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Abstract. The deformation of elastic beams in confined spaces has a wide range of appli-

cations in, inter alia, health care and the petroleum industry. Historically, the literature has

mainly focussed on one-dimensional beams models [8, 9, 18]. This paper, however, follows a
different approach, as we focus on two dimensional hyper-elastic beams confined by a set of

parallel plates. Due to non-linearity of the governing equations, a finite element approach,

implemented in FEniCS [13], is used to find numerical solutions to the model equations.

1. Introduction

Materials exhibiting considerable deformations under a load are of utmost importance in a
wide range of engineering problems. Examples being the possibly disastrous failure of structures
due to buckling or the use of a flexible endoscope in medical imaging. Historically attention has
predominantly been focussed on geometrically unconstrained materials, i.e. materials for which
the deformation is unbounded by external influence. However, as the endoscopy example shows, it
might be necessary to consider the bending of material under external domain constraints, in this
case the patients organ. Other examples of constrained material bending are the production of
textured yarn by use of a stuffer-box [14], the treatment of arterial atherosclerosis by angioplasty
and the use of drill-strings in the petroleum industry.

The investigation of bending materials has a long mathematical history and can be considered
as one of the key problems in elasticity theory. One of the first rigorous mathematical treatments
of a sub-problem in solid mechanics is that of the bending and buckling of unconstrained slender
elastic beams, i.e. beams for which deformations are reversible, and goes all the way back to
the work of Euler. Euler’s treatise, which builds upon earlier work by members of the Bernoulli
family, describes one-dimensional curves under (arbitrary) elastic deformations [12].

Extensions of Euler’s elastica to constrained beams have been made in the past few decades
settling certain uniqueness issues [16], deriving analytical results in special cases [8] and perform-
ing a numerical exploration of the bifurcation structure [9]. Although the formalism set out by
Euler yields an acclaimed analytical theory of beam curves in the unconstrained case, it only
describes slender beams and thus only covers a small subset of the problems encountered in our
world. To treat materials which extend into more than one dimension, more general models in
elasticity theory have to be used.

This paper explores parts of the bifurcation structure of geometrically constrained beams
in two dimensions. As we are interested in the behaviour of elastic materials under possibly
large deformations due to buckling we focus on a specific model in finite elasticity theory which
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describes hyper-elastic materials. The resulting model equations can become highly non-linear
and they are thus studied by means of numerical simulations using the finite element method.

2. Geometrically constrained hyper-elastic beams

The cornerstone of modelling in solid mechanics is often the set of Newton’s laws applied to
the solid object under the continuum assumption. Newton’s laws, however, leave the system
under-determined and thus need to be accompanied by constitutive laws to close the system of
equations. The most common set of constitutive equations used relates the strain, a measure for
deformation, and stress in the material.

The simplest model uses a linear stress-strain relation, known as Hooke’s law for solids which
results in the theory of linear elasticity. We are, however, interested in the material behaviour
under finite deformations and hence need to consider an extension of the linear theory known as
finite strain theory. This theory accounts for both geometric non-linearity due to large deforma-
tions and non-linearity inherent to material properties.

2.1. Hyper-elasticity. Given a solid body Ω ⊂ Rn we define a displacement field u : Ω → Rn

which will transform the undeformed body Ω to a deformed body Ω′ ⊂ Rn. This displacement
field can be decomposed into a rigid-body displacement, consisting of translations and reflections,
and a deformation, which changes the body-shape. Using this decomposition, we define the
deformation gradient tensor F = I + ∇u, which can be used in the linearisation of the true
deformation.

Inherent to deformations one can define a potential energy functional due to the material
deformations, the internal strain-energy density functional W (F). For hyper-elastic materials it
is assumed that from this potential energy a constitutive law for the stress in the material can be
derived [15]. In doing so we could close the set of PDEs derived from Newtons law by combining
them with these constitutive equations.

There is, however, an equivalent formulation of the equations which uses the principle of
virtual work [15] and this lends itself very well to the method of finite elements (FEM) that will
be used for numerical simulations. Given the internal strain energy we can construct the total
potential energy Π of the solid body

(1) Π(u) =

∫
Ω

W (F) dΩ +

∫
Ω

u · f dΩ +

∫
∂Ω

u ·TdS,

here f ,T are the external body and surface force densities respectively and their integrals comprise
the external contributions to the potential energy. For the rest of the paper we will consider the
problem without any external force contributing to the potential energy.

Now, the principle of virtual work is applicable in the case of a stationary deformation, which is
what we are interested in. It states that for any displacement field satisfying the correct boundary
conditions (which are problem dependent) the potential energy will attain its minimum at the
equilibrium solution.

By defining a function space U such that for all u ∈ U the boundary conditions are satisfied,
we can consider the problem of finding an equilibrium solution to be equivalent to finding

(2) ũ = arg min
u∈U

Π(u).

So far the internal strain energy has been discussed in its full generality, but in order to
construct a more concrete model one needs to consider an explicit form of the strain energy.

Neo-Hookean model. A commonly used model for the strain energy is the Neo-Hookean model,
which simplifies to Hooke’s law for small displacements. Furthermore, it has the desirable prop-
erty of being an objective functional, i.e. it is independent of an orthogonal transformation of
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coordinates such as rotations. As a result, it can only depend on invariants of the tensor F or
tensors derived from this [15]. A frequently used form for two dimensions is given by

(3) W =
µ

2

(
J−1Ic − 2

)
+
K

2
(J − 1)2.

Here µ,K are the shear and bulk modulus respectively, which are material parameters. The
tensor invariants are Ic = Tr(FTF) and J = det(F). The elastic moduli can be expressed in
terms of the more widely used Poisson’s ratio ν and Young’s modulus E. In this paper we assume
a plane stress formulation, and use [10] to find the bulk and shear modulus in the case of ν = 0.3
and E = 1 GPa.

2.2. Box-constraints. Analogous to Pocheau & Roman [18] we consider the set-up depicted in
Figure 1 of an hyper-elastic beam constrained by two parallel plates a distance Y apart. We
can then control the separation of the plates Y and the displacement u of the endpoints of the
beams. We thus impose a Dirichlet boundary condition on u at the ends of the beam. As noted
by Pocheau & Roman this will only yield symmetric solutions around the center of the beam. To
ensure this numerically (and to gain a factor two computationally) we can consider just a half
beam with the appropriate boundary conditions enforcing a reflection symmetry. Due to friction
effects and perturbations of the symmetry we can observe asymmetrical equilibrium solutions in
nature, see for example [18], but this is outside the scope of this paper.

In performing a non-dimensionalisation we can choose to rescale by any natural length scale.
The choice made in our formulation is to take L as the length scale, effectively enforcing L = 1.
Subsequently, the beams are characterised by their slenderness ratio d/L.

L

d

Y

(a) Uncompressed beam

u u
Y

(b) Constrained buckled beam

Figure 1. Situation sketch of the hyper-elastic beam of length L and width
d. The beam is constrained by two horizontal plates a distance Y apart and
the endpoints are displaced by a distance u which can yield constrained buckled
states which differ qualitatively from unconstrained observations.

Note that the experimental set-up for our two-dimensional problem would correspond to a
one-dimensional beam problem with clamping boundary conditions at the endpoints, which is
the specific set-up studied by Pocheau and Roman [18]. Results in the limit of infinitely slender
beams, i.e. d/L� 1, are thus expected to agree with this simplified one-dimensional model. We
are, however, not aware of any (numerical) results on the bifurcation structure for one-dimensional
clamped-clamped boundary conditions.

3. Numerical simulation

3.1. Finite elements using FEniCS.

Variational form. The problem of finding a solution to (2) is solved by employing the finite
element method (FEM). In order to use this method we first note that (2) implies that at the
equilibrium we must have that the Gâteaux derivative of the energy functional vanishes for all
admissible displacement fields, i.e.

(4) 0 = dΠ(ũ;v) =
d

dh
Π(ũ + hv)

∣∣∣∣
h=0

,
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for all v ∈ U . Under the assumption that Π(u) is Fréchet differentiable, this gives us the following
variational formulation of the problem

(5) find u ∈ U such that G(u;v) = 0 ∀v ∈ U,

where G(u;v) = dΠ(u;v) is a semi-linear functional in the second argument, i.e. linear in v.
This variational formulation can now be used to apply the FEM. In short, the infinite dimen-

sional function space U is discretised, i.e. we take a finite dimensional subspace Uh ⊂ U and
solve (5) with Uh instead. As G is non-linear in the first argument we will have to use non-linear
solver techniques such as Newton’s method with some globalising strategy to solve the discretised
system.

FEniCS and discretisation. The practical implementation of the FEM is done using FEniCS [13],
an automated programming environment for solving differential equations using FEM, which we
control using a Python interface.

We need to supply the variational form (5) and the FEM discretisation to be used. FEniCS
then assembles the discretised system of FEM equations which can be solved using numerical
linear algebra software, in this case we used the PETSc toolbox [3, 4, 7] in combination with the
MUMPS package [1, 2]. To solve a constrained problem we use a variational inequality solver in
PETSc which uses a reduced space active set method [5].

We discretise the domain using right triangles, see Figure 2 and use Lagrange elements, P1

or P2, to approximate the solution. Note that we anticipate the solution to be smooth as do
not incorporate cracks or fractures in our model. As a consequence we should expect a smooth
deformation field. Therefore we chose for the main results to use the higher order elements, P2 in
this case, hoping to acquire a higher order of convergence, as is indicated in the following section.

Figure 2. Structured right triangular mesh on a beam with slenderness ratio
0.1 constructed by FEniCS using 20 elements in the horizontal direction and 2
in the vertical direction.

3.2. Convergence. The convergence of the numerical discretisation was tested using the method
of manufactured solutions (MMS) [17]. In a nutshell, having a numerical simulation, one would
like to compare the results with known analytical solutions to check for a correct implementation
and order of convergence. Exact solutions are generally not available for non-linear problems,
but MMS allows us to tweak the problem so that we do have an analytical solution.

Suppose we are given a general equation

(6) L(X) = 0.

If we pick any X̃ satisfying the correct boundary conditions, then we note that in general L(X̃) 6=
0. From this, however, we can construct a related equation for which we do know the exact
solution

(7) L(X) = b,
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where b = L(X̃) is now a source term. So we numerically solve the system L(X)−b = 0 instead
of the original system. That way we can compare the numerical results with a known analytical
solution X̃ to find the convergence rates of the discretisation.

We choose our analytical test function to be one that lacks symmetry and is not a polynomial
in one of the spatial variables, namely:

(8) uMMS =

(
A
[
1− 2x2 + 0.2 sin(2πx)

]
, B

[
1− cos

(
2πx

(1 + x(1− x))4

)])T

,

where A,B are such that the function satisfies the bounds set by the box. We test on a beam
with slenderness ratio 0.1 and Y = 0.2. The results are depicted in Figure 3 and show that the
theoretical convergence rates for Lagrange elements as found in [6] are achieved, indicating a
correct implementation.
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Figure 3. Convergence test using MMS. Shown is the convergence of the nu-
merical solution uh towards the test solution (8) in the L2-norm for first and
second order Lagrange elements as a function of the maximal edge length hmax

of the elements. Dotted reference lines show the theoretical convergence rates
as predicted in [6], O(h2) for P1-elements and O(h3) for P2-elements.

3.3. Results. Our model allows for the independent variation of both the horizontal compression
u and vertical wall separation Y . We chose to look at the situation for fixed Y and compress the
beam in the horizontal direction. Note that as we use a Newton solver to find the equilibrium
solutions we need sufficiently good initial guesses to have our solver converge. In order to do so
we employ a continuation scheme in u tracing out solutions for different horizontal loadings.

As observed by Domokos, Holmes & Royce in the case of a one-dimensional beam there is a
clear distinction in the buckling behaviour of the beam depending on Y [8]. As sketched in Figure
1, the beam is likely to form a flat part on the top of the box. There appears to be a critical
Yc such that for Y < Yc this flat part can buckle, whereas for Y > Yc this will not happen. A
possible explanation given in [18] is that the tension on the flat part becomes too small in the
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latter case to induce buckling. We observe a similar effect for extended hyper-elastic beams and
will thus treat the results separately, although the status of an actual critical separation distance
is merely a conjecture.

Large vertical separation Y . First we consider a beam with slenderness ratio 0.01. Note that as
Y becomes very large the problem becomes effectively unconstrained by the upper wall. The
only remaining constraint is the requirement that the vertical component of u is positive.

We expect therefore that there is a resemblance between the constrained beam with Y > Yc
and the unconstrained beam buckling, where we only consider the upward buckling modes of the
unconstrained beam. See Appendix A.1 for examples of the buckling modes occurring.

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
load u
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Π
(u
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Y=0.4(1st mode)

Y=0.4(2nd mode)

3rd mode

1st mode

2nd mode

4th mode

(a) Yc < Y = 0.04
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Y=0.3(1st mode)

Y=0.3(2nd mode)

3rd mode

1st mode

2nd mode

4th mode

(b) Yc < Y = 0.03

Figure 4. Potential energy Π(u) as a function of the horizontal loading u for
a hyper-elastic beam with slenderness ratio 0.01. The separation distance Y
is in both cases large enough so that the beam behaves (nearly) as beam in
constrained to the upper half-plane. The dashed lines indicate the energy in the
unconstrained case. Note that every dot represents 5 continuation steps in u.

Indeed this is what is observed in Figure 4, where we can clearly see that the constrained
energy functional remains very close to the unconstrained energy functional, indicating that the
upper wall’s effect on the beam is small. The separation in energy between the second and first
mode remains too large to induce a transition via buckling as expected. Note however that there
is a difference between the unconstrained case and our model problem, which appears as soon
as the unconstrained beam curve hits the bounding walls, the beam has to conform to the box-
bounds which as a result increases the energy potential of the beam due to a more unfavourable
bending configuration.

Based on these observations we could think that the bifurcation structure of the beam is
purely governed by unconstrained beam-buckling. However, an interesting side effect of the
two-dimensionality of the beam is that it appears that the so-called zero solution, which only
compresses in the horizontal direction without buckling, is not longer a valid solution. This might
due to the Poisson effect (an effect which is absent in one-dimension), which makes the beam
expand in the vertical direction upon compression in the horizontal direction. This will likely
yield a perturbation on the local bifurcation structure close to the initial state. Although we
have not checked this in full detail numerically, we expect that the higher order modes in this
case emanate from the first mode.
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Induced buckling by walls. As the separation distance Y decreases the constrained energy curve
separates from the unconstrained beam curves for lower loading values. As noted in experiments
[18] this can result in an extra bifurcation point which makes the solution buckle from the first
mode to the second mode. In order for this to happen we need to find a smooth curve connecting
the two solution branches. As this wall-induced buckling is observed in experiments we can
expect that the second buckling mode becomes energetically more favourable at a certain critical
loading value. A good indication on whether this type of buckling can occur is therefore the
relative potential energy of the both modes. As can be seen from Figure 5, there is indeed a
transition between 0.14 < Y < 0.2 where the second mode becomes energetically more stable.
This is merely an indicator of the actual wall-induced buckling as the problem of finding the
connecting branch, however, proves to be very challenging. It seems to be very sensitive to
correct initial guesses and finding a robust way to find the connecting branches remains a subject
of further research.
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(a) Yc < Y = 0.2
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(b) Yc < Y = 0.14

Figure 5. Potential energy Π(u) as a function of the horizontal loading u for a
hyper-elastic beam with slenderness ratio 0.01. The separation distance Y is not
large, and thus the beam separates from the unconstrained curve for moderate
values of compression. Note that every dot represents 5 continuation steps in u.

Formation of kinks. In the case of sufficiently thick beams we observed that the convergence
using P2 elements would halt at a certain point of substantial loading. Switching to P1 elements
to anticipate a possible loss of smoothness we found that the stagnation point coincided in most
cases with the formation of kinks in the beam, see Figure 6.

The formation of these non-smooth parts in the beam deformation is the onset of a breakdown
of our model equation as we can see that the beam almost starts to become self intersecting,
which is of course physically prohibited. An extension of the model would have to be made which
adds self-interaction in the energy potential.

4. Conclusion

In this paper we started a numerical exploration of the bifurcation structure of hyper-elastic
beams confined in a box. The problem of solving the hyper-elastic equations subject to the box
inequalities is numerically challenging and more work can certainly be done. Of special interest
is the question whether we can find a robust way to find multiple solution branches if they exist
and finding ways how to connect these branches in bifurcation points.
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(a) u = 0.12 (b) u = 0.16

(c) u = 0.2

Figure 6. Formation of kinks in a thick beam with slenderness ratio 0.1. De-
formed beam shapes generated using the calculated displacement field as found
using P1 elements.

Although we did not focus on the slenderness ratio in this paper, it is interesting to see the
influence of this parameter on the solution structure, as is shown by the appearance of kinks for
thick beams. As thick beam theory is less well-developed this could be an interesting angle for
further research.

Another obvious extension of the work carried out in this paper is making a full three dimen-
sional simulation of beams or sheets constrained by boxes or tubular systems. This can open the
door to a whole range of new phenomena such as helical buckling as studied for a one-dimensional
Cosserat beam by Thompson et al. [19]. The implications of performing a numerical simulation
of three dimensional hyper-elastic beams would be that direct solution methods for the linear
systems arising in the process will turn computationally infeasible and thus (preconditioned)
iterative solvers have to be employed.

As noted by Katz & Givli [11] the constraints in biological systems are often not rigid walls, but
for example deformable artery walls. This would ask for an extension of the model by allowing
the box constraints to deform as well. One idea might be to supplement the beams potential
energy with a potential energy due to the deformation of the wall, thereby coupling the wall
dynamics with that of the beam.
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Appendix A. Appendix

A.1. Beam shapes. The beam shapes depicted in the following figures are acquired by using
the actual numerically simulated displacement field on a beam with slenderness ratio 0.01. The
displacement field can be used to map the original beam into the shapes depicted here.

1st mode. The first buckling mode is shared by both the unconstrained and constrained problem
as the displacement field is purely positive initially. As this is the state with the lowest potential
energy, this will be the configuration observed in nature if no precautions are taken to find
different solutions.

As noted in section 3.3, it is in the constrained case that the wall can induce an extra bifur-
cation linking the 2nd mode and the first mode by letting the flat part buckle. The tension on
the flat part could be too small to induce this buckling in which case the beam curve depicted
in Figure 7(f) will be found.

(a) small load (b) medium load (c) high load

(d) small load (e) medium load (f) high load

Figure 7. First buckling mode for both the unconstrained ((a)-(c)) and con-
strained beam ((d)-(f)).

2nd mode. Note that the second mode for the constrained cases coincides with what is often
called the 3rd mode for the unconstrained case. The second mode for the unconstrained case is
not allowed by the box constraints as it has negative displacements.

(a) small load (b) medium load (c) high load

(d) small load (e) medium load (f) high load

Figure 8. Second buckling mode for both the unconstrained ((a)-(c)) and con-
strained beam ((d)-(f)).

Higher modes are a trivial extension of the modes depicted here, simply involving more wrinkles
due to buckling.



10 C. H. L. BEENTJES

References

1. Amestoy, P., Duff, I., L’Excellent, J.-Y. & Koster, J. A Fully Asynchronous Multifrontal
Solver Using Distributed Dynamic Scheduling. SIAM Journal on Matrix Analysis and Ap-
plications 23, 15–41 (2001).

2. Amestoy, P., Guermouche, A, L’Excellent, J.-Y. & Pralet, S. Hybrid scheduling for the
parallel solution of linear systems. Parallel Computing 32, 136–156 (2006).

3. Balay, S., Gropp, W. D., McInnes, L. C. & Smith, B. F. Efficient Management of Parallelism
in Object Oriented Numerical Software Libraries in Modern Software Tools in Scientific
Computing (eds Arge, E, Bruaset, A. M. & Langtangen, H. P.) (Birkhäuser Press, 1997),
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play of computation and analysis. Computer Methods in Applied Mechanics and Engineering
170, 175–207 (1999).

10. Jasluk, I, Chen, J & Thorpe, M. F. Elastic moduli of two dimensional materials with polyg-
onal and elliptical holes. Applied Mechanics Reviews 47, S18–S28 (1994).

11. Katz, S. & Givli, S. The post-buckling behavior of a beam constrained by springy walls.
Journal of the Mechanics and Physics of Solids 78, 443–466 (2015).

12. Levien, R. The elastica: a mathematical history tech. rep. UCB/EECS-2008-103 (EECS
Department, University of California, Berkeley, 2008).

13. Automated Solution of Differential Equations by the Finite Element Method (eds Logg, A.,
Mardal, K.-A. & Wells, G.) (Springer-Verlag Berlin Heidelberg, 2012).

14. Lord, P. R. Handbook of Yarn Production: Technology, Science and Economics (CRC Press,
2003).

15. Ogden, R. W. Non-Linear Elastic Deformations (Dover Publications, 1984).

16. Pocheau, A. & Roman, B. Uniqueness of solutions for constrained Elastica. Physica D:
Nonlinear Phenomena 192, 161–186 (2004).

17. Roache, P. J. Code Verification by the Method of Manufactured Solutions. Journal of Fluids
Engineering 124, 4 (2002).

18. Roman, B. & Pocheau, A. Postbuckling of bilaterally constrained rectangular thin plates.
Journal of the Mechanics and Physics of Solids 50, 2379–2401 (2002).

19. Thompson, J. M. T., Silveira, M., van der Heijden, G. H. M. & Wiercigroch, M. Helical
post-buckling of a rod in a cylinder: with applications to drill-strings. Proceedings of the
Royal Society A: Mathematical, Physical and Engineering Sciences 468, 1591–1614 (2012).


	1. Introduction
	2. Geometrically constrained hyper-elastic beams
	2.1. Hyper-elasticity
	2.2. Box-constraints

	3. Numerical simulation
	3.1. Finite elements using FEniCS
	3.2. Convergence
	3.3. Results

	4. Conclusion
	Appendix A. Appendix
	A.1. Beam shapes

	References

