the edge of the Holey Sheet a curvature is present, which is not seen in the rest of
the material. Typical large length scale inhomogeneities can be found at the edges of the Holey
Sheet and these are sometimes referred to as edge effects. The question is whether we can still
explain the phenomena observed in the experiments when we neglect these features, as it might
be a combined effect.
How does one accomplish such a study which only concentrates on the small length scales?
The answer to this problem might seem strange, but we focus on infinite sized Holey Sheets.
This is done by considering an infinitely periodically tiled sheet. In order to do so, one must
choose a building block to tile the space with. The building block then needs to be given peri-
odic boundary conditions in order to completely fill the space. There are many ways in which
we can choose this fundamental tiling-element, but since we want to neglect large scale effects
it seems logical to choose the smallest element possible, just one circular hole, also called the
primitive cell. The periodic boundary conditions then make sure that only small length scale
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effects are taken into consideration. However, as we can see in figure 2.1, there is more than
initially meets the eye. In the buckled state the original symmetry has been broken and there-
fore the primitive cell does not simply tile the space any more. The pattern transformation thus
demands that a larger building block is considered, which we call the (computational) unit cell,
see figure 2.1. Now the whole two-dimensional space can be tiled by the unit cell with periodic
boundary conditions, both in the pre-buckling phase as in the post-buckling phase. As an ad-
ditional advantage of the unit cell for this thesis we can remark that it is computationally much
more efficient to use the unit cell than large Holey Sheets, since computational time heavily
depends on the problem size. For three dimensional problems it often scales at least cubically
with the problem size, and for two dimensional problems mostly at least quadratically.
It is also possible to carry out simulations which involve large wavelength deformations later
on, based on the initial simulations on the unit cell with little adaption of the procedures. This,
however, was not part of this particular thesis.

Figure 2.1: Sketch of the difference between the primitive cell and the unit cell for the Holey
Sheet. After the buckling the primitive cell is not the building block of the periodic (translational)
pattern any more and therefore a larger cell, the unit cell, needs to be studied. Figures adapted
from [3].
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2.2 Short introduction on notation wallpaper group
Before we can proceed to the discussion of the symmetries of the Holey Sheet some small
remarks on the wallpaper group and its notation need to be made. First of all, the different
kind of mappings representing symmetries are, to be precise, called isometries. There are three
different kinds of these isometries present in the wallpaper group, namely rotations, reflections
and glide reflections. The first two are well-known and we will not introduce them. The glide
reflections may be less known and therefore we quickly discuss them here. Gilde reflections
are a combination of a reflection in a certain line, together with a translation. This translation
will always be over one half of a vector in the translation group of the object, such that it again
matches the original domain.
In the sketches in this chapter the reflections will be denoted by a solid blue line, depicting the
mirror line of the reflection. The glide reflections will be denoted by a dashed magenta line,
which is equal to the reflection axis. The translational part of the glide reflection is not sketched.
The rotations will be denoted by either a diamond for rotations over π, or a square for rotations
over π

2
. Rotations over other angles are not isometries of the Holey Sheet in any configuration

and are therefore not discussed.

Center of otation over π
2
.

Center of rotation over π.

Reflection axis.

Glide reflection axis.

Figure 2.2: Notation of the different isometries of the wallpaper group which are encountered
in the Holey Sheet.

The notation for the different groups of the wallpaper group in the following sections will follow
that of crystallography. This means that a code of 4 digits or letters is given to each group to
summarize its isometries. The code starts with a p or a c. The p stands for a primitive cell and
the c for a face-centered cell, of which the difference is not of much importance for this thesis.
This letter is followed by an integer depicting the highest order of rotation, where 1 stands for
no rotation. The last two symbols can be m, g or 1. The third symbol is reserved for an isometry
normal to the left edge of the chosen cell, and the fourth one for an isometry axis which makes a
predefined angle to the left edge[6]. The m stands for mirror, or an reflection axis and the g for a
glide reflection axis. The 1 indicates that there is no isometry axis. Some of the symmetries can
actually be deduced from a 3-digit instead of a 4-digit code and therefore these are often found
in abbreviated form. The examples which are encountered when studying the Holey Sheet are
p4mm (p4m), p4gm (p4g), p2mm (pmm) and c2mm (cmm).

2.3 Symmetry-breaking induced by buckling

2.3.1 Symmetry of undeformed geometry
In the undeformed state the Holey Sheet’s repetitive unit of the periodic pattern is not the actual
unit cell as mentioned in the introduction. It is actually a quarter of this unit cell, consisting only
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of square with a hole. However, if we look at the Holey Sheet after it has buckled, we see that
we need a larger repetitive unit to tile our space with to retrieve our object. This transition is
due to a broken symmetry as a result of the buckling. Before the buckling the unit cell could be
reflected in one of its diagonals or bimedians without changing the geometry. After buckling,
this reflection symmetry is not present anymore and a larger repetitive cell consisting of four
holes is needed to tile the sheet completely.
The symmetries of this object are determined by the symmetries of a square since the circular
hole has even more symmetries. In terms of the wallpaper group the undeformed geometry has
therefore symmetry group p4m, see figure 2.3.

(a) A minimal representative unit of the
Holey Sheet.

(b) Unit cell of the Holey Sheet as used in
the computations.

Figure 2.3: Symmetries of the undeformed geometry of the Holey Sheet, p4m. The symmetries
of the Holey Sheet under bi-axial compression in the pre-buckling phase are equal to that of the
undeformed geometry and are therefore represented by the above sketch as well.

Influence external forcing

The preceding discussion is only valid in the case of an equilibrium without any compression
due to an external force. By imposing boundary conditions through forces on the boundary
we influence the symmetries in the system. Of special interest for this thesis are two types of
external forcing. The first type of forcing is applying a force on a single axis orthogonal to
the original surfaces, therefore called uni-axial forcing. The equivalent situation in which we
impose a displacement constraint on two opposing surfaces only, for which a uni-axial forcing
is needed, is therefore called uni-axial compression. By imposing uni-axial compression we
immediately break some of the symmetries of the system, for example the π

2
rotation around the

center of the unit cell. This is due to the fact that the Poisson effect causes the Holey Sheet to
expand in the horizontal direction.
Although it seems that this breaking of the symmetry has no influence on the buckling on first
glance, because the symmetry which is broken by the bifurcation is a different one, it will turn
out that significant differences can be observed if this symmetry is in fact preserved. The way
this is done, is of course by imposing uniform forcing on the unit cell and thus applying an equal
orthogonal force on every surface of the cell. This type of forcing is then called bi-axial forcing
and has of course an equivalent bi-axial compression. In qualifying the symmetry groups of
the Holey Sheet under external forcing we see that the bi-axial compression before the buckling
point doesn’t change the symmetries of the system and therefore the symmetry group is still
p4m. In the case of the uni-axial compression we find a pmm symmetry, which thus lacks some
rotational symmetry compared to p4m, see figure 2.4.
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(a) A minimal representative unit of the
Holey Sheet.

(b) Unit cell of the Holey Sheet as used in
the computations.

Figure 2.4: Isometries of the Holey Sheet under uni-axial compression in the pre-buckling
phase, pmm. The difference with 2.3 is due to the fact that the geometry now is not a perfect
square any more due to the Poisson effect, which makes the Holey Sheet expand in the horizontal
direction.

2.3.2 Symmetry of buckled geometry
Uni-axial compression

What is of course more interesting is the change of symmetry that is created by the buckling
of the Holey Sheet. In the case of the uni-axial compression we first note that in the direction
orthogonal to the forcing there is an expansion and the square unit cell has thus changed to a
rectangular unit cell. This was already the case before the buckling took place and incorporated
in the pmm group. However, after the buckling we loose the aforementioned reflection symme-
try in the bimedian aligned with the external forcing and orthogonal to the forcing. They both
change in glide reflections, just as the reflection axis on the sides of the computational unit cell.
First the circles transform into aligned ellipses with their primary axis orthogonal to the external
forcing. At the buckling point then we observe an abrupt pattern transformation, from aligned
ellipses to orthogonal aligned ellipses. Therefore only a few of the original symmetries remain
in the buckled state. Due to the change of reflections to glide reflections some rotations are lost
as well, since they lie only at the intersection of two reflection axes or two glide reflection axes.
The symmetry group of the buckled geometry is classified as the cmm group and the minimal
representative unit cell now has the form of a rhombus, see figure 2.5.

(a) A minimal representative unit of the
Holey Sheet.

(b) Unit cell of the Holey Sheet as used in
the computations.

Figure 2.5: Isometries of the Holey Sheet after the buckling has occured under uni-axial com-
pression, cmm. A minimal representative unit now is clearly distinct from the undeformed min-
imal representative units.
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Bi-axial compression

As mentioned before the bi-axial compression starts with a p4m symmetry which remains intact
until the buckling point is reached. After the buckling we observe a similar pattern transforma-
tion from circles to orthogonal aligned ellipses. Before the buckling point the circles of the unit
cell shrink, but do not transform into ellipses. In this case a few more isometries are present,
since we can still rotate over π

2
around the center and the four vertices and intersections of the

bimedians. We see that in comparison with the pre-buckling isometries, a lot of the original
reflections have transformed into glide reflections. Only the reflections along the ellipse-axes
remain intact. This is accompanied by a loss of a number of rotation centers, namely all the
original rotations over π. The rotation centers who were on the diagonal reflection axis change
from rotations over π

2
to rotations over π. If we compare to the uni-axial compression, we see

that the rotation centers are equally distributed, only the order of the rotations in the bi-axial
case differs, because there is no shearing of the unit cell. Furthermore the reflection axes in
the buckled case are equal as well, together with the horizontal and vertical glide reflections.
The only big difference is the number of diagonally oriented glide reflections for the bi-axial
compression case.

(a) A minimal representative unit of the
Holey Sheet.

(b) Unit cell of the Holey Sheet as used in
the computations.

Figure 2.6: Isometries of the Holey Sheet after the buckling has occured under bi-axial compres-
sion, p4g. A minimal representative unit now is clearly distinct from the undeformed minimal
representative units.

2.3.3 Minimal representative unit
To recap the results from the previous sections, we sketch for each phase a minimal represen-
tative unit. We see that there is in fact little difference between the uni-axial and the bi-axial
case regarding the representative unit. The uni-axial ones are merely sheared, they have been
elongated in the horizontal direction and compressed in the vertical direction. We also see that
the minimal representative units, as sketched in figure 2.7 and 2.8, are smaller than the com-
putational domain used in this thesis. These suggested representative units might help to make
an even more efficient numerical scheme, as they suggest that a smaller unit cell could be cho-
sen such that the whole space can be tiled. A smaller size cell means less computation time.
Although the minimal representative units have not been used, they do single out the smallest
building block of the Holey Sheet. It is an interesting question to see whether it is possible to
check if the behaviour of this building block coincides with that of a Holey Sheet.
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(a) A minimal representative
unit of the pre-buckling Holey
Sheet.

(b) Unit cell of the pre-buckling
Holey Sheet corresponding to
the minimal representative unit
cell of the buckled geometry on
the right.

(c) A minimal representative
unit of the buckled Holey Sheet.

Figure 2.7: Representative units for the uni-axial compression of the Holey Sheet.

(a) A minimal representative
unit of the pre-buckling Holey
Sheet.

(b) Unit cell of the pre-buckling
Holey Sheet corresponding to
the minimal representative unit
cell of the buckled geometry on
the right.

(c) A minimal representative
unit of the buckled Holey Sheet.

Figure 2.8: Representative units for the bi-axial compression of the Holey Sheet.
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Chapter 3
Mechanics of (hyper)elastic materials

In this first chapter the basic equations needed to describe an elastic material under deformations
are derived and notation is introduced. Only a small part of a very large field known as con-
tinuum mechanics is covered here. Continuum mechanics is a branch of mathematical physics
which tries to describe the mechanics of material bodies or systems, fluids and gasses. In this
thesis we are mainly interested in the equilibrium configurations of materials and therefore in
static situations. As a result, (almost) no time dependency will be covered here.
Firstly, a general description of material deformation in R3 will be given. Thereafter the spe-
cific structure of the Holey Sheet will allow us to restrict our three dimensional framework to
two dimensions. This will turn out to be very helpful in our numerical simulations as it saves
computation time. The main ingredients in the derivation of the basic equations are just the laws
of Newton and certain conservation laws, such as conservation of linear momentum. After the
framework of continuum mechanics has been set up properly the governing equations follow
naturally.

3.1 General equations

3.1.1 Stretch and homogeneous deformation
To introduce the concept of stretch we start with a one dimensional line of length L, see figure
3.1. Then we stretch this line to a new configuration in which it has length l. The stretch λ is
then defined to be the ratio of these lengths:

λ =
l

L
. (3.1)

Now pick one reference point x̃ on the the line and another point x on the line as well. Their
difference ‘vector’ will then be denoted by y = x− x̃. Note that the absolute value of this differ-
ence vector is the distance between the points. By stretching the line we change the coordinates
of the points. This is mathematically described by a mapping Φ of the original configuration
onto the deformed configuration. After the deformation the points will have new coordinates,
say x̃′ = Φ(x̃) and x′ = Φ(x). This allows us to write down their difference vector y′ = x′− x̃′
just as we did before. The deformation of the line is said to be homogeneous if we have the
following relation between y and y′

y′ = λy, (3.2)

holding for arbitrary points on the line. This concept of stretch can easily be generalized to
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x x̃

L

y
Φ

x′ = Φ(x) x̃′ = Φ(x̃)

l

y′

Figure 3.1: Sketch of stretch of a one-dimensional line deformed by Φ.

describe general deformations in R3. We start with a material system Ω0 ⊂ R3 which deforms
via the mapping Φ to the new system Ω′ which thus is equal to Φ(Ω0). Ω0 is often called the
reference state whereas Ω′ is called the current state. Take again a reference point x̃ ∈ Ω0 and
an arbitrary point x ∈ Ω0. Just as we saw in the one dimensional case, a difference vector
y = x− x̃ can be defined which will be mapped to a new vector y′ ∈ Ω′. In general this can be
expressed by using an operator F̄ which is called the deformation gradient;

y′ = F̄(y). (3.3)

To see why this is called the deformation gradient, we will write the difference vector y′ in terms
of the deformation mapping Φ,

y′ = Φ(x)− Φ(x̃). (3.4)

Now the general multi-variable version of Taylor’s Theorem [7] can be applied, which yields

Φ(x) = Φ(x̃) +∇Φ(x̃) · (x− x̃) + o(||x− x̃||). (3.5)

Due to this identity we can write

y′ = ∇Φ(x̃) · (x− x̃) + o(||x− x̃||) = ∇Φ(x̃) · y + o(||x− x̃||). (3.6)

Thus, neglecting o(||x− x̃||), we see that by comparing (3.3) and (3.6) we find that F̄ = ∇Φ(x̃)
and thus the operator F̄ equals the Jacobian of the deformation map Φ. This explains the name
deformation gradient. The deformation is furthermore called homogeneous if the deformation
gradient is independent of the position x̃ ∈ Ω0. Therefore, a homogeneous deformation has
a deformation gradient which can be represented by a 3 × 3 matrix F̄ with constant entries.
This immediately implies that the deformation gradient is a linear operator for homogeneous
deformations. The restriction of homogeneous deformations is rather strict in the sense that only
a limited number of different transformations are allowed. To be more specific, only the affine
transformations are homogeneous transformations. This can be seen if we plug the deformation
gradient back into the Taylor expansion (3.6) and neglect the rest term to get

Φ(x) = Φ(x̃) + F̄ · (x− x̃) = F̄ · x + c, (3.7)

for some constant vector c. Examples of affine transformations are translation, rotation, stretch,
compression, and shear transformations.
However, general transformations don’t need to be homogeneous. It is possible to have a de-
formation gradient field which isn’t uniform over Ω0. As a result, straight lines don’t need to
get mapped to straight lines by Φ. Although not true on a global scale, if we look at a small
local scale then every transformation will be a homogeneous transformation, because F̄ will
not vary much over a short distance. Therefore we can look at the action of an inhomogeneous
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deformation as being composed of many homogeneous transformations patched together.
Having introduced the deformation gradient F̄ one can also wonder how distances between
points change under Φ. Using the deformation gradient one finds that Φ(x)−Φ(x̃) ' F̄·(x−x̃).
Therefore we can define a new tensor C = F̄TF̄, the right Cauchy-Green deformation tensor,
such that |Φ(x)− Φ(x̃)|2 ' (x− x̃)TC(x− x̃). This new tensor thus relates the distortion of
distances in our domain to the deformation map Φ.

Rigid deformations

A special kind of homogeneous transformations are the so called rigid deformations. They
posses the property that all the distances between points in our domain Ω0 are invariant under
these transformations. They are composed of translations and rotations and thus form indeed
a subclass of the affine or homogeneous transformations. Translations are due to the constant
vector c in (3.7) whereas rotations are a result of F̄. In order to be a rotation F̄ must be an
orthogonal matrix and thus F̄TF̄ = I must hold. As a result we know that C = I for a rigid
transformation, which indeed implies that |Φ(x)− Φ(x̃)|2 = |x− x̃|2.

3.1.2 Displacement and strain
In addition to the description above in terms of deformations we can also write the preceding
equations in terms of actual displacements. Given a point x ∈ Ω0 we define the displacement-
vector u(x) = Φ(x)−x. With this new definition we can write Φ(x) = u(x) +x and therefore
rewrite the aforementioned Cauchy-Green tensor in terms of u. This yields

C = (∇u + I)T (∇u + I) = I + (∇u)T +∇u + (∇u)T · ∇u. (3.8)

A concept commonly encountered in continuum mechanics is strain, which is supposed to be
a measure of the local difference between the actual deformation and a rigid deformation. In
the preceding section it was shown that in the case of a homogeneous deformation there must
hold C = I whenever the transformation is rigid. Therefore a new tensor E = 1

2
(C− I) can be

introduced, the so called Green-Lagrange strain tensor. This tensor indeed vanishes if we have
a rigid body transformation. Furthermore, it generalizes the one-dimensional Lagrange strain
η = 1

2
(λ2 − 1) with λ the stretch ratio. Another measure for strain which is often encountered

is the engineering strain. Is is defined for one dimension as ε = l−L
L

and generalized to three
dimensions as:

ε =
1

2
(∇u + (∇u)T ). (3.9)

We see that for small displacements u (and thus neglectingO(|u|2)) we have that ε ≈ 1
2
(C− I) =

E, the engineering strain and Lagrange strain thus coincide.

3.1.3 Forces
In continuum mechanics a distinction is made between two different types of forces. On the
one hand there are body forces, which act on a whole system Ω ⊂ R3, for example gravity or
electromagnetic forces which can penetrate a body and act on all its constituents. On the other
hand there are forces which only act on a surface S and they are of course called surface forces.
These surface forces are for example internal forces in a system which keep the system together
and are thus cohesion forces. In both cases a (vector) force density function can be defined for
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reasons to be shown in a minute, which after integrating over a suitable domain gives the total
force

Fbody =

∫∫∫
Ω

f(x)dV, (3.10)

Fsurface =

∫∫
S

T(x)dS. (3.11)

The most interesting of these two, which is of great importance in continuum mechanics, is the
surface force density T(x), also sometimes referred to as the stress vector. A very common made
assumption on this density (introduced by Cauchy and nowadays known as Cauchy’s Postulate)
is that it only depends on the position x ∈ Ω and on the normal vector n to the surface S. It im-
mediately follows from Newton’s third law that we then must have that T(x,n) = −T(x,−n).

Cauchy stress tensor

The relation between the normal direction and the surface force density can be described by the
so called Cauchy stress tensor σ. This is a second order tensor such that

T(x,n) = n · σ(x). (3.12)

Components of the stress tensor are often written in the index notation σij . Using the con-
servation of angular momentum it can be shown that the stress tensor’s components are not
independent, in fact the stress tensor is symmetric, i.e. σij = σji [8]. This leaves us with 6
independent components. The stress tensor is often written in matrix form as:

σ =

σxx σxy σxz
σxy σyy σyz
σxz σyz σzz

 . (3.13)

3.1.4 Newton’s laws for a continuum body

The goal of continuum mechanics is to rewrite the governing equations of mainly classical
mechanics to equations for continuum material systems. Therefore we have to rewrite Newton’s
law and in particular his second law, Fext = ma. Although we will only be interested in the
static situations, for the moment we will also consider time-dependency. Therefore we look at
a certain body Ωt ⊂ R3 at time t. The mass m is replaced by a mass-density-function ρ(x, t).
The first step is then to rewrite the right-hand side using a continuum version of a,

Fext =

∫∫∫
Ωt

ρ(x, t)a(x, t)dV =

∫∫∫
Ωt

ρ(x, t)
∂2Φ(x, t)

∂t2
dV =

∫∫∫
Ωt

ρ(x, t)
∂2u(x, t)

∂t2
dV.

(3.14)
After this we simply replace Fext with the body and surface force equations that we saw earlier
on. For the surface forces only the edge ∂Ωt of the body Ωt is considered, because only the
external forces are of interest this time.∫∫∫

Ωt

ρ(x, t)
∂2u(x, t)

∂t2
dV = Fbody +Fsurface =

∫∫∫
Ωt

f(x, t)dV +

∫∫
∂Ωt

T(x, t)dS (3.15)
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Now this can be rewritten by using the stress-tensor and Stoke’s Theorem,∫∫∫
Ωt

ρ(x, t)
∂2u(x, t)

∂t2
dV =

∫∫∫
Ωt

f(x, t)dV +

∫∫
∂Ωt

n(x) · σ(x, t)dS (3.16)

=

∫∫∫
Ωt

f(x, t)dV +

∫∫∫
Ωt

∇ · σ(x, t)dV (3.17)

=

∫∫∫
Ωt

f(x, t) +∇ · σ(x, t)dV. (3.18)

This expression can be written as one integral which equals zero,∫∫∫
Ωt

f(x, t) +∇ · σ(x, t)− ρ(x, t)
∂2u(x, t)

∂t2
dV = 0. (3.19)

Since this holds for an arbitrary body we can omit the integrals [9] and find for every t ∈ R and
x ∈ Ωt Newton’s second law in continuum form:

ρ(x, t)
∂2u(x, t)

∂t2
= f(x, t) +∇ · σ(x, t) ∀x ∈ Ωt. (3.20)

This partial differential equation must of course be accompanied by a set of boundary conditions
which depend on the typical problem involved.

Equilibrium

For this thesis plays (almost) no role since we study equilibria, which are static deformations
and configurations. As a result all time-dependency can be omitted most of the time and we
thus arrive at the general equilibrium equations for a body Ω ⊂ R3,

0 = f(x) +∇ · σ(x) ∀x ∈ Ω. (3.21)

3.2 Constitutive laws
When trying to solve the basis equations of continuum mechanics one needs to have as much
equations as unknown variables. It is therefore convenient to check what the actual unknown
variables in most of the problems are. If we assume that the density ρ is known∗ then we are left
in general with the three components of displacement u and the stresses from the stress-tensor
σ. Sinceσ is symmetric there are six independent components and thus 6 unknowns in general.
Therefore we are left in general with 9 unknowns.
If we now look at the equations (3.21) or (3.20) we come to the conclusion that so far only 3
equations have been derived and thus still 6 equations are missing. This is where the constitutive
laws come into play, they will provide the missing equations. These laws do not follow from
(classical) mechanics, but are the result of modelling and are therefore material specific. As a
result, a large variety of different sets of equations can be found, all with their own applicability
and validation. Here we will only briefly introduce the model which is of direct interest to the
modelling of the non-linear behaviour of the Holey Sheet, namely the Neo-Hookean model.
This model describes a non-linear elastic material and more specific a hyperelastic material.
∗If ρ is not known an extra equation can easily be introduced, the continuity equation. This equation can be

derived rather easily from the conservation of mass assumption[8].
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However, before we go to this model, we first introduce a linear limit case, the Hookean model,
which is mainly of interest for small deformations. Since this is a linear elastic model it will be
much simpler than the Neo-Hookean model.
Almost all constitutive laws are stress-strain relations in the sense that they relate the stress σ
to the strain ε(u).

3.2.1 Hookean materials (linear)

When deformations are small it often suffices to describe the material by a linear stress-strain
relation, i.e.

σ = c : ε, (3.22)

which means:

σij =
3∑

k=1

3∑
l=1

cijklεkl. (3.23)

Note that since for the Hookean model only small displacements u are considered it is equivalent
to take ε orE as a strain measure since they are equal. The coefficients cijkl are called the elastic
coefficients and in total there are 81 of them. However, for many materials having internal
symmetries can reduce the amount of independent elastic coefficients drastically. In the case of
an isotropic material the number of independent coefficients can even be reduced to two[10].
In this case the stress-strain relation can be given in terms of two independent elastic moduli.
An elastic modulus is a number describing the reaction of the material to deformations due to
an external force. Multiple elastic moduli are defined, all describing a different direction along
which the force is applied, such as the Young’s modulus which relates the axial strain to axial
stresses. Other moduli which are often used are the shear modulus µ relating shear forces and
strains, and the bulk modulus B, relating the volume change to an uniform applied load. A
standard choice for the elastic moduli is to take the aforementioned Poisson’s ratio ν (1.1), and
the Young’s modulus E. In terms of these parameters the relation takes on the form

σ =
Eν

(1 + ν)(1− 2ν)
tr(ε)I +

E

1 + ν
ε. (3.24)

The ease at which we can describe σ comes at the price that expression (3.24) is only valid for
small deformations. In our case this means that as soon as the Holey Sheet starts to buckle we
will need to reconsider the small deformation assumption made and therefore the use of this
model. As a result this model will not be used in the numerical simulations. Although not of
much use in the numerical analysis, this linear relation is a good description of the behaviour of
a Holey Sheet before it has buckled, because deformations are rather small in the pre-buckling
phase.

3.2.2 Neo-Hookean materials (non-linear)

Since we are interested in phenomena around the critical buckling point of the Holey Sheet,
where displacements can become large, we need another constitutive law to fill the gap of the
6 missing equations. The domain of continuum mechanics which is concerned with these large
displacements is often called Finite Strain Theory (FST) as opposed to its linearised counterpart
Infinitesimal Strain Theory to which the Hookean model belongs.

18



One class of models in FST is the class of hyperelastic materials. These models are all based
on a scalar quadratic energy functional W (F) [8] such that

σ =
1

J

(
F̄ · ∇F̄TW (F̄)

)
. (3.25)

Where J = det(F̄) and thus J is a measure of volume change under the transformation Φ. The
exact form of W (F̄) is the part where modelling must be used. One of these hyperelastic mod-
els is the Neo-Hookean model. It has the nice feature that for small displacements it coincides
with the Hookean model if the correct parameters are chosen. However, if we go to large dis-
placements it must deviate from the Hookean model as materials do not obey a linear relation
any more. A function, such as W , which only depends on a tensor F, should be independent
of a change in coordinates by orthogonal transformations, such as rotations, and we call such
functions objective. If a function is objective then it can be shown that the function depends
only on invariants of F̄[11]. The invariants can be chosen to be precisely the coefficients in the
Cayley-Hamilton equation of the tensor. For the Neo-Hookean model one uses the left Cauchy-
Green tensorB = F̄ · F̄T and its invariants I1 = tr(B) and I3 = det(B) = J2 to describe W ,

W =
µ

2

(
I1I
− 1

3
3 − 3

)
+
B

2
(
√
I3 − 1)2 =

µ

2

(
I1J

− 2
3 − 3

)
+
B

2
(J − 1)2. (3.26)

Here µ and B are the aforementioned shear and bulk modulus. They can both be expressed in
terms of the aforementioned elastic parameters E and ν in three dimensions,

µ =
E

2(1 + ν)
, B =

E

3(1− 2ν)
. (3.27)

Using matrix and vector calculus [12] we can substitute (3.26) into (3.25) to derive the Neo-
Hookean constitutive law,

σ = µJ−
5
3

(
B − 1

3
tr(B)I

)
+B (J − 1) I

=
E

2(1 + ν)
J−

5
3

(
B − 1

3
tr(B)I

)
+

E

3(1− 2ν)
(J − 1) I.

(3.28)

On close inspection we can see that this relation again yields a relation between σ and u, which
is precisely what is needed to close our system of equations.
As a limit case for small displacements this law should return the Hookean-model. To see this
we take |u| � 1 and thus B ≈ I + 2ε. Then we know that J = det(F) ≈ 1 + tr(ε) and
tr(B) ≈ 3 + 2tr(ε) [12]. Inserting this all and neglecting quadratic terms in ε we get

σ =
E

2(1 + ν)
J−

5
3

(
B − 1

3
tr(B)I

)
+

E

3(1− 2ν)
(J − 1) I

≈ E

2(1 + ν)
(1 + tr(ε))−

5
3

(
I + 2ε− 1

3
(3 + 2tr(ε))I

)
+

E

3(1− 2ν)
(1 + tr(ε)− 1) I

=
E

2(1 + ν)
(1 + tr(ε))−

5
3

(
2ε− 2

3
tr(ε))I

)
+

E

3(1− 2ν)
tr(ε)I

≈ E

2(1 + ν)

(
2ε− 2

3
tr(ε))I

)
+

E

3(1− 2ν)
tr(ε)I

=
Eν

(1 + ν)(1− 2ν)
tr(ε)I +

E

1 + ν
ε

,

(3.29)
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which is precisely the Hookean law. The Neo-Hookean model is the constitutive law of choice
in this project. Although the Neo-Hookean model is quite an old model and since its invention
many other models have been created [11], it is one of the standard choices for non-linear elastic
analysis.

3.3 Plane strain
The Holey Sheet is a three-dimensional structure as it has a certain depth d which is much
larger than the filament thickness t. If we choose our axis such that the surface A with the
holes of the Holey Sheet lies in the x, y-plane, then the direction of the depth will be denoted
by the z-coordinate. When compressing the Holey, it is not expected that there is a dependency
in the behaviour on z. Furthermore, no substantial displacement or force is expected in the z
direction as well. These assumptions lead to the so called plane strain framework of continuum
mechanics[13]. As a result, we can write for the displacement vector u and force vector f

u =

u1(x, y)
u2(x, y)

0

 =

(
ũ(x, y)

0

)
, f =

f1(x, y)
f2(x, y)

0

 =

(
f̃(x, y)

0

)
. (3.30)

Upon inspection of equation (3.8), we see that our strain tensors, both engineering and Green-
Lagrange, will have a more economical form. For the engineering strain we can derive that

ε =

εxx εxy 0
εxy εyy 0
0 0 0

 . (3.31)

But this also has implications for the stress-tensor σ as these are related by a constitutive law.
Assuming the Hookean law we can show, using (3.24), that

σ =

σxx σxy 0
σxy σyy 0
0 0 σzz

 =

(
σ̃ 0
0T σzz

)
. (3.32)

Since there is no dependency on z, our equilibrium equations (3.21) simplify to two equations
instead of three:

f̃(x, y) + ∇̃ · σ̃(x, y) = 0 ∀(x, y) ∈ A, (3.33)

where ∇̃ is the two-dimensional del operator. This must be accompanied by the equation for
the out-of-plane stress σzz = ν(σxx + σyy). However, since we are interested in the behaviour
in the plane, we can neglect this equation and only mention it for completeness. In rewriting
the Hookean law one can find new relations between the elastic moduli which are valid for the
plane strain formulation instead of the three-dimensional one.

Elastic moduli in plane strain

Following Jasluk et al.[14] we can derive the relations between the three-dimensional elastic
moduli and the two-dimensional elastic moduli. This is needed, because in the experiments
and simulations the elastic moduli for three dimensions are known or given, but we transfer our
problem to the plane strain formulation with accompanying elastic moduli. We will from now
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on denote the three-dimensional elastic moduli primed, i.e. E3D = E ′, and the two-dimensional
ones unprimed, i.e. E2D = E. The Hookean law simplifies in plane strain toσxxσyy

σxy

 =
E ′

(1 + ν ′)(1− 2ν ′)

1− ν ′ ν ′ 0
ν ′ 1− ν ′ 0
0 0 1− 2ν ′

εxxεyy
εxy

 . (3.34)

To derive an expression for ν we apply a stress along the x-axis only, so σyy = σxy = 0 and
then we find the relation

0 =
E ′

(1 + ν ′)(1− 2ν ′)
((1− ν ′)εyy + ν ′εxx). (3.35)

This can be rewritten to
(1− ν ′)εyy = −ν ′εxx. (3.36)

The Poisson’s ratio is defined equivalent to (1.1) and thus reads

ν = −εyy
εxx

=
ν ′

1− ν ′
. (3.37)

In a similar fashion we can derive E, as it is the ratio of the axial stress to the axial strain. If we
apply a stress σxx then we find

E =
σxx
εxx

=
E ′

(1 + ν ′)(1− 2ν ′)εxx
((1− ν ′)εxx + ν ′εyy). (3.38)

Using the Poisson’s ratio this can then be rewritten to

E =
E ′

(1 + ν ′)(1− 2ν ′)

(
(1− ν ′)− ν ′2

1− ν ′

)
=

E ′

1− ν ′2
(3.39)

Finally we can derive an expression for the bulk modulus B, which we will use later on. The
bulk modulus relates the stress σ, applied uniformly to the body, to the relative volume change
∆V
V

of an unit volume. Since we are now in two dimensions this changes to the relative area
change, ∆A

A
. For a unit area, a square, we find that up to first order approximation that

∆A

A
=
A(1 + εxx)(1 + εyy)− A

A
≈ εxx + εyy = 2ε, (3.40)

because the strains are equal in each direction. Therefore the relation between stress and strain
is

σ = 2Bε. (3.41)

Upon inspection of (3.34) we derive that

σ = σxx =
E ′

(1 + ν ′)(1− 2ν ′)
((1− ν ′) + ν ′) ε =

E ′

(1 + ν ′)(1− 2ν ′)
ε. (3.42)

Thus the bulk modulus B is related to the other elastic moduli by

B =
E ′

2(1 + ν ′)(1− 2ν ′)
=

E

2(1− ν)
. (3.43)

These relations allow us to compare the two-dimensional results to the ones as measured in the
laboratory on three-dimensional samples.
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Chapter 4
Non-linear numerical analysis of elastic
materials

As mentioned in the introduction, it is experimentally difficult and time-consuming to perform
a parameter study on the influence of the hole-size in the Holey Sheet. One way to overcome
this problem is by performing accompanying numerical experiments on the Holey Sheet. This
procedure is highly flexible in nature since one can easily vary the size, geometry, material
properties and boundary conditions of the sheet. Furthermore, circumstances which might be
very hard to achieve in experiments can be created in numerics rather easily. Therefore, the
numerical study of the Holey Sheet forms the main body of this thesis.
In addition to the aforementioned advantages, the numerical methods are extremely suitable for
the study of size-effects due to the scalability of the numerical procedures. The unit-cell intro-
duced in the introduction will be the domain studied in our simulations. The option to use the
plane strain formalism in combination with this relatively small system, allows us to computa-
tionally explore the effect of the hole-size in the Holey Sheet.
This chapter provides a brief introduction into the Finite Elements Method applied to elasticity
problems. This method is the method used to perform numerical studies of the Holey Sheet. Ad-
ditionally, some notes on numerical buckling analysis are given, since it is of great importance
for the study of behaviour around the buckling point of the Holey Sheet.

4.1 Finite element method for elasticity problems
Numerical simulations on a Holey Sheet basically need to solve the elastic equations (3.21)
numerically on the domain of the sheet. There are a lot of different methods available for solving
(partial) differential equations approximately and one of the better known is the method of finite
differences (FD). This method first discretizes the domain on which the equations need to be
solved and then approximates all derivatives in the equations by algebraic difference formulas
between nearby grid-points [15]. This method is normally very easy to implement and provides
good measures for the approximation errors. Therefore this method is widely used in branches
where numerics are needed to solve differential equations. However, if the domain becomes
sufficiently complicated (such as a Holey Sheet) FD becomes hard to implement due to the
fact that it gets more difficult to specify which points are needed in the approximation of each
derivative in each point. One has to rely on other numerical methods in this case. One of these
methods to solve differential equations on complicated domains is the finite elements method
(FEM)[16]. A crucial ingredient for this method is an alternative formulation of the governing
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differential equations, known as the weak formulation.

4.1.1 Weak formulation

To begin with, we repeat the equations for a solid material in equilibrium and formulate the two
most encountered type boundary conditions related to these equations. Let Ω ⊂ R3 be a body
and ∂Ω its edge. Then we know that in equilibrium must hold

0 = f(x) +∇ · σ(x) ∀x ∈ Ω. (4.1)

Furthermore, on parts of the edge we can prescribe a displacement ū or a surface-force T̄. The
edge ∂Ω will be divided in Γd ⊆ ∂Ω and Γf ⊆ ∂Ω such that

ū(x)− u(x) = 0 ∀x ∈ Γd, (4.2)
T̄(x)− n(x) · σ(x) = 0 ∀x ∈ Γf . (4.3)

If these equations have to hold everywhere inside the body Ω and on its edge than for an (almost)
arbitrary function δv : R3 → R3 it must be the case that

0 =

∫∫∫
Ω

(f(x) +∇ · σ(x)) · δv(x)dV, (4.4)

0 =

∫∫
Γf

(T̄(x)− n(x) · σ(x)) · δv(x)dA, (4.5)

0 = ū(x)− u(x) ∀x ∈ Γd. (4.6)

This is the so-called weak formulation. The function δv cannot be completely arbitrary since
we are only interested in those functions for which the aforementioned integrals converge and
therefore in general we would like δv to be at least a bounded function over Ω. Furthermore
we put the restriction on δv that it must be equal to zero on Γd, which can be justified if we see
δv as a perturbation to the displacement field u in combination with equation (4.6). ’Arbitrary’
functions which satisfy the aforementioned assumptions are known as kinematically admissi-
ble virtual velocity fields in continuum mechanics. The weak formulation is also known by
the name of the principle of virtual work. This can be understood if we indeed regard δv as a
displacement, because then the integrals in the weak formulation are integrals over force times
displacement which gives work. Because we have a virtual displacement, the work done by it
is also called virtual work.
Although the name suggests that this formulation is in some sense inferior to the original for-
mulation, (4.1), (4.2) and (4.3), it can be easily proven that if the weak formulation holds for
every δv the equations of the strong formulation are automatically satisfied as well. To see this
we assume that the weak formulation is valid for every δv and then we suppose that there is
a region where the strong formulation does not hold. As a result, a function δv can be found
which is non-zero over this region. This implies that the integrals of the weak formulation don’t
vanish any more, which in turn contradicts the weak formulation. Therefore the strong formu-
lation must hold. This makes the strong and weak formulation equivalent in some sense.
Now equations (4.4) and (4.5) can be combined and rewritten with the help of product rule for
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differentiation and the divergence theorem,

0 =

∫∫∫
Ω

(f(x) +∇ · σ(x)) · δv(x)dV +

∫∫
Γf

(T̄(x)− n(x) · σ(x)) · δv(x)dA

=

∫∫∫
Ω

f(x) · δv(x) +∇(σ(x) · δv(x))− σ(x) : (∇δv(x))dV

+

∫∫
Γf

(T̄(x)− n(x) · σ(x)) · δv(x)dA

=

∫∫∫
Ω

f(x) · δv(x)− σ(x) : (∇δv(x))dV +

∫∫
∂Ω

(n(x) · σ(x)) · δv(x)dA

+

∫∫
Γf

(T̄(x)− n(x) · σ(x)) · δv(x)dA

=

∫∫∫
Ω

f(x) · δv(x)− σ(x) : (∇δv(x))dV +

∫∫
Γf

T̄(x) · δv(x)dA+

∫∫
Γd

(n(x) · σ(x)) · δv(x)dA

= −
∫∫∫

Ω

σ(x) : (∇δv(x))dV +

∫∫∫
Ω

f(x) · δv(x)dV +

∫∫
Γf

T̄(x) · δv(x)dA

.

(4.7)
We can rewrite this slightly using the fact that σ is symmetric,

σ : (∇δv) =
1

2
(σ : (∇δv) + σ : (∇δv))

=
1

2
(σ : (∇δv) + tr(σ(∇δv)T )

=
1

2
(σ : (∇δv) + tr((∇δv)Tσ)

=
1

2
(σ : (∇δv) + tr(σT (∇δv)))

=
1

2
(σ : (∇δv) + tr(σ(∇δv)))

=
1

2
(σ : (∇δv) + σ : (∇δv)T )

= σ :
1

2
((∇δv) + (∇δv)T )

= σ : δD

. (4.8)

Where now δD represents a virtual engineering strain. This yields the weak formulation relation

−
∫∫∫

Ω

σ(x) : δD(x)dV +

∫∫∫
Ω

f(x) · δv(x)dV +

∫∫
Γf

T̄(x) · δv(x)dA = 0. (4.9)

This is not necessarily an easier problem to solve than the strong formulation if we need to
solve this for every kinematically admissible δv. However, we were interested in a numerical
approximation and that is exactly what FEM does. It does not solve for every δv but instead for a
subspace of B(Ω), the space of all bounded functions on Ω, which is often called the test-space
V . This approach is often called the Galerkin-approach.

4.1.2 Test-space
A crucial choice in the FEM is that of the test-space. A smart choice for a test-space would
be a space of which a basis is known, say b1, .., bn. The advantage then is that we can expand
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our arbitrary virtual velocity field δv on this basis, δv =
∑

i cibi where now ci are the arbitrary
coefficients and bi the basis functions. In the FEM we choose to take the basis functions to
be scalar functions and therefore the coefficients are vector-valued. If this expansion is then
substituted in (4.7) we get

n∑
i=1

[
−
∫∫∫

Ω

∇bi(x) · σ(x)dV +

∫∫∫
Ω

bi(x)f(x)dV +

∫∫
Γf

bi(x)T̄(x)dA

]
· ci = 0.

(4.10)
and since this equation must hold for arbitrary parameters ci, the result of our particular choice
of a test-space is a system of n vector-equations,

−
∫∫∫

Ω

∇bi(x)·σ(x)dV+

∫∫∫
Ω

bi(x)f(x)dV+

∫∫
Γf

bi(x)T̄(x)dA = 0 i = 1, .., n. (4.11)

This leaves us still with n unknown basis functions which we need to choose. The core idea
of the FEM is to choose these basis functions by first discretizing the domain to create a mesh
covering the original domain and then to define a class of functions on this mesh. This dis-
cretization is mostly done by tiling the domain with polygons which are called elements (hence
the name FEM). When considering two dimensional problems, one mostly uses triangular or
quadrilateral elements to tile the domain, see f.e. figure 4.12. If the domain is a polygon it can
be completely tiled by these small polygons, however if the domain differs from a polygon, for
example if it is a circle, then an approximation of the domain will be made. The quality of this
approximation depends on the size of the elements, the smaller they are the better the approxi-
mation.
Each resulting element consists of a number of nodes, see figure 4.1. The number of the nodes
and their position depends on the type of element and the order of the elements. For exam-
ple a linear quadrilateral element will only have nodes on its four vertices whereas a quadratic
quadrilateral element has not only nodes at its vertices but at the middle of their edges and at
the intersection of its bi-medians as well. The result of this discretization procedure is a set of
nodes and it is on these nodes that the displacement field will be calculated.

1st-order triangular

2nd-order triangular

1st-order quadrilateral

2nd-order quadrilateral

Figure 4.1: Nodal position for triangular and quadrilateral elements of first and second order
for Lagrange shape functions.
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In most practical and traditional implementations of FEM piecewise linear or quadratic func-
tions on the nodes of elements are used as basis functions, known as shape functions. The order
of the elements basically defines the number of nodes of an element and thus the number of
degrees of freedom one has in choosing parameters of a test function. Therefore it determines
the order of the approximation polynomials used on the elements. Here we will only cover the
simplest type of shape functions, the Lagrange interpolation polynomials. A myriad of different
shape functions does exist[16], but the underlying idea is the same.

Lagrange shape functions

We denote the shape functions by Ni(x) and the nodal positions by xa where a is the number
of the node, both i and a lie between 1 and n. Since we want to approximate the displacements
on the nodes we impose the following condition:

Ni(x
a) = δia (4.12)

where δia is the Kronecker delta function. Many possible ways exist to fulfil this condition, but
as said, we will only describe one option, the Lagrange interpolation polynomials. Given k+ 1
points on a line x1, .., xk+1, the k−th order Lagrange basis polynomials are defined as:

lkj (x) =
k∏
i=1
i 6=j

x− xi
xj − xi

. (4.13)

These polynomials are exactly such that lj(xi) = δij . We can use these interpolation polyno-
mials to define element shape functions. If we want to create multidimensional element shape
functions we can simply multiply multiple Lagrange basis polynomials. Let x = (ζ, η) ∈ R2,
and suppose that xi = (ζi′ , ηi′′), then

Ni(x) = lαi′(ζ)lβi′′(η). (4.14)

The order of the element shape functions is determined by the number of nodes as was men-
tioned before. A few of the low order element shape functions are given in figures 4.2 and 4.3.
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Figure 4.2: Plots of 2 of the possible 4 linear order Lagrangian element shape functions on a
quadrilateral element.
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Figure 4.3: Plots of 2 of the possible 9 quadratic order Lagrangian element shape functions on
a quadrilateral element.
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Figure 4.4: Combination of Lagrangian element shape functions (linear order) to create a
shape function on a whole domain Ω.

To define the shape functions Ni(x) on the whole domain Ω one combines element shape func-
tions such that equation (4.12) is satisfied, see figure 4.4.
To see how many nodes are needed for a given polynomial order we look at the number of de-

grees of freedom for a n-th order two dimensional polynomial. This can be done by constructing
a Pascal triangle 4.5. Each level of the triangle represents an order for the polynomial and we
see the number of degrees of freedom needed for higher order polynomials growing rapidly.
Although higher order polynomials will improve convergence in general they also need more
nodes and therefore more calculations will be involved (larger system of equations). Therefore
only first and second order polynomials are used in most practical implementations of the FEM.
In the above derivation of shape functions only rectangular elements are used. However, in real
analysis elements are likely to deviate from this perfect rectangle, f.e. in the Holey Sheet. In
this case the shape functions are mapped from rectangles onto the true quadrilateral elements
via a coordinate transformation [16].
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Figure 4.5: Pascal triangle showing number of degrees of freedom in a two dimensional poly-
nomial of order n.[16]

4.1.3 Search-space
Having determined a suitable test-space results in an under-determined system of equations
since we haven’t used our constitutive law yet. This law will get rid of the appearance of σ(x)
in our system. The crucial remark here is that our constitutive law will yield a relation between
σ and u and therefore we will end up with an expression involving u which is still unknown.
However, now the number of equations and the number of unknowns match and therefore u
could be calculated from the resulting equations. These equations are as follows,

−
∫∫∫

Ω

∇Ni(x) ·σ[u(x)]dV +

∫∫∫
Ω

Ni(x)f(x)dV +

∫∫
Γf

Ni(x)T̄(x)dA = 0 i = 1, .., n.

(4.15)
Unfortunately, these equations are in no way easy to solve and therefore FEM makes another ap-
proximation as well, we look for the ’best possible’ u in a certain search-space. If we choose the
search-space different from our test-space the procedure is called a Petrov-Galerkin approach.
However, we can just as easy take the test-space and search-space equal and that is what most
of the FEM implementations do. Therefore we expand u(x) on the same basis,

u(x) =
n∑
i=1

Ni(x)ui, (4.16)

where ui are the unknown coefficients which we want to compute. The exact form of σ deter-
mines the set of equations that needs to be solved. We’ll first explain the most simple case, the
linear Hookean model and thereafter we’ll consider the more involved non-linear case which is
more applicable to the simulations carried out for this thesis.

Hookean model (linear)

To derive the FEM equations for Hooke’s law we start with the following equations:

u(x) =
n∑
i=1

Ni(x)ui; (4.17)
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δv(x) =
n∑
i=1

Ni(x)ci; (4.18)

0 = −
∫∫∫

Ω

σ(x) : δD(x)dV +

∫∫∫
Ω

f(x) · δv(x)dV +

∫∫
Γf

T̄(x) · δv(x)dA;

(4.19)

σ =
Eν

(1 + ν)(1− 2ν)
tr(ε)I +

E

1 + ν
ε = λtr(ε)I + 2µε; (4.20)

0 = ū(x)− u(x) ∀x ∈ Γd. (4.21)

Combining these equations we get to the following equation,s

0 =
n∑
i=1

(
n∑
j=1

−uTj

[
λ

∫∫∫
Ω

(∇Ni(x))(∇Nj(x))TdV

+µ

∫∫∫
Ω

((∇Nj(x))(∇Ni(x))T + (∇Ni(x))(∇Nj(x))TdV

]
+

∫∫∫
Ω

Ni(x)f(x)dV +

∫∫
Γf

Ni(x)T̄(x)dA

)
· ci.

(4.22)

Because the ci are arbitrary we have for i = 1, .., n that

0 =
n∑
j=1

−uTj

[
λ

∫∫∫
Ω

(∇Ni(x))(∇Nj(x))TdV

+µ

∫∫∫
Ω

((∇Nj(x))(∇Ni(x))T + (∇Ni(x))(∇Nj(x))TdV

]
+

∫∫∫
Ω

Ni(x)f(x)dV +

∫∫
Γf

Ni(x)T̄(x)dA

, (4.23)

which is the FEM system to be solved for linear elasticity problems. From this system one
needs to solve the unknown uj . Another common way to rewrite this system is in matrix-vector
notation. In order to do so we define U = [u1 u2 · · ·un]T and write the system as

UTK =F T , (4.24)

with the external force vector F

F T
i =

∫∫∫
Ω

Ni(x)f(x)dV +

∫∫
Γf

Ni(x)T̄(x)dA, (4.25)

and the n× n stiffness matrix K

Kji = λ

∫∫∫
Ω

(∇Ni(x))(∇Nj(x))T + µ((∇Nj(x))(∇Ni(x))T + (∇Ni(x))(∇Nj(x))TdV.

(4.26)
The system of equations to be solved is generally written in the transposed form as

KU =F . (4.27)

To solve such a system, which often involves large matrices, advanced techniques can be applied
which are outside the scope of this thesis [17]. When u has been extracted, σ can be computed
as well by simply substituting the approximation of u in the constitutive law.
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Neo-Hookean model (non-linear)

Unfortunately things are not always as easy as in the linear case and this definitely holds for
elasticity problems. Although the general derivation follows the same route as in the linear
case, the non-linear constitutive law makes the problem much more troublesome. Using the
Neo-Hookean law we arrive at a system of non-linear equations of the form

H(U) =F , (4.28)

where F is again an external force vector. However, H is a non-linear operator and therefore
we cannot simply use matrix manipulation to find U. In addition to the non-linearity there is
another complication in the case of hyperelasticity. Because the small strain assumption is not
in general valid one has to take care over which body Ω the integration of H and F needs to
be done. All preceding derivations of the integrals are over the current state which is in fact
unknown. Of course it is possible to rewrite these integrals to get integrals over the reference
state which we do know. However, in order to do so extra calculations are required, since inverse
Jacobians of the transformation Φ are now needed as well.

4.1.4 Solving the non-linear FEM system
Whereas the solution to the linear model is quite ’straightforward’ the method to solve the non-
linear case requires some special attention. To solve equation (4.28) Newton-Raphson methods
are often used. These methods try to find the roots of equations and therefore we rewrite our
system such that the solution is a root of the system,

0 = G(U) = H(U)−F . (4.29)

Newton-Raphson starts with an initial guess U0 which does not need to be a solution. Then
we perturb our guess to yield U1 = U0 + ∆U. Substituting this in our equation gives us the
change to linearise the non-linear equations,

0 = G(U1) ≈ G(U0) +∇G(U0) ·∆U = H(U0)−F +∇H(U0) ·∆U. (4.30)

The result is a linear system of equations which we want to solve for ∆U,

∇H(U0)·∆U = −H(U0) + F . (4.31)

For hyperelastic materials this linearized system will bear resemblance to the linear FEM equa-
tions in the sense that it can be written as

K′ ·∆U =F−R. (4.32)

As a matter of fact K′ can be written in the form

K′ = Km + Kg, (4.33)

where Km is the material stiffness due to the constitutive law and thus similar to K in the linear
case. In addition to this there is an extra term Kg which is due to the changes in geometry and are
therefore a form of geometrical stiffening, a feature that cannot be captured by linear elasticity
equations. After the system has been solved for ∆u the displacement u1 can be constructed. To
see whether this has converged towards the real solution we can probe the magnitude of G or
that of ∆u. If convergence has not yet been achieved the procedure can be started again, now
with u1 as the starting guess. In this way the solution to the non-linear system of equations is
stepwise approximated.
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Numerical integration

In order to solve both the linear and the non-linear system of equations one needs to calculate
a few volume and surface integrals before the unknowns can be solved from the system. These
integrals are in practice approximated as well. This is mostly done by a method known as
Gaussian quadrature[16], but this is outside the scope of this thesis.

4.1.5 Abaqus
In this project we use a commercial software package called Abaqus for numerical simulations.
Abaqus is a so called Finite Element Analysis (FEA) software program. It can be used to model
the object which must be simulated and to actually apply FEM to it, because it includes several
mesh generation algorithms and FEM solving procedures. Furthermore it has a Graphical User
Interface (GUI), but it can be controlled by use of Python scripts as well. The scripting control
is most used in this project, mainly because of the possibility to perform parameter studies and
reproducibility of the experiments.

4.2 Periodic boundary conditions
In order to simulate an infinite Holey Sheet without any edges periodic boundary conditions
need to be imposed on the edges of the unit cell. That way we can periodically repeat the unit
cell to get a periodic lattice of unit cells which is precisely an infinite Holey Sheet. The way
this is done in Abaqus is by imposing constraints on the boundaries of the unit cell. Let a be the
lattice size. Now we introduce two virtual points at position v,w originally placed in the origin
(0, 0). These virtual points are just for computational ease and do not represent any physical
entities, but they are allowed to move as point particles without any interaction. Then we impose
the following constraints, first on the left edge of the unit cell

u(x, y)− u(x+ a, y) = v,

and on the bottom of the unit cell

u(x, y)− u(x, y + a) = w.

If the virtual points stay in the origin this imposes the constraints that the movement of the left
wall is equal to the movement of the right wall and the movement of the bottom is the same
as that of the top. So why bother with these virtual points v,w? If we want the edges of the
unit cell to move relative to each other, which happens if for example one side is compressed,
we can now implement this very by simply moving the virtual points. If we want to compress
in the vertical direction all we have to do is move w in the vertical direction, up for elongation
and down for compression. Or we can track the relative motion of the edges by letting the
virtual points move freely while compressing the unit cell, the position of the virtual points then
reflects the boundary motion. Since the analysis is done on the mesh rather than on the original
domain, these constraints have to be imposed on the mesh. This is done by imposing the same
constraints on the nodes at the boundary of the unit cell. If the mesh is made symmetric then
there is for each node on the side a node on the opposed edge. Therefore the constraints on the
nodes coincide with the constraints which would be imposed on the original continuous domain
and thus they are a discretization of the original constraints.
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(a) Original undeformed unit cell.
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(b) Moving the top and bottom by moving v.
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(c) Moving the side walls by moving w.
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(d) Moving all the walls by collectively moving v,w.

Figure 4.6: Effect of moving the virtual points at v and w as a compression on the unit cell.

4.3 Buckling analysis
We could already conclude that the way the unit cell reacts to compression can depend on the
mesh (see figure 4.14). In particular it can influence whether and if so how the sheets buckle.
When performing numerical simulations one would like to have a robust mechanism which does
not depend on numerical parameters such as the mesh-size or type. Furthermore we would like
to control the way the unit cell buckles, because it is this crucial aspect that we want to investi-
gate. We know that the initial unbuckled configuration becomes unstable after the first buckling
load has been applied, but this does not immediately mean that every numerical simulation of
an unit cell will buckle in the first buckling-mode after this load has been applied. Laboratory
experiments in contrast show that every Holey Sheet buckles in the first mode if compressed
in one direction and therefore we are mostly interested in this first mode. It is thus needed to
control the way the numerical simulation buckles. This can be done by slightly perturbing the
system out of its symmetric state and thus lifting the degeneracy of the bifurcation point and
unfolding the bifurcation.

4.3.1 Bifurcations and buckling
To introduce the concept of a bifurcation we look at a system of ordinary differential equations

ẏ = P(y,λ). (4.34)

One can look for the equilibrium solutions of this system of equations, which thus have to
satisfy P(y, λ) = 0. When the parameter λ is varied, the equilibrium solution could change.
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The curve(s) that it traces out is then called an equilibrium curve. Multiple equilibrium curves
can exist, and therefore, it is possible that these curves intersect each other as well. Another
possibility is two equilibrium curves colliding, but not necessarily intersecting. Exactly these
intersection points or collision points of equilibrium curves are called the bifurcation points.
It is in these points that multiple equilibrium solutions come together and form an equilibrium
solution of higher multiplicity. The existence of bifurcation points is closely related to the
Jacobian matrix of P and its eigenvalues and this will prove to be important in the numerical
analysis later on.

Pitchfork bifurcation

There is an intimate link between buckling and bifurcations since the buckling of a bar is an
example of one type of bifurcation, namely the pitchfork bifurcation. This type of bifurcation
is closely linked to symmetry and more specific the breaking of symmetry, which we also see
in the buckling of bars and the Holey Sheet. A (supercritical) pitchfork bifurcation starts with
one equilibrium branch before the critical parameter λc has been reached. However, after the
critical value of λ has been reached and λ is increased beyond this value, two new branches of
equilibrium solutions emerge from the bifurcation point.

α

0
PPc

(a) Plot of the equilibrium curves for the
elastic bar under compression. Thick
lines are stable and dashed lines are un-
stable equilibrium curves.

P P
P < Pc

P P
P > Pc

α

P P
P > Pcα

(b) Sketch of α and P for elastic bar buck-
ling.

Figure 4.7: Buckling of an elastic bar described by the angle α with the original configuration
at the left endpoint and the force P .

As an example we can look at a simple elastic beam. Although this system might seem unrelated
to the Holey Sheet, it could in fact be of great importance, since a promising model of the
Holey Sheet is that of a network of these simple beams joined together. Extensive research
has been done to this situation, for example by Robbin Bastiaansen and Willem Schouten in
their theses [18, 19]. Therefore we’ll only briefly use this example to introduce some concepts.
A sketch of the problem is given in figure 4.7. We compress a beam on both endpoints by
a force P . When some critical load Pc has been passed the beam will buckle, and therefore,
make an angle with the horizontal axis at the endpoints. This angle α therefore changes from
a zero-value before Pc to a non-zero value after the critical load has been applied. This is
represented in the bifurcation diagram which shows the angles α of the equilibria for a given
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force P . The bifurcation diagram shows a reflection symmetry in the P -axis, which is very
typical for the pitchfork bifurcation. The original system is symmetric under the reflection of
the beam. However, after the bifurcation point has been passed, this symmetry is broken and
now two non-trivial solutions appear which are each others mirrors. This is also what can be
observed in the Holey Sheet. The presence of multiple solutions in one point, a degeneracy in
some sense, makes it numerically troublesome to cross the bifurcation point. Therefore special
attention is given to this in the next paragraphs.

Stability

For the pitchfork bifurcation of the elastic beam we start with the original undeformed beam.
This is a stable configuration, in the sense that if we perturb our configuration slightly and then
let it evolve, it will converge towards the original undeformed configuration, see figure 4.8.
After the critical load has been reached and the load is increased further, we saw that two new
branches emerged from the bifurcation point. The original branch now becomes unstable in
contrast to the new branches which are stable. Unstable means that if we start close to a certain
branch and we let the system evolve then it will move away from the equilibrium branch.

α

0
PPc

Figure 4.8: Stability of the multiple equilibrium branches. If a perturbation moves towards
a branch, that branch is called stable. If it moves away from the branch, it is an unstable
equilibrium.

Buckling modes

When compressing the beams beyond the critical load, they can attain different shapes due to
the symmetry in the system. However, there are also other configurations possible which do
not follow from a reflection. These other solutions are known as higher buckling modes. They
do satisfy the same set of boundary conditions as the ones found in 4.7, but are very different,
see figure 4.9. The critical point for which these higher modes can be attained is different for
each of the higher mode and gets increasingly bigger with mode number increasing. The mode
which is actually attained and observed is most of the times that specific mode which minimizes
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the elastic energy, while satisfying all the boundary constraints.

P P

P P

1st mode

P P

2nd mode

P P

3rd mode

Figure 4.9: Different buckling modes for a single initially straight beam under uni-axial com-
pression.

Just as the one-dimensional beam, the Holey Sheet has multiple buckling modes. These again
have all different elastic energies and the one observed in the experiments thus has the least
energy. In the numerical experiments however, other modes can be found and explored as well,
as can be seen in figure 4.14, where 4.14e corresponds to the first buckling mode, which is the
one observed in the laboratory experiments, and 4.14f to the first higher mode of the unit cell.

4.3.2 Linearised buckling analysis
A crude way to overcome the problems with the bifurcation point of the Holey Sheet is to first
linearise the system of equations. As a result we throw away crucial information, but on the
same time it allows us to actually calculate a linearised buckling load and the accompanying
buckling mode which should be an approximation to the true buckling load and mode. So how
does one calculate a buckling load from the FEM system of equations? The important thing to
notice is that the system should become singular at the buckling point, since multiple solutions
should emerge at the same time. Therefore we can try to find the point where our stiffness matrix
K becomes singular, i.e. it has an eigenvalue equal to zero. For this thesis two possible ways to
calculate these eigenvalues have been used.

Abaqus buckling prediction

As mentioned before, the finite element system of equations needs to be linearised first. We
start with a base state UB,FB and then add a small perturbation ∆U,∆FB to the base state.
Then we linearise our system using the same procedure as the Newton-Raphson method, as
was introduced in section 4.1.4. This yields a linear system of equations involving the Jacobian
matrix. As noted before it is when this matrix becomes singular that the bifurcation point has
been reached. Therefore we see that in our numerical analysis we our interested in the Jacobian
matrix of the function G(U) as in section 4.1.4. The method starts with the equation

(Km + Kg)∆U = 0. (4.35)

In calculating these two matrices [20] one finds that Km only depends on UB whereas Kg by
assumption of the linear perturbation depends linearly on ∆U. Therefore we could as well add
a perturbation λ∆U, which then yields the system

(Km+λKg)∆U = 0. (4.36)

The question then is for what value λ a non-trivial ∆U (which is prescribed) can be found
as a solution to this system. Abaqus determines this value by regarding this as a generalized
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eigenvalue problem and solving it for the eigenvalue λ. With this value a new prediction for the
buckling displacement, U = UB + λ∆U, can be constructed.

Abaqus frequency calculation

For this method not the equilibrium equation, but the full dynamical elastic equation (3.20) is
used and converted into finite element equations. The extra term concerning time derivatives of
u adds an extra term

MÜ + KU =F , (4.37)

where M is called the mass matrix, which stems from the integral involving ρ(x, t). The fre-
quency calculation then searches for a non-trivial eigensolution of the unforced problem, so with
F = 0. It assumes a solution of the form U(t) = eλtŪ, where λ is called the natural frequency
of the mode Ū. This changes the equations to

0 = λ2MŪ + KŪ =
(
λ2M + K

)
Ū. (4.38)

Which is a generalized eigenvalue problem for λ. We are interested in the Ū such that λ = 0
because than we would have that KŪ = 0 and therefore we would have arrived at the buckling
point since we have a non-trivial solution which satisfies the equilibrium equations. The ad-
vantage of this method is that it provides a good measure of the nearness of the buckling point,
since we can just see how much the smallest λ deviates from zero. However, it doesn’t provide
us a critical force or critical displacement, which we are after. Therefore this method needs to be
accompanied by a method to calculate uc from λ. But just as the buckling prediction in Abaqus
does, this method produces a deformed mesh (ū) which bears resemblance to the buckle modes.
This will turn out to be useful to cross the buckling point as we’ll see soon.

Crossing the buckling point: break the symmetry

Having found a (rough) approximation to the critical point still leaves us with the problem of
how to switch branches at the critical point. If we just compress the original configuration it
will start at the stable branch, but it won’t generally depart from it at the buckling point. There is
no reason for it to do so since symmetry prevents it from choosing one of the two possible new
non-trivial stable branches and therefore it continues to move on the unstable branch. Numerical
simulations on unstable branches are hard since the matrix K is not positive-definite any more,
a feature that is used in most solution methods and therefore the simulations often are starting
to have trouble converging beyond the critical point on the unstable branch.
One simple way to solve this problem is by breaking the symmetry that is preventing the sheet
from buckling and therefore forcing it to buckle. This can be done by adding the approximated
first buckling mode as computed by one of the two aforementioned methods as an perturbation
to our original problem. Now (part) of the geometrical symmetry has been broken and we
can then perform the compression experiment. This procedure of adding some perturbation to
the original mesh is called seeding the mesh in the case of FEM. In a more general sense this
procedure of unfolding a pitchfork bifurcation by breaking the symmetry is called the addition
of imperfection to the system to get an imperfect pitchfork bifurcation.
In the case of the elastic beam we could apply an initial torque at the endpoints to break the
symmetry. Therefore the initial stable solution has an angle α which is non-zero and it will
buckle without any problem if the force is increased since it simply follows the stable branch
which doesn’t come across a problematic point such as a buckling point, see figure 4.10. The
reason why this method is crude is that it immediately breaks the symmetry of the system and
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Figure 4.10: Imperfect bifurcation diagram of the elastic beam where symmetry has been bro-
ken. The branches of equilibrium solutions have been disconnected to form two disjoint sets.

thus unfolds the bifurcation point. Therefore our curves get rounded off around the bifurcation
point and can not get to the actual bifurcation point itself, we only get smooth curves around it.
We introduce an error due to the imperfection and if we want to carefully study our system we
need to perform an error-study every time we use this method. Since we want to perform a large
batch of numerical simulations exploring the parameter space of the hole size, this method will
become very time-consuming. A reason to still implement this method is that it is fast, since the
procedure is fairly easy and only one step of linearisation needs to be done. Furthermore it is
robust since we force the initial geometry to break into the first buckling mode. It can therefore
serve as a first approximation and method to quickly check the properties of the simulation, but
is not very suited for close study of the behaviour around the buckling point.

4.3.3 Non-linear buckling analysis
One of the major drawbacks of the imperfection methods just prescribed is that it immediately
destroys the symmetry of the system and thus makes it impossible to closely study the bifurca-
tion point. Furthermore an error analysis is needed to check whether we have approximated our
original curves sufficiently. One way to overcome this is to use non-linear buckling analysis.
This procedure converges towards the bifurcation point via successive application of the lin-
earised buckling analysis. The calculated bifurcation point by the linear buckling analysis will
not be the correct value, because the real response of the Holey Sheet will slightly differ from a
perfect linear Hookean material as the geometry changes slightly. Therefore we can go the the
calculated buckling point and then start the linear buckling analysis again. The big difference
this time being that the geometry now has changed and the new reference state is the old cur-
rent state. Therefore in each iteration the matrices involved change. This makes the method of
course computationally more costly. The advantage on the other hand is that it provides a much
more accurate result and therefore we can get very close to the real buckling point, the relative
order being of the order 10−6 for most geometries. We track λ during our calculations, whether
we use frequency extraction or buckling prediction, to see if we converge towards the critical
point. As a stopping criterion is chosen that as soon as |λ| < ε, for some small ε, the iteration is
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stopped. Furthermore we use a very naive line-search method in order to prevent that we cross
the bifurcation point, since calculations are hard if the buckling point has been exceeded. The
problem with computations after the bifurcation point has been crossed, is that the matrix K
fails being positive definite, a property heavily used in the computational schemes.
If ∆u is the correction to the i-th iteration compression ui then we construct the i+1-th iteration
as

ui+1 = ui+α∆u, (4.39)

where α is the line search parameter. This method can also be viewed as a successive over-
relaxation method for an iterative method. The method is naive in the sense that we only check
if 0 < λi+1 < λi and if this is not the case we halve α, thus α → α

2
∗. The first inequality

makes sure that we stay under the critical displacement. The second inequality is used to make
sure that we converge towards the critical point, if the increments get bigger in each iteration
then that means that one is moving away from the buckling point in general. The result of this
method is a much more accurate prediction of the critical displacement.

Crossing the buckling point

Although our prediction of the critical point is much better in the non-linear case we still need to
find a way to cross the buckling point, because symmetry still prevents buckling. The strategy we
follow encloses on the bifurcation point and then slightly tweaks the system out of its symmetric
configuration by applying some tiny force or rotation constraint. Then we compress slightly
beyond the bifurcation point and let loose the earlier applied constraint. In this way the system
evolves back to one of the two stable non-trivial equilibrium branches which we can now simply
follow, see figure 4.11. By using this method we can get very close to the buckling point and
still follow the equilibrium branches we want to investigate.

4.4 Influence of the mesh

4.4.1 Mesh density
A crucial part of the FEM is the choice of the mesh used to discretize the geometry. As men-
tioned before, Abaqus has some built-in mesh generators which automatically provide a suitable
mesh based on a few input parameters. The parameters which we controlled in Abaqus to create
our mesh are the size of the mesh elements, a deviation factor for the deviation of the prescribed
size and the element type which we use to mesh the geometry. All the parameters are of crucial
importance in the set-up of the analysis. Taking a too coarse grid may result in large numerical
inaccuracies, because not enough information is taken into account during the computations,
and thus convergence can be lacking. Furthermore, crucial parts of the geometry can be missed
if a too coarse mesh is chosen. This is especially crucial in the simulation of Holey Sheets since
circles need to be approximated by elements with straight edges. As a result there is inherently
a little loss of geometry and we want to keep this as small as possible, see figure 4.12. On the
other hand taking a too fine mesh results in an enormous system of equations since we need to
solve equations on every element. A finer mesh will thus result in a larger runtime. For these
reasons a short study on the influence of the mesh density is needed in order to see whether
the results depend on the mesh density or not. After this study we are ideally able to choose an
∗There might be more clever ways to improve convergence by choosing α based on an energy method, i.e.

choose α such as to minimize a certain elastic energy. However this was not necessary for this thesis.
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Figure 4.11: Illustration of the non-linear buckling analysis steps. Step I: closing in on the
buckling point. Step II: tweaking the system by some constraint out of symmetry. Step III:
crossing the buckling point whilst releasing the constraint. Step IV: continuing along the stable
buckled branch.

optimal mesh density which is both coarse enough to be fast and fine enough to be accurate.

Figure 4.12: Effects of meshing on a building block of the Holey Sheet. It can be seen that the
geometry of the mesh can substantially differ from the original geometry if parameters aren’t
chosen wisely. a): Original geometry. b): Too coarse mesh. c): Finer mesh.

4.4.2 Symmetry considerations
When doing analysis on bifurcations of systems with a lot of symmetries we are very sensitive
to a disturbance of this symmetry as it can unfold the bifurcation and therefore make study of
the bifurcation point troublesome. Therefore it might be advantageous to have a mesh which
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preserves the symmetry of the original geometry. However, the standard algorithms in Abaqus
cannot do this, so some adaptations have to be made. One way of getting more control over the
meshing of the unit cell is to partition the unit cell manually before the mesh is made. Abaqus
will then mesh this subdomains separately. If this subdividing is done in such a way that the
original symmetry is preserved, the mesh will hopefully be more symmetric. This assumes that
if Abaqus needs to mesh partitions which are equal up to translation and or rotations then the
meshing is done in exactly the same way†. The next chapter explores in some more depth the
symmetries of the Holey Sheet, but for now it is sufficient to state that in order to preserve the
original symmetries of the unit cell we need to partition our geometry according to the reflection
and translation axis. If we furthermore want to preserve the translational symmetry of the Holey
Sheet so that we are able to shift each circle one separation distance up, down or to the left or
right, then we should look even smaller at the primitive cell of the Holey Sheet, consisting of
only one circular hole in a square. This smallest building block has the same symmetries as the
unit cell. If we partition now along the reflection axis of the primitive cell, see figure 4.13, and
then let Abaqus mesh these partitions with a suitable meshing technique we will end up with a
mesh which is not only periodic but also preserves the symmetries.

(a) (b)

Figure 4.13: Different partitions of the unit cell into smaller equal subdomains. 4.13a Partition
taking into account the p4m symmetry (see chapter 2) of the primitive cell. 4.13b: Partition
according to the symmetries of the unit cell not incorporating reflections along the diagonals
of the primitive cellt reflects the pmm symmetry of the pre-buckled Holey Sheet under uni-axial
compression.

Meshing algorithms

Examples of such suitable meshing techniques are the Sweep and Structured meshing tech-
niques. A swept mesh is a technique where Abaqus defines elements on one edge of the par-
tition and then copies these elements one element layer at a time to the opposing edge of the
element. This has the nice feature that when applied to the primitive cell it will concentrate

†This is safe assumption since most mesh algorithms in Abaqus use mappings of the partitions to a standard
geometry on which they create a mesh. This mesh on the standard geometry is then mapped back onto the original
geometry.
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more elements in the thin regions than in the island regions. This is advantageous because the
buckling occurs at the thin parts and therefore the largest variations in strain and stresses are in
these thin regions. The result of the meshing technique is that more and smaller elements are
concentrated at the regions of large displacement. The structured meshing technique maps a
simple mesh on a rectangle onto the partitioned parts.

Effects on simulation

A nice illustration of why this symmetry is indeed important can be seen in figure 4.14. Depend-
ing on the type of the mesh and the way it preserves the symmetries, the unit cell will buckle in
different modes, which dramatically influences the simulations. All cases represent the result of

(a) (b) (c)

(d) (e) (f)

Figure 4.14: Effect of different meshing techniques and partitioning on simulations. Depend-
ing on the mesh a different buckling mode is found under uni-axial compression. All filament
thickness t = 0.1.
4.14a,4.14d: Meshed using the swept mesh algorithm and the partition from 4.13a.
4.14b,4.14e: Meshed by Medial Axis algorithm and the partition from 4.13b.
4.14c,4.14f: Free meshing algorithm with triangular elements and the partition from 4.13b.

an uni-axial compression of an unit cell of the Holey Sheet (the amount of compression is the
same in all cases). The only differences between the cases are the element type that is used and
the partitions that are made before the mesh is generated. Figures 4.14a,4.14d are partitioned as
in figure 4.13a. Therefore the uncompressed mesh has the same symmetry group as the original
domain, p4m. In contrast, figures 4.14b,4.14e are partitioned according to figure 4.13b, so the
reflection symmetries at the diagonals of the primitive cell are not incorporated in this mesh.
Both figures 4.14a and 4.14b are meshed by using quadrilateral elements. The technique used
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the aforementioned sweep meshing technique. The algorithm used to mesh figure 4.14b is the
Medial Axis algorithm, which partitions the original geometry in smaller parts divided by the
medial axis of the structure and creates the mesh on this subdomains. The medial axis is the set
of all points in the structure which have more then one point on the edge which they are closest
to. The mesh is therefore more structured than the rightmost example, figure 4.14c. This object
is meshed by using triangular elements and the mesh is constructed in a ’free’ way, which simply
says that apart from partitions of the original geometry the algorithm does not create any other
extra partitions to exploit the geometrical structure.
The fact that the 4.14d does not show any buckling should not come as a surprise, since the sit-
uation is completely symmetric along the central vertical axis. In order to buckle this symmetry
must be spontaneously broken, but the force is symmetric along the same axis as well and thus
does not break the symmetry. As a result the unit cell will stay in the unbuckled ground mode,
although this may not be the state of the minimum energy and a small perturbation of the system
will kick it out of this unstable configuration into one of the stable buckling modes if enough
load is applied.
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Chapter 5
Results

This chapter is devoted to the analysis of the numerical results on the Holey Sheet obtained with
the finite element method. Of special interest in this analysis is the comparison of the numerical
results of the Holey Sheet to the mechanical behaviour of ordinary beams. In this way we hope
to capture the mechanics of the Holey Sheet in a simpler model of which results are already
known, namely simple one or two dimensional beams under compression.
The material properties such as density and elastic moduli of the Holey Sheet do not vary in the
simulations, it is the geometry which we can change. This is accomplished by tuning geomet-
rical parameters, in our case the size of the holes in the unit cell, or equivalently the filament
thickness parameter t as depicted in figure 5.4. The subsequent mechanical response as a func-
tion of t is the main subject of interest in this thesis.

5.1 Force-displacement curves
The results of the experiments on the Holey Sheet can be graphically presented by a force-
displacement curve, representing the force resulting from a given displacement or vice versa,
just as we saw in the introduction, figure 1.3. In the numerical simulations we impose a certain
displacement on the edges of the Holey Sheet and extract the resultant force from the data.
Typical examples of these curves and the corresponding geometries are given in figures 5.1 and
5.2.
It is the exact form of the force displacement curves which is the subject of study in this thesis.
We see that a peak is formed in 5.2, but not in 5.1. Therefore it is expected that in the parameter
space of t there is transition between behaviour with and without a peak.
As we can observe there are two distinct phases corresponding to different geometries as well.
This, of course, has everything to do with the buckling instability of the Holey Sheet. The
transition point of these phases is exactly the buckling point of the sheet. At the transition
point the symmetry of the system breaks abruptly and this dramatically changes the mechanical
response of the material.
There is a clear distinction between the two phases, namely the displacements taking place. In
the pre-buckling phase only small displacements take place, as the material responds linear to
the compression. In contrast, in the post-buckling phase, large deformations can be observed
due to the extensive bending of the filaments. The two phases are thus very different and will
be treated separately, because different methods are needed for each one.
The observed behaviour is not unique for the Holey Sheet, similar responses can be found in
(thick) beams as well. This prototype model also exhibits buckling and different pre- and post-
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(a) Undeformed unit cell. (b) I: Pre-buckling. (c) II: Post-buckling.

Figure 5.1: Force-displacement curve of numerical simulation of uni-axial compression of the
unit cell with t = 0.04. The stills correspond to the indicated points on the graph.
The colors on the unit cell represent the Von Misses stress, a scalar measure for the total amount
of stress σ at a point. The color ranges from blue, for low Von Misses stress, via green, to red,
for high values.

buckling behaviour. If one compares the force curves of the Holey Sheet to that of certain
beams, see figure 5.3, one sees that their behaviour looks very similar. This motivates the
question whether it is possible to model the Holey Sheet as a beam which has exactly the same
mechanical response, but has a simpler geometry and is easier to understand.

5.2 Mapping the Holey Sheet to a beam

In addition to the resemblance in the force curves in the preceding section, another motivation
can be provided for the study of the Holey Sheet as a beam, which we will call the effective
beam. This effective beam will be a modelled beam which reacts identical to the Holey Sheet
upon compression. The link between these two systems can be motivated from the pre-buckle
phase, where the compression of the Holey Sheet seems to boil down to the compression of the
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(a) Undeformed unit cell. (b) I: Pre-buckling. (c) II: Post-buckling.

Figure 5.2: Force-displacement curve of numerical simulation of uni-axial compression of the
unit cell with t = 0.185. The stills correspond to the indicated points on the graph. The color
ranges from blue, for low Von Misses stress, via green, to red, for high values.

filaments aligned with the external forcing. These filaments are expected to behave as beams and
can thus be modelled by the compression of a simple two-dimensional effective beam of length
L and width A for which results are known. It is interesting as well to see whether this effective
beam theory still holds in the post-buckling phase which we investigated in this thesis as well.
Therefore, the overall goal of this investigation is to see whether an effective length L∗(t) can be
found such that the behaviour of a Holey Sheet, with filament thickness t, coincides with that of
a beam of length L∗(t) and uniform width t under the same compression, see figure 5.4. In this
way we can define an effective beam which exhibits the same mechanics as the Holey Sheet, but
is easier to understand and therefore hopefully sheds some light on the underlying theory of the
mechanical behaviour of the more complex Holey Sheet.

5.2.1 Theoretical predictions on non-uniform beams
Following the analysis of Day et al.[21] we can derive a theoretical prediction for the dependency
of the effective length on the thickness. First, we need to know the results for the uni-axial
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(a) Undeformed beam. (b) I: Pre-buckling. (c) II: Post-buckling.

Figure 5.3: Force-displacement curve of the compression of a beam with a length of 45 mm,
a depth of 35 mm and a width of 8.30mm. The stills correspond to the indicated points on the
graph.
The two different curves originate from the fact that the experiment compresses the sample and
then returns progressively to the original uncompressed state. The return is observed to be
slightly different from the compression.

compression of an uniform bar of length L and width A by a force F , see figure 5.5.
In the beginning we are interested in the pre-buckling phase, and therefore, can assume small
displacements and strains. As a result we are allowed to use the linear Hookean law to describe
the relation between stress and strain. Furthermore, small displacements justify the use of the
engineering strain expression.
Under the assumption that the stresses are zero in every other direction than that of the applied
force, the stress strain relation in the direction where the force is applied reads [8]

σxx = Eεxx. (5.1)
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Figure 5.4: Different modelling phases: Before buckling of the sheet the compression can be
regarded as a compression of the vertical filaments only. This simplification is shown in the first
step. We then study whether this compression can be modelled by a simple uniform beam as
shown on the right.
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Figure 5.5: Compression of an uniform beam of width A and length L by a force F .

If we assume that σ is constant over the surface and plug it in equation (3.11), we can relate the
stress to the force by

F = σxxA (5.2)
Furthermore the strain is related to the displacement u by

εxx =
u

L
. (5.3)

After combining these expressions we arrive at a relation between F and u for beam compres-
sion,

F =
EA

L
u = ku, (5.4)

where k is called the stiffness of the beam. Upon taking a non-uniform beam , such as our
vertical filaments, we need to adapt equation (5.4).
In order to do so, we begin with a local expression for the relation between F and u,

F = EA(x)
∆u(x)

∆x
, (5.5)

where x is some variable describing the position on the beam. This can be rewritten to

∆u(x) =
F

EA(x)
∆x. (5.6)
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In order to find a global relation between F and u we integrate (5.6) (take ∆x infinitesimal
small), because u is simply the integral over the beam length of ∆u(x),

u =

∫
F

EA(x)
dx =

F

E

∫
1

A(x)
dx. (5.7)

Under the assumption that F does not vary with position and that the material is homogeneous
(E is a constant), we can now see that the only term remaining under the integral sign is a
geometrical term A(x) depicting the local width to which the force is applied. This width A(x)
will therefore depend on t in the case of the Holey Sheet and we thus writeA(x, t). To determine
the integral for the specific filaments we make A(x) explicit as a function of the thickness t, see
figure 5.6,

A(x, t) = t+ 2R(1− cosφ). (5.8)

If we look at figure 5.1c, we see that the regions of interesting behaviour of the Holey Sheet

t
R
φ

x

Figure 5.6: Sketch of the geometry in the derivation of the effective beam length of a thin filament
following Day et al.[21].

seem to be really concentrated at the thin parts of the filaments. Those are the regions where the
internal stresses seem to be concentrated. Therefore it might be a good assumption to assume
that most of the strains and stresses are concentrated at the thinnest regions, i.e. where φ ≈ 0.
So suppose we are primarily interested in the behaviour of A(x, t) for small φ. Then we expand
the cosine into its Taylor series and truncate it after the second order term,

A(x, t) ≈ t+ 2R
φ2

2
. (5.9)

Assuming a small angle φ one can derive the expression φ ≈ sinφ = x
R

. When we combine
these two approximations we arrive at

A(x, t) ≈ t+
x2

R
. (5.10)

Since the strains are localized in the thin parts of the filaments only it is expected that the contri-
butions from areas away from the center of the filaments are negligible. As a result we change
our limits of integration and integrate x from −∞ to∞,

u =
F

E

∫ ∞
−∞

1

t+ x2

R

dx =
πF

E

√
R

t
=
πF

E

√
1− t

2t
. (5.11)

This can be rewritten in a more familiar form using the stiffness k,

F = k(t)u, (5.12)
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where we now have a stiffness depending on t,

k(t) =
E

π

√
2t

1− t
. (5.13)

Bi-axial compression

The above analysis will not be valid for the bi-axial compression case. For this setting we use a
more appropriate elastic modulus, namely the bulk modulus B. This modulus relates the stress
to the strain in the case of a uniform isotropic compression of a material, which for 2D is exactly
equal to bi-axial compression. We have in both the x and y-direction

σ = 2Bε. (5.14)

In the case of plain strain the bulk modulus is related to the Young’s modulus E and Poisson’s
ratio ν of the material as we saw in (3.43)

B =
E

2(1− ν)
. (5.15)

Therefore our aforementioned expressions for the uni-axial case change by a factor of (1− ν),

F = (1− ν)
EA

L
u = (1− ν)ku. (5.16)

Which transforms in the case of non-uniform beams to

F = (1− ν)k(t)u. (5.17)

5.3 Pre-buckling phase: small deformations
The first stage of the compression of beams and the Holey Sheet will not induce large displace-
ments and strains. Therefore, we can use the infinitesimal strain theory and linear constitutive
laws. In order to arrive at an effective length, two methods are proposed. The first one relates
the stiffness of the Holey Sheet as measured to an effective length and therefore is only related
to the behaviour of the sheet before buckling has occurred. The second method uses informa-
tion on the buckling point itself to define an effective length and therefore can result in different
estimates.

5.3.1 Method I: Pre-buckling stiffness
If we want to model the pre-buckling phase for uni-axial compression as the compression of an
uniform beam we use expression (5.12). We assume for our effective beam that it has constant
width A(t) = t. The effective length L∗ is then found by using the relation between stiffness k
and length L,

L∗ =
EA(t)

k(t)
=

Et

k(t)
. (5.18)

Since the stiffness k(t) can be extracted from the simulations this provides a direct way of cal-
culating L∗. The theoretical prediction by Day et al. then yields that

L∗ =
π√
2

√
t(1− t). (5.19)
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As a result of the difference between uni-axial and bi-axial compression, the expressions for the
effective length have to be adjusted for the bi-axial case,

L∗bi = (1− ν)L∗uni. (5.20)

The only problem now is that ν is not known as a function of t. But in the simulations it can
be calculated of course by simply using the definition of ν (1.1). This calculated ν can then be
used to rescale L∗uni onto L∗bi.

Discrepancy between simulation and prediction

As we can see from figure 5.7 the predictions of Day et al.[21] are not sufficient to predict the
simulations correctly. Only for t < 0.01 it seems that there is agreement. For larger t the
predictions fail in both the uni-axial and the bi-axial case as it rises far too quickly. This might
be due to the fact that the approximation made in the derivation of L∗ is simply too crude. If
the filaments get thicker the strains might be not only localized at the center of the filaments and
therefore contributions outside the center of the filaments need to be considered. For the really
thin filaments it seems that the approximation holds and that our assumption that the stresses
and strains are localized in the center thus seems to be valid.
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Simulation Corentin Coulais (uni-axial)
Prediction Day et. al

Figure 5.7: Effective beam length estimation following equation (5.18) for both uni-axial and
bi-axial compression. In addition to the experiments carried out for this thesis, simulations from
Coulais et al. have been added[22] and the prediction from Day et al.[21].
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Correction to predicted effective length

The calculated effective length by Day et al.[21] doesn’t seem to work in the case of the Holey
Sheet for almost all filament thickness’s as we saw in figure 5.7. Therefore we could try to see
whether the assumptions made in their derivation of the effective length are the cause of this
failure or whether other explanations must be found. We therefore return to figure 5.6 and the
accompanying integral in equation (5.7). This time we integrate over the whole filament and do
not approximate the function A(x, t). Furthermore we split the integral in three parts, one part
over the curved part of the filament, others over the top and bottom:∫

1

A(x, t)
dx =

∫ 1
2

R

1

A(x, t)
dx+

∫ R

−R

1

A(x, t)
dx+

∫ −R
− 1

2

1

A(x, t)
dx. (5.21)

Here we have used that the filaments have a normalized length of 1. In addition it is useful to
notice that t+ 2R = 1, so that all terms involving R can be rewritten to a dependency on t. In
the first and the last integral A(x, t) is a very simple function, namely A(x, t) = 1. Therefore
we find ∫

1

A(x, t)
dx = 1− 2R +

∫ R

−R

1

A(x, t)
dx = t+

∫ R

−R

1

A(x, t)
dx. (5.22)

For the curved part we change variables to φ using the fact that x = R sinφ. This yields∫
1

A(x, t)
dx = t+

∫ π
2

−π
2

R cosφ

t+ 2R(1− cosφ)
dφ = t+ 2

∫ π
2

0

R cosφ

1− 2R cosφ
dφ. (5.23)

This integral can be carried out exactly to yield∫
1

A(x)
dx = t+ 2

(
−π

4
+

1√
1− 4R2

tan−1

(√
1− 4R2

1 + 2R

))
. (5.24)

We want to have an expression that only depends on the filament thickness t, and therefore,
rewrite

G(t) =

∫
1

A(x, t)
dx = t−π

2
+

2√
1− 4R2

tan−1

(√
1− 2R

1 + 2R

)
= t−π

2
+

2√
t(2− t)

tan−1

(√
t

2− t

)
.

(5.25)
We see that G(t) is equal to the ratio of the length of the effective beam to its width. The
expression derived here has the nice feature that G(t)→ 1 for t→ 1, which is what we would
expect, since for t = 1 we are simply compressing a square without holes, and thus, the ratio of
length and width is the identity.
From this expression we find a different effective length, namely

L∗ = tG(t) = t

(
t− π

2
+

2√
t(2− t)

tan−1

(√
t

2− t

))
. (5.26)

Uni-axial compression

The corrected prediction of L∗ is plotted in figure 5.8 and it can be observed that it describes
the overall picture of the simulations much better than the original prediction by Day et al.[21],
which is expected since the original prediction makes assumptions which are only valid in the
limit of small t. However, the corrected prediction is still off and seems only to be correct for
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small t as well, for larger t it underestimates the simulated values. In the limit of t → 1 the
prediction and simulation seem to agree again and both converge to the expected value of 1.
The measurements seem to indicate that there are some other factors contributing to the exact
behaviour. One of these might be a non-uniform F over the filaments. The integrals then have
to include F (x) as well and this might change the predictions to better match the observations.
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Figure 5.8: Effective beam length estimation following equation (5.18) for uni-axial compres-
sion with the corrected prediction of Day et al.[21]. In addition to the experiments carried out
for this thesis, simulations from Coulais et al. have been added[22].

Bi-axial compression

Another key feature can be seen from figure 5.7, namely the difference between uni-axial and
bi-axial compression. The effective length for the uni-axial compression is always higher. This
can be understood by considering the Poisson’s ratio of the Holey Sheet and equation equation
(5.20). We see that ν plays a role in the effective beam length. Since ν relates the compression
and expansion of the x and y direction to each other, this offers the explanation of the different
behaviour of bi-axial and uni-axial. Since ν will lie in between 0 and 1 we can already anticipate
that L∗uni ≥ L∗bi from (5.20).
For the limit of really thin filaments t� 1 we can imagine that ν ≈ 0 because there is almost no
link between the horizontal and vertical beams. Therefore the compression in one direction will
have minimal influence on it’s orthogonal direction. When we take the limit t → 1 we shrink
the circles and will approximate a solid rubber material which is incompressible and therefore
has ν = 1. This explains the fact that L∗bi → 0 for t→ 1 as seen in the simulations. In between
these limits it seems that there is a competition between the effect of Poisson’s ratio, which
shrinks the effective length, and the geometrical extra contribution to the effective area, which
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makes the effective length larger.
We can find ν(t) from the uni-axial simulations and use it to rescale the effective lengths of the
uni-axial simulations. We see that they coincide with the actual bi-axial simulations. This is of
course expected since the effect of ν is purely a mechanical feature and has nothing to do with
the actual structure of the Holey Sheet.
The re-scaled uni-axial simulations using ν are plotted together with the original bi-axial com-
pression simulations and they collapse onto the same curve, see figure 5.9. Furthermore a new
predicted effective length is plotted based on the the aforementioned integrals. The only differ-
ence now being the region over which the integration is carried out. Since we perform a bi-axial
compression there is no room for the center islands to be compressed or to expand. Therefore
we propose to integrate over only that part of the filaments that is not bi-axially compressed as
sketched in figure 5.10. The function G(t) therefore changes to

G(t) =

∫
1

A(x)
dx =

∫ π
4

−π
4

R cosφ

1− 2R cosφ)
dφ = −π

4
+

2√
t(2− t)

tan−1

(√
t

2− t
tan
(π

8

))
.

(5.27)
A similar conclusion regarding the corrected prediction ofL∗ can be made compared to the uni-
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Figure 5.9: Effective beam length estimation following equation (5.18) for bi-axial compression
with the corrected prediction of Day et al.[21]. The uni-axial compression simulations are in
presented in re-scaled version using (5.20). Data from Coulais et al. has been added and re-
scaled as well[22].

axial case. It can be observed that it describes the overall picture of the simulations much better
than the original prediction, but it now seems to overestimate the effective length, the actual
simulations show therefore a more stiff response as shorter beams are harder to compress.
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Figure 5.10: Sketch of the beam filaments (in blue) which are considered to be responsible for
the effective beam length in the bi-axial compression simulations.

5.3.2 Method II: Critical Euler load
From the Euler elastica theory [23] we know that for a two dimensional beam which is com-
pressed at both ends, the predicted Euler buckling load is given by

Fc =
π2EI

L2
, (5.28)

where I is the two dimensional moment of inertia. Now using the relations between F and u
we can find an expression for the critical displacement,

uc =
1

k
Fc =

L

EA

π2EI

L2
=
π2I

AL
. (5.29)

Then we compare again to a uniform beam with length L∗ and width t. For this setting we have
that

I =
t3

12
(5.30)

and substituting all this in (5.29) we get the expression relating u and t,

uc =
π2

tL∗
t3

12
=

π2t2

12L∗
. (5.31)

Using this equation we can get L∗ from measurements of uc and t via

L∗ =
π2t2

12uc
. (5.32)

On first inspection of (5.31) we expect uc ∼ t2. However, since L∗ doesn’t have to be a con-
stant function of t we can try to capture deviations from perfect quadratic behaviour of uc in
the effective length L∗ of the beam. Figure 5.11 shows the computed critical displacements
for different filament thickness’s for both uni-axial and bi-axial compression. We can already
observe on first glance that the uni-axial case shows more similarities to a quadratic behaviour
than the bi-axial case, especially for moderate values of t.
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Figure 5.11: Critical buckling displacement as a function of filament thickness parameter on a
log-log scale for both uni-axial (red) and bi-axial (black) compression. Inset shows the linear
scale plot.

Uni-axial compression

We first compare the uni-axial compression critical loads with a t2 like behaviour in a log-log
plot, see figure 5.12. It can be seen that the simulations seem to collapse on a quadratic curve.
The relative error of this fit is quite small over a wide range of t.
As a result the calculated effective lengthL∗ using (5.32) will result in a nearly constant effective
length, see figure 5.14.

Bi-axial compression

For the bi-axial case we observe something very different, see figure 5.13. As t grows uc starts
to deviate from t2-like behaviour, which can be clearly seen by looking at the relative error of a
quadratic fit. We see that there is a peak in the critical displacement around t ≈ 0.4.
Whereas the difference between the uni-axial and bi-axial case could be explained by a mechani-
cal transformation for the first method, we observe here probably a more fundamental difference
between the uni-axial and bi-axial compression. Due to the coupling between the beams in the
horizontal and vertical direction the behaviour of the critical point might change as we have
observed.

Different effective lengths

Our previous results show that there is a difference in the behaviour of the critical displacement
depending on the type of forcing. We now try to see how the effective length defined by equa-
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Figure 5.12: Critical buckling displacement as a function of filament thickness parameter on a
log-log scale for the bi-axial compression and a quadratic fit (dashed). Inset shows the error
made in the fit relative the the value of the uc.

tion (5.32) behaves as a function of t. Indeed it seems that the estimated effective length for
uni-axial compression is nearly constant and has a value of about L∗ ≈ 0.5. For the bi-axial
case the effective length seems to start at 1.0, two times as high, but only to deviate from this
value quite quickly soon after t ≈ 0.1. It even reaches values larger than 1.0, which would mean
that we model the Holey Sheet as a beam with an increasing aspect ratio of width versus length.
The aspect ratio gives a rough indication for the softness of a beam, as slender beams are easy
to compress whereas thick beams resist more to compression. The predicted effective length by
Day et al. seems to be totally off, which is suspicious. The approximation should hold at least
for the slender limit of small t.
A possible explanation for these observations might be that we have been too quick in substitut-
ing formulas into each other in deriving (5.32). Since buckling is really a competition between
compression of the beam and bending of the beam there might be two different effective lengths
at work, both with different behaviour depending on t. We might need to consider one length
for compression and one for bending. In the article of Day et al.[21] they also derive different
expressions for bending and compression. However, these are related by a simple factor,

L∗bend =
3

16
L∗compress. (5.33)

Now the question is how these different length scales have to be incorporated in the calculations.
The stiffness of the pre-buckling phase is purely a result of compression and therefore we expect
the following to hold

k =
EA

Lcompress
. (5.34)
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Figure 5.13: Critical buckling displacement as a function of filament thickness parameter on a
log-log scale for the uni-axial compression and a quadratic fit (dashed). Inset shows the error
made in the fit relative the the value of the uc.

In contrast, the buckling of a beam really has to do with both the bending of the beam and its
compression. The question is at which force does it become energetically more favourable for
the beam to bend than to compress. Two possible forms of Fc can be proposed depending on
the interpretation of the L2 factor,

Fc =
π2EI

L2
bend

(5.35)

and
Fc =

π2EI

LbendL
, (5.36)

where L is now the length of the actual filament and thus equal to 1 in our case. The first one
can be derived by simply substituting Lbend for L. The other one can be motivated by a different
kind of modelling of the filaments, namely as beams with hinges, see figure 5.15. Since the
bending of the filaments is localized at the thin parts only, we can model this by a hinge part in
the beam. This model is likely to be valid only for small t where we expect deformations to be
localized whereas for larger t displacements will be more spread out over the filaments. We can
derive for this model a similar buckling equation by balancing the moments on the hinge. The
moment exerted by the force can be expressed as

M = F
L

2
sinα. (5.37)

Furthermore elastic theory predicts that

M = EIκ′, (5.38)
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Figure 5.14: Effective length as a function of filament thickness estimated by use of (5.32) for
both the uni-axial and bi-axial compression. In addition to the data the predicted value of L∗
as given by (5.19) is plotted which does not seem to match the data.

where κ′ is the curvature of the hinge. Since we are interested in the buckling point, we can
assume that the angle α is small. This allows us to approximate the curvature κ′ ≈ 2α

Lbend
. Only

the length of the hinge comes into play, since the curvature is due to the hinge only. As a result
we get a new relation for F ,

F =
4EI

LLbend

α

sinα
. (5.39)

This relation models the buckled phase, but we are interested in the actual buckling point. There-
fore we let α→ 0 and get an expression for Fc,

Fc =
4EI

LLbend
. (5.40)

The steps that follow to derive an expression for uc are similar to the ones we already saw and
therefore we immediately state that

uc =
4t2

12L

Lcompress
Lbend

. (5.41)

Therefore the actual expression for uc, not only for small t, is expected to be related to effective
lengths like

uc ∝
t2

L

Lcompress
Lbend

. (5.42)
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Figure 5.15: Model for the filaments as beams with a hinge part which will bend when the beam
buckles. The hinge part is modelled with a length Lbend which is supposed to be much smaller
than L. The angle that the beams make with the horizontal direction is denoted by α.

As a result, our earlier prediction L∗ is not a measure of an effective beam length, but actually
measures

L∗ = L
Lbend

Lcompress
. (5.43)

Now the prediction that Lbend ∝ Lcompress by Day et al.[21] implies that we actually should
measure a constant L∗ in the uni-axial case and this is exactly what we saw in figure 5.14. To
check how the different length scales come out of the simulations we plot Lbend from Lcompress
and L∗,

Lbend = L∗
Lcompress

L
. (5.44)

The result is presented in figure 5.16 and it shows that for small t the prediction of Day et al.
indeed seems to be valid. However, just as we saw in the earlier predictions, the validity of
the predictions is severely limited by the size of t. The bi-axial bending length turns out to be
bigger than that found for uni-axial simulations. Furthermore, the behaviour as t grows is very
different. It seems that Lbend increases quickly for moderate values of t, even to values above
1, the actual length of the filaments. This of course could be given as the explanation for the
difference in behaviour of the critical displacement uc between uni-axial and bi-axial. However,
this merely seems as shifting the problem from one parameter to another since no explanation
for the behaviour of Lbend could be found so far.
On the other hand we can use L∗ as a measure of the ratio between bending and compression
as we saw in (5.43). Therefore the fact that L∗ increases for the bi-axial case implies that it gets
more favourable for the beams to bend, and thus buckle, than to compress any further. A possible
explanation for this would be related to the Poisson’s effect.Whenever in the bi-axial case a part
of the material compresses, another part has to expand (remember that the material itself is
incompressible). However, less and less space remains available for this expansion, because in
all directions this expansion is taking place. Therefore this proposed geometrical effect might
result in a higher stiffness, an added geometrical stiffness, compared to the bending stiffness
and therefore we see a clear result of the attempts to break the symmetry in our forcing of the
system. It seems that this difference kicks in when bending of filaments becomes important.

5.4 Post-buckling phase: large deformations
In comparing the Holey Sheet to a beam we can also compare the behaviour after the buckling
point and see whether the modelling keeps valid. Since we now focus on the phase after the
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Figure 5.16: Effective bending length as a function of filament thickness estimated by use of
(5.44) for both the uni-axial and bi-axial compression. In addition to the data the predicted
value of Lbend as given by (5.33) is plotted.

beams or Holey Sheet has buckled we need to take large deformations into consideration. The
theory needed is therefore likely to be derived from finite strain theory and non-linear elastica
which is mainly out of scope for this thesis. Parts of these theories are even still in development.
However, we have the possibility to make a comparison to simulations and experiments on the
buckling of rectangular (thick) beams in order to see whether the beam-mapping still makes
sense.

5.4.1 Method I: Post-buckling stiffness
A relation between F and u in the post-buckling phase often involves a critical force Fc and
∆u = u− uc the displacement after the critical displacement. The form of this relations can in
general be written like

F = Fc (1 + S∆u) , (5.45)

where S is therefore the slope of the post-buckling phase of the F − u curve and can thus be
interpreted as the post-buckling stiffness. Different values for Fc can be used depending on the
model taken, but most common choices are the actual Fc or the predicted Euler critical force
(5.36). For the in-extensible beams, Euler elastica predicts a slope of 1

2
. The question is whether

this can be observed as a limit value for t → 0, just as we retrieved slender limit results in the
preceding sections.
In order to compare our results to beam experiments we have to rescale all measurements to
dimensionless quantities. For the slope, we rescale our measured slope by the critical force, as
mentioned before. For the width of our beam we introduce the dimensionless quantity aspect

62



ratio, which is equal to the width divided by the length for a ordinary straight beam. There is
however one problem with this aspect ratio, as we have now defined different effective lengths
depending on whether we compress or bend. It is not immediately clear which effective length
(and thus beam) we should use. However, in the post-buckling phase of beams it is mostly
bending which determines the behaviour and therefore we expect the same to hold for the Holey
Sheet. We thus calculate the aspect ratio by using Lbend. The results are shown in figure 5.20,
where S has been calculated from the measured slope in two ways. The first uses the measured
critical force and the second the calculated critical Euler load.
From the figures we can see that it seems that the limiting value is indeed 0.5 just as in-extensible
beam theory predicts. Therefore it seems that in the thin filament limit the Holey Sheet might
behave as an in-extensible beam. In this thin limit there is again no difference between uni-axial
or bi-axial compression just as we observed in the preceding sections. The likely reason for this
still being that in thin filament limit all displacements and stresses are that much localized at the
centers of the filaments that there is no coupling between the different directions of the beams.
It is also clear from the figures that if we want to compare the simulations to beams, the rescaling
by the Euler load gives better results. This should not come as a surprise, as we want to compare
our results to beams and therefore we need to use the effective critical force, the Euler load, as
well. If we thus use figure 5.20b, we can see that in fact the bi-axial compression seems to
fit the plain beam simulations, for values up to at least t = 0.20. In contrast, the uni-axial
compression is totally off, compared to plain beams. It thus seems that there is a breakdown in
the beam modelling after the buckling point, where we still can model the bi-axial compression
of a Holey Sheet as compressing beams, but not for the uni-axial compression.

(a) Holey Sheet under uni-axial compressiong
modelled as a network of beams coupled by
rigid nodes located at the connections between
the filaments.

(b) Beam model under uni-axial compression
in pre-buckling and post-buckling configura-
tion.

Figure 5.17: Possible explanation for the breakdown of beam modelling in the case of uni-axial
compression of the Holey Sheet, the Holey Sheet being equal to a network of coupled beams,
which in the post-buckling phase are interacting. Due to this interaction the single beam model
is likely to loose its validity.

This breakdown might be explained by the symmetry breaking induced by the buckling. As
we can see in figure 5.17, the modelling of the Holey Sheet as a beam, can in fact be viewed
as a network of beams connected by nodes in the center islands. When in the uni-axial case
a force is applied , work is done on the vertical beams by this force, both in the pre-buckling
and post-buckling phase. In the pre-buckling phase the horizontal beams do not contribute
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to the behaviour of the vertical beams, which are thus solely responsible for the pre-buckling
response and equal to the aforementioned effective beams. In the post-buckling phase, however,
we observe a connection between the horizontal and vertical beams, as the horizontal beams are
bend, although no work is done on this beams by the external force. These horizontal beams
exert a torque via the center nodes on the vertical beams due to this bending. Therefore the
response cannot be modelled any more as being the result of the compression of the vertically
aligned beams. The network beam modelling suggests that a coupled beam network should be
able to describe the post-buckling behaviour better, but the investigation of this idea was outside
the scope of this thesis.
The preceding results suggest that it might not be possible to compare the results of the post-
buckling phase to single beam models. Therefore we plot the results of the simulations without
rescaling to beam models as well, see figure 5.18.
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Figure 5.18: The measured slope rescaled by the measured critical force Fc as a function of
filament thickness t. The slope seems to cross 0 at t = 0.095, indicating the onset of snap-
through buckling.

First of all, it can be observed that now there is little difference between the uni-axial and the
bi-axial case. They both start near the predicted 0.5, although it is questionable whether this is
really the limit value that we observe. The slope then changes sign around t ≈ 0.095, resulting
in a negative stiffness. This is evidence for so called snap-through buckling. Snap-through
buckling is a special form of buckling where the solution ’snaps’ from one equilibrium solution
to another branch. For the Holey Sheet this occurs when the force displacement curve has
a peak and the force is increased beyond this peak. As the solution branch cannot make the
force increase more, a branch-switch has to occur, see figure 5.19. As a result a large (almost)
instantaneous displacement will be produced. This fast movement can prove to be applicable
in fast mechanical switches. The negative stiffness, if we use F = ku, results in a force which
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(a) Measured slope rescaled by the measured critical force.
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(b) Measured slope rescaled by the calculated critical Euler force (5.36).

Figure 5.20: Plot of the rescaled measured slope as a function of the aspect ratio. The as-
pect ratio for the Holey Sheet simulations is calculated by t

Lbend
, where Lbend is the effective

compression length as found by (5.44).
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assists the created displacement instead of opposing it, as one would normally expect.

F

0 u

F

0 u

Figure 5.19: Snap-through behaviour; while increasing the force the curve meets a peak and
therefore cannot both increase F and follow the curve. The result is that it skips a part of the
curve and thus u rises quickly. On the way back a similar behaviour can be observed, only now
when the curve meets a local minimum.

5.4.2 Method II: Force-angle relation
Another feature of the post-buckling phase which allows us to compare the Holey Sheet to beams
is the relation between the force F and an angle α. In the case of beams this angle α is defined as
the angle that the beam makes at the endpoints with the reference configuration, see f.e. 4.7. In
the case of the Holey sheet we measure the angle of rotation of the most central node, depicted
in figure 5.21. This provides a measure for the angle of the effective beam we try to model.

Figure 5.21: Measurement of the effective beam angleα is carried out by measuring the rotation
of the center nodes of the islands, depicted by red dots. These dots are the end point of the
center-lines (red dashed) through the filaments and are therefore a good candidate to represent
the effective beam bending angle.

Just as for the post-buckling slope, a relation between the forceF and the angleα can be derived,
and in fact it bears much resemblance to the post-buckling slope equation,

F = Fc
(
1 + κα2

)
. (5.46)
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We are interested whether this kind of relation also holds for the Holey Sheet. Furthermore,
the post-buckling slope showed a transition from ordinary buckling to snap-through buckling.
This should be observed in the force-angle curves as well, in the form of κ, as a function of t,
crossing zero.
The plot of F versus α, figure 5.24, shows that indeed there is a quadratic relation between the
two variables, as the quadratic fits match the observations very precise. In figure 5.24 it can be
clearly seen that indeed there is a transition between the ordinary buckling and the snap-through
buckling for both uni-axial and bi-axial compression, because the curves switch from curving
up to curving down for increasing t. This fact is due to the change of sign in κ. In order to
determine κ we use

F = Fc +Kα2. (5.47)

When fitting this equation we can find K and use a rescaled version of it to compare to beam
simulations. The classical Euler elastica then predicts for in-extensible beams that κ = 1

8
should

hold. Just as for the post-buckling slope we check whether this result shows up in the slender
limit. To do this we rescale K by the predicted Euler load just as we did for the post-buckling
stiffness. To match the bi-axial data to the plain beam results, we had to rescale κ by a factor
of 1

4
for some yet unknown reason. The result, 5.22, shows that for κ as well, the bi-axial case

seems to match the data much better.
We observe that just as for the post-buckling stiffness, the effective single beam theory cannot
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Figure 5.22: Plot of κ as a function of the filament thickness t, estimated by rescaling K found
in fitting (5.47) with the measured critical force Fc. The point where κ gets zero is the transition
between ordinary buckling and snap through buckling and seems to coincide with the transition
value for t found in the preceding section.

fully explain the results. The data of the Holey Sheet simulations do not follow the plain beam
line, and therefore, we plot, just as we did for the post-buckling slope, the data without rescaling
to aspect ratio, see figure 5.22. The same trend as in the preceding section can be observed,
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there is little difference between uni-axial and bi-axial compression. It is however, question-
able, whether the predicted slender limit value is really observed as the datapoints for small t
seem to be a little more noisy. This could be due to the fact that the extraction of the angle α
for small t is more troublesome than for large t, as the simulations are more sensitive to numer-
ical errors since small perturbations can already induce buckling and thus large deformations.
The transition from ordinary buckling to snap-through buckling seems to be consistent with the
post-buckling data, giving a value of t ≈ 0.95.
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Figure 5.23: Plot of κ as a function of the aspect ratio, estimated by rescaling K found in
fitting (5.47) with the critical force. The point where κ gets zero is the transition between ordi-
nary buckling and snap through buckling. In addition, plain beam simulations are given and a
prediction based on non-linear elasticity [22].
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(a) Uni-axial compression.
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(b) Bi-axial compression.

Figure 5.24: Plot of F
Fc
− 1 versus α for different values of filament thickness t for both uni-

axial compression and bi-axial compression. The quadratic fits are plotted (dashed) as well
and agree very well with the simulations, indicating that indeed there is a quadratic relation
between F and α. A transition between ordinary and snap-through buckling can be observed
as the zero-line is crossed for t around 0.1 in both cases.
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Chapter 6
Conclusion and outlook

6.1 Conclusion
In this thesis we studied the buckling-behaviour of the Holey Sheet using numerical simulations.
The response of the Holey Sheet basically splits in two parts, pre-buckling and post-buckling
divided by the buckling point. We analysed these two phases separately. In order to neglect
large wavelength deformations or inhomogeneities we focused on an unit cell, with which the
Holey Sheet can be tiled, see figure 6.1. Of special interest for this thesis was the effect of the
geometry on the response, i.e. the hole size or the thickness t of the filaments separating the
holes.

t

Figure 6.1: The undeformed computational unit cell as used for this thesis.

Although numerical buckling analysis often poses challenging problems[24], we were able to
successfully devise a scheme to create batch simulations, exploring the parameter space of t.
This was done without the need to introduce imperfection as is often customary, but gives results
not accurate enough for our purpose. The force-displacement curves acquired using numerics
showed much resemblance to those of (thick) beams. The natural research question, therefore,
was whether an effective single beam theory could be devised, such that the effective beams
have an identical response to compression as the Holey Sheet.
We performed two different mechanical tests in this thesis, namely uni-axial and bi-axial com-
pression, since these are the only ones which initiate buckling in the Holey Sheets. The key
results from this thesis are partial answers to the question whether effective beam theory works
to describe the Holey Sheet. Overall we could conclude that no unambiguous answer could be
given.
First of all, we found that effective beams can be defined such that they correctly describe the
pre-buckling phase. However, one must note that in this phase two different effects, namely
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compression and bending of the filaments, compete with each other in determining the final
response. In order to incorporate both effects in the modelling of the overall response, we had
to define two different effective beams, for each of these different deformations. An old theo-
retical model [21], which predicts the effective beams dimensions based on the geometry of the
Holey Sheet, seemed to be effective only in the limit of slender filaments separating the holes.
We proposed corrections to these predictions and these were able to yield better predictions,
especially in the bi-axial case.
Secondly, it was more troublesome to match the post-buckling behaviour of the unit cell to ef-
fective beams. A possible explanation for this breakdown in modelling relied on the fact that
due to the symmetry-breaking induced by the buckling, a coupling between the horizontally
and vertically aligned filaments arises which is not present in the pre-buckling phase. Due to
this coupling, single beam theory is not expected to yield correct results. This discrepancy was
predominantly observed in the uni-axial case. In the bi-axial case the results were closer to
that of plain beams, if we modelled the Holey Sheet behaviour as if it was dominated by de-
formations due to bending of the filaments. Finally, despite the fact that effective single beam
modelling could not account for the correct response in this phase, we observerd a very inter-
esting phenomena in the simulations. It was found that a transition between ordinary buckling
and snap-through buckling occurred at t ≈ 0.095. This onset of the non-standard snap-through
buckling for already small filament thicknesses t could prove to be interesting for future appli-
cations.

6.2 Outlook

To begin with, a solution to the mismatch of beams and the Holey Sheet could be to include
multiple beams instead of single beams. As we expect that the breakdown of effective single
beam modelling was caused by a buckling-induced coupling between beams in different direc-
tions, a starting point of further research could be the behaviour of a coupled beam system, such
as the Roorda-frame[25]. The coupling is expected to be mainly governed by a torque mutu-
ally applied by the beams via the rigid center islands. Therefore, the effect of torque on the
endpoints of beams should be included as well in the study of coupled beams. The effect of
torque on single beams has been studied recently in [19] and this work should then be extended
to coupled beams.
Furthermore, as there seems to be good agreement between the pre-buckling response of beams
and the Holey Sheet, one could try to further optimize the predictions, initiated by Day et al.[21].
The simulations show that the predictions by [21] are only valid for a very small range of t and
it is interesting to see whether they can be extended. Especially for the effective bending length,
there is room for improvement, as we have only calculated new predictions, concerning non-
localized strains, for the effective compression length.
Additionally, we observed that, although the general behaviour of the computational unit cells
coincided to great extent with that of the Holey Sheet, there is a difference in the exact post-
buckling response. Since we have only focused on small-wavelength deformations, it might be
interesting to see what the response in simulations would be of larger size computational do-
mains. Laboratory experiments have shown that the onset of buckling is a localized phenomena,
see 6.2, and spreads out over the whole Holey Sheet gradually. These observations hint at in-
fluence from inhomogeneities or edge effects in the overall behaviour. This could be included
in the simulations on more extended computational domains.
To conclude, an interesting new approach to explain the overall behaviour of the Holey Sheet
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Figure 6.2: Still from an uni-axial compression experiment of a 30 by 30 Holey Sheet. The
depth of the sheet is 3.1 cm, the hole size is 2.55 mm and the filament thickness is 0.45 mm. The
pattern transformation spreads out gradually over the whole domain, instead of occurring at
once at every spot in the material. It seems that inhomogeneities at the edges of the Holey Sheet
play an important role in the onset of the buckling behaviour as well.

could be the method of homogenization[26]. This method approximates the behaviour of a het-
erogeneous material by that of an homogenized fictive material. The properties of this homoge-
nized material should be approximately equal to that of the original material. The homogenized
material is often chosen to represent the average of the microscopic effects taking place. There-
fore, we could chose to use the unit cell of the Holey Sheet, as used in this thesis, as a possible
input for the homogenized material. Already much of the behaviour of the original response of
the Holey Sheet seems to be present in the unit cell and the method of homogenization might
prove to be successful in extending this results to include large-wavelength effects.
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