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thesis as its pièce de résistance. Looking back, I am indebted to countless
people and institutions for their support and advice along the way. Too
many, I realise, to recognise all individually; my apologies, but your aid
and friendship is acknowledged nonetheless.

First of all, I would like to express my deepest gratitude to my supervisor
Ruth Baker for her guidance through good and bad times, her enthusiasm
and care in supervising, and above all for supporting me to become an
independent researcher. A wise man once wrote non omnia possumus
omnes, but thanks to her help I know a thing or two about academic
research at last.

I would like to gratefully acknowledge the funding received from the
Clarendon Fund and New College. Additional support for travel and
collaboration was provided by the Mathematical Institute, Oxford; the
Society for Mathematical Biology; the Isaac Newton Institute for Mathe-
matical Sciences, Cambridge; the International Centre for Mathematical
Sciences, Edinburgh; UK MultiScale Biology network and the MATRIX
institute, Australia. Trinity College also deserves a special mention for
giving me the opportunity to teach during my final years and, as a bonus,
for welcoming me to their fantastic Senior Common Room.

In addition, I must thank New College for providing me with a (forever)
home (not just in the literal sense) and the most stimulating postgraduate
environment I could have ever wished for. I would also like to thank St.
Catz MCR football team, the NC croquet swaz team and Kees’ infectious
love of cycling for keeping me moving rather than slowly glueing to my
desk. Furthermore, many thank yous go to those friends whose paths I
was lucky enough to cross at some point during our time in Oxford. In
particular, I would like to thank Matteo for his friendship, time, helpful
discussions and insights (maybe, one day, we will write a paper together!).

Pa, Ma, bedankt voor alle steun in het najagen van mijn dromen, zowel
academisch als daarbuiten. Zonder jullie goede zorgen had ik nooit zo ver
kunnen komen.

Finally, Lauren, you have been there all along the way for me in more
ways than you can possibly imagine. Keeping me sane in times of despair
and sharing with me life in all of its foolishness in times of joy, thank you.

And now for something completely different.



The bottom line for mathematicians is that the architecture has to

be right. In all the mathematics that I did, the essential point was

to find the right architecture. It’s like building a bridge. Once the

main lines of the structure are right, then the details miraculously fit.

The problem is the overall design.

Freeman Dyson (1923-2020)



Abstract

In recent decades stochastic models have become an indispensable tool
when analysing quantitative biological data, which are often subject to
noise, both from intrinsic and extrinsic sources. Though such models
generate richer, and perhaps more realistic, behaviour than their coun-
terpart deterministic models, they are also inherently more difficult to
study. Since exact solutions describing the dynamics of stochastic models
are scarce, one is often forced to resort to simulation of these models using
Monte Carlo methods, which are generally easy to implement. However,
the output of such computational methods is itself subject to statisti-
cal error, and consequently it is often computationally demanding to get
numerical predictions from stochastic models to a satisfactory degree of
accuracy.

In this thesis we therefore consider methods that improve the efficiency of
stochastic simulation algorithms, specifically in the context of well-mixed
chemical reaction network models. We primarily achieve this by utilising
variance reduction techniques to reduce statistical error in the outputs
of simulation algorithms without incurring extra computational costs. In
particular, as our key contribution, we study three different ideas leading
to more efficient simulation approaches.

Firstly, we derive an efficient implementation of the uniformisation techni-
que for continuous-time Markov chain models. Using stratified sampling
we can leverage the extra structure in a uniformised chemical reaction
network to subsequently produce a more efficient simulation method. In
addition we show how to use the uniformisation technique to reduce sta-
tistical error via what is effectively a low-pass filter.

Secondly, we study the synthesis of quasi-Monte Carlo methodology with
simulation methods for chemical reaction network models. Whilst such
methods can significantly improve efficiency, we show that, due to the
problem structure of chemical reaction network models, care must be
taken in the specific implementation choices, both regarding the quasi-
Monte Carlo techniques and simulation methods.

Lastly, we provide a significantly improved method for generating unit-
rate Poisson processes via Poisson bridge constructions in combination
with antithetic sampling. This method is subsequently used to improve
the efficiency of standard simulation algorithms for chemical reaction net-
works.
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Chapter 1

Introduction

In the past decades research in molecular biology has generated vast amounts of

quantitative data. This growing amount of data has inspired the development of a

variety of mathematical modelling and simulation techniques aiming to support the

experimental study of the intricate processes taking place in cells and other molecular

systems. As a result we now often have the option to carry out pen and paper analysis

or perform in silico experiments alongside the more traditional in vivo and in vitro

approaches to study complex cellular pathways, giving us a detailed view of the

different components in these often intricate networks [219].

When modelling chemical reaction kinetics, which form a key building block for

intracellular pathways and intercellular interactions, we can take a wide variety of ap-

proaches, varying in detail and complexity [199]. One specific feature which nowadays

appears prominently in many such models of chemical reaction networks is random-

ness, for example in the context of gene expression [146, 177] and cellular decision

making [16]. The aim of including randomness is to mimic the effects of intrinsic

and extrinsic noise sources present in molecular systems, as found in experiments [25,

57, 147, 168]. Though the analysis of a stochastic model is often more challenging

compared to a similar deterministic model, it is easy to make a case for the relevance

of stochasticity as it can be responsible for a wide variety of observed phenomena that
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are not present in deterministic counterpart models, such as stochastic focussing [170],

multistable species distributions [24, 54] or resonance-inducing oscillations [102].

1.1 Challenges

The addition of noise, however, also comes at a price in terms of our ability to analyse

models relevant to quantititative biological data. Despite considerable effort from

the scientific community, analytic solutions to stochastic models remain few and far

between. For example, standard models for gene expression without extrinsic noise,

which could be considered to be of relatively simple nature, have only been solved

under limiting assumptions, e.g. [196]. To study more detailed or complex models

we therefore often have to resort to in silico experiments. Due to the presence of

randomness, single experiments will have to be run many times using Monte Carlo

(MC) methods to yield results in the form of summary statistics to a satisfactory

degree of certainty, which can result in large computation times or even make a

problem intractable with existing computational methods and resources.

A key challenge in the development of computational techniques for these models

therefore is finding ways to improve the efficiency of in silico simulations. Efforts

towards this goal mainly follow either of two strands of research, those of algorith-

mic and statistical improvements, respectively. Approaches in the former category

improve efficiency by increasing the number of simulations we can carry out within

a given computational budget by “speeding up” current computational methods, e.g.

[1, 68, 138, 145, 148, 198]. In this thesis, however, we focus on the latter approach,

and aim to improve efficiency through the use of variance reduction methods. This

approach generally uses specific model structures to refine currently available compu-

tational methods for these models such that the variance of the summary statistics,

which form the output of the simulation algorithms used, is reduced. As a result we

can use a lower number of simulations to achieve results of a satisfactory degree of

2



accuracy compared to standard computational approaches.

The history of variance reduction techniques can be traced back to the early 1950s,

e.g. [92, 106, 187], almost immediately after the start of the use of MC methods us-

ing computers in the late 1940s, and an array of methods has since been devised to

improve the efficiency of MC simulations in, amongst others, computational finance

and particle physics. Though these variance reduction techniques have great poten-

tial, their success in many applications is intricately related to the particular model

problems of interest. In the specific context of chemical reaction networks relevant

to this thesis, the main challenge is therefore determining if and when variance re-

duction techniques, developed with different applications in mind, are appropriate

in this specific context, which is characterised by testing features such as discrete,

non-negative, high-dimensional state spaces and multiple scales.

1.2 Aims and outline

The central theme of this thesis is the construction of more efficient simulation meth-

ods in the context of chemical reaction networks that are modelled by continuous-time

Markov chains (CTMCs), primarily via the exploration of variance reduction tech-

niques. Crucially, we solely focus on techniques that have previously proven to be

successful in different contexts and we study not only the applicability of these meth-

ods, but also aim to understand the limitations arising from the specific challenges

posed by chemical reaction network models.

To this end we start in Chapter 2 with a comprehensive review of the relevant

stochastic modelling and simulation approaches for chemical reaction networks. In

addition we discuss, in detail, widely used variance reduction techniques and, where

possible, show how these techniques are already used, or can be used, in the context

of chemical reaction networks.

In the three research chapters that follow we discuss three separate themes lead-
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ing to more efficient simulation methods. The content of these chapters is almost

completely independent and the chapters can thus largely be read in isolation.

Chapter 3 revisits a previously coined idea in the literature to use the uniformisa-

tion technique to study chemical reaction networks. First we discuss an algorithmic

improvement to speed up standard simulation methods for such uniformised systems,

removing all computational overhead from applying uniformisation. Coincidentally

this allows us to efficiently leverage the extra structure in uniformised systems in two

different ways that both yield reduced variance estimators.

Chapter 4 studies how quasi-Monte Carlo (QMC) methods can be used to improve

the efficiency of simulations of chemical reaction networks. Though such methods are

very popular and effective in, for example, computational finance, we show that direct

application of standard QMC methodology in chemical reaction network simulation

does not yield the big improvements observed in other fields. We explain how the

models specific to chemical reaction networks severely limit the effectiveness of QMC

methods and discuss how an alternative method, called array-RQMC, can overcome

some of these limitations to yield impressive results in practice.

Chapter 5 provides an in-depth analysis of Poisson bridge methods, which can be

used to apply variance reduction techniques to the simulation of unit-rate Poisson

processes. We show how to optimise the parameters in such Poisson bridge methods

to achieve the largest possible variance reduction, and show how we can then use this

methodology to improve the efficiency of standard simulation methods for chemical

reaction networks.

Finally, in Chapter 6 we review the outcomes of this thesis and discuss new and

remaining questions and challenges to create efficient simulation approaches for chem-

ical reaction networks. By considering future suggestions of research related to this

thesis we also show how our results tie in with various directions the field is taking.
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Chapter 2

Stochastic models and simulation

In this chapter we provide a literature review of the field of stochastic simulation and

modelling with an eye towards application to the field of chemical reaction networks.

First we give an overview of commonly used models of chemical reactions and discuss

how to perform and interpret simulations of these models. The accuracy of these

stochastic simulation methods is inherently hindered and limited by statistical error

and in the second part we review variance reduction methods, which are devised to

reduce this statistical error and form the main focus of this thesis.

2.1 Mathematical models of chemical reactions

In this work we consider stochastic simulation of a model describing the temporal

evolution of molecule copy numbers in a well-mixed system of volume V , i.e. we

ignore any spatial information and assume that the molecules are homogeneously

distributed within V . There exists a natural extension of this model that includes

spatial information and we refer to [59, 80] for more detail on how to include spatial

movement of molecules via diffusion in the framework described here.

Suppose we have a collection of J types of chemical species S1, . . . , SJ that can

interact via K different types of reactions R1, . . . , RK , often denoted as reaction
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channels. In generic form we can describe such an interaction Rk as

α1,kS1 + · · ·+ αJ,kSJ
ck−A β1,kS1 + · · ·+ βJ,kSJ , (2.1)

where αj,k, βj,k ∈ N and ck is the reaction rate constant for this reaction. We define

X(t) to be the state (column) vector1 describing the evolution of all the species as

time evolves, i.e. Xj(t) is the number of molecules Sj at time t. Upon the firing

of reaction Rk the number of molecules will often change and we will use ζk, the

stoichiometric vector2 for reaction Rk, to denote this change of the copy number, i.e.

due to reaction Rk we see X → X + ζk. We can therefore describe the evolution of

the chemical species using

X(t) = X0 +
K∑
k=1

Nk(t)ζk, (2.2)

where now Nk(t) denotes the number of times that reaction channel Rk fires in the

time interval [0, t] and X0 represents the initial state vector, i.e. X(0). This evolution

equation (2.2) is, of course, not very useful yet as we have no way to calculate these

Nk(t). In order to model these counting functions Nk(t) we will assign to every

reaction channel, Rk, a propensity function, ak(X(t)), which describes the probability

that the reaction channel fires in the infinitesimal time interval [t, t+ dt) as follows

P (Rk fires in [t, t+ dt)) = ak(X(t)) dt. (2.3)

We also define the total reaction propensity a0(X(t)) =
∑K

k=1 ak(X(t)). For this

work we primarily use mass action kinetics, under which the propensity for reaction

Rk to fire is proportional to the number of possible combinations of reactants, see

1Throughout this thesis we use column vectors, unless stated otherwise. Vectors and matrices
are written in boldface. We identify the i-th vector element of a generic vector a as ai and similarly
Bi represents the i-th column of a matrix B.

2Using the stoichiometric vectors ζ1, . . . , ζK we define the stoichiometric matrix ζ such that its
k-th column is equal to ζk.
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for instance [98] or Example 2.1 for practical implications and [75] for a rigorous

derivation from microphysical principles. However, note that the selection of this

function is a modelling choice and in no way essential for anything that follows.

Example 2.1 (Mass action kinetics).

We assume reactions take place in a well-mixed system of volume V . Now suppose

we have species S1, S2 and S3 undergoing a reaction of the form

S1 + S2

c−A S3. (2.4)

If we use the previously described notation then see that there are X1 · X2 possible

pairs of S1 and S2 molecules for which this reaction is possible, but such pairs need

to collide and react in a volume V . It is therefore assumed that ak(X) ∝ X1 ·X2/V

with the proportionality constant defined by the reaction rate constant, c. Similarly,

if we have a higher-order reaction such as

S1 + 2S2

c−A 4S3, (2.5)

we find X1 · X2(X2 − 1)/2 possible combinations of S1 and S2 molecules that can

undergo the reaction. Combinatorial factors such as 1/2 are often implicitly incor-

porated in reaction rate constants and the Law of Mass Action therefore assumes

ak(X) ∝ X1 · X2(X2 − 1)/V 2. Finally we note that for zeroth order reactions such

as

∅ c−A S1 (2.6)

the reaction propensity is independent of molecule numbers, but instead depends on

the reaction volume, V , i.e. ak(X) ∝ V . Unless states otherwise, we let V = 1 in this

thesis and thus absorb the dependency on V into the reaction rate constants.

We will now present different ways to define Nk(t) based on these propensity

functions. The order of presentation is incorrect from a historical angle (it is in fact
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in reverse historical order), but it allows for a good exposition of the relations between

the different methods.

An accurate way to model these counting functions would be to view the above

description as a CTMC where, given the current state, X(t), we can experience K

different state transitions based on the various reaction channels. Note that the

transition rates are generally state-dependent, which means the CTMC is density-

dependent. An inhomogeneous Poisson process will then describe the number of

times reaction Rk fires. We can construct this inhomogenous Poisson process from

a unit rate Poisson process, Yk, using a time scale change. The intensity function

or (counting) rate for this Poisson process Yk in this framework is related to the

propensity functions for the reaction channels and this leads to the Kurtz random

time change representation (RTCR) [10]

X(t) = X0 +
K∑
k=1

Yk

(∫ t

0

ak(X(s)) ds

)
ζk. (2.7)

Note that we use K independent unit-rate Poisson counting processes Yk, counting

the number of times reaction channel Rk fires for all k. This representation forms the

base for many (stochastic) simulation approaches.

To derive alternative and approximate models based on the RTCR we start by

noting that we can use equation (2.7) to describe the evolution of the system over a

time interval [t, t+ τ) by

X(t+ τ) = X(t) +
K∑
k=1

Yk

(∫ t+τ

t

ak(X(s)) ds

)
ζk. (2.8)

Chemical Langevin equation. To proceed we assume that, loosely speaking, it

is possible to choose a small time scale τ so that the reaction propensities remain

(approximately) constant, but still such that we expect many reactions to fire on this

time scale. Based on precise versions of these two approximations we can derive the
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chemical Langevin equation (CLE) following [79]. The CLE is also known as the

diffusion approximation to the original CTMC and it first appeared in [117], albeit

with a different motivation and derivation.

The first condition requires a small time scale τ such that for each reaction channel

we have ak(X(s)) ≈ ak(X(t)) for s ∈ [t, t + τ ], i.e. the reaction propensity remains

approximately constant over the interval [t, t+τ ]. Using this assumption we can write

X(t+ τ) ≈ X(t) +
K∑
k=1

Yk (ak(X(t))τ) ζk, (2.9)

where we now have K homogeneous Poisson processes (over the interval [t, t + τ ]).

As pointed out in [79] this condition can always be satisfied if the reactant species in

the system are abundant (or if we take the trivial time scale τ → 0). Equation (2.9)

forms the basis for a popular computational method, τ -leap [76], which we discuss in

more detail in Section 2.2.2.

The second condition that we need balances the first condition by requiring each

reaction channel to still fire many times over the interval [t, t + τ ]; more precisely

for all k we require ak(Xt)τ � 1. Note that this rules out taking τ → 0, i.e. the

trivial choice that would guarantee the first condition to hold. Furthermore, it could

be possible that there exists no time scale τ such that both conditions hold, in which

case one should doubt the validity of the CLE approximation. Assuming, however,

both conditions to be satisfied we next use the normal approximation of a Poisson

process with large rate, from the condition ak(X(t))τ � 1, to give

X(t+ τ) ≈ X(t) +
K∑
k=1

Nk (ak(X(t))τ, ak(X(t))τ) ζk

= X(t) +
K∑
k=1

[
ak(X(t))τ +

√
ak(X(t))τNk (0, 1)

]
ζk, (2.10)

where we abuse notation to let Nk(µ, σ2) denote a normal random variable with mean

µ and variance σ2. To derive the CLE in canonical form note that equation (2.10)
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in the formal limit of τ → 03 gives an evolution equation for X(t) in the form of a

stochastic differential equation (SDE);

dXt =

[
K∑
k=1

ak(Xt)ζk

]
dt+

K∑
k=1

√
ak(Xt)ζk dWk, (2.11)

where now the Wk denote K independent Wiener processes and, by abuse of notation,

Xt represents X(t) as is customary notation for SDEs. An alternative derivation of

the CLE follows from taking a Kramers-Moyal expansion of the master equation de-

scribing the dynamics of the RTCR, resulting in a Fokker-Planck equation of which

equation (2.11) is the pathwise representation. For more details on the latter ap-

proach, and a comparison of the validity of the CLE, see [90].

We note that the standard representation of the CLE in equation (2.11) is equiv-

alent to an alternative SDE which is now driven by J Wiener processes Wj

dXt =

[
K∑
k=1

ak(Xt)ζk

]
dt+

J∑
j=1

Cj (Xt) dWj, (2.12)

where we recall J is the number of species. The functions Cj are such that the co-

variance structure of the noise is equal to equation (2.11), in particular, if we let C be

the matrix with columns Cj(Xt), then we need CCᵀ = ζdiag(a1(Xt), . . . , aK(Xt))ζ
ᵀ.

A drawback of equation (2.12) on the level of interpretation is that this formulation

seems to implicate that the noise term, which should reflect the stochastic nature

of the reactions, is independent between species. Taking this interpretation in a lit-

eral sense would imply that the noise is therefore external to the reaction dynamics,

which goes against what the model is trying to capture. Note that equation (2.11)

does not suffer from this criticism, as pointed out in [76]. From a simulation per-

spective, however, both equations (2.11) and (2.12) are equivalent and if J � K it

could be more advantageous to use equation (2.12). The alternative representation

3Note that the second condition, ak(Xt)τ � 1 for all k, does imply a lower limit on the time
scale τ for which the CLE (and its SDE representation) can be valid. We refer the reader to [79] for
a more in-depth discussion of this issue.
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of the CLE via equation (2.12) has also been used to study the breakdown of the

CLE approximation [195] and we refer the reader to [151] for more information on

alternative representations of the CLE.

Reaction rate equation. Using the SDE formulation of the CLE approximation

we can derive the deterministic reaction rate equations (RREs) which have been in

use for over a century. We take the thermodynamic limit, letting the number of

molecules and the volume go to infinity whilst their ratio, often referred to as the

concentration and denoted by x = X/V , remains constant. In this limit4 the random

fluctuations become negligibly small compared to the deterministic contributions and

we convert equation (2.10) into

x(t+ τ) = x(t) +
K∑
k=1

ãk(x(t))τζk, (2.13)

where we defined ãk(x) = ak(X)/V . We can rewrite this into a system of ordinary

differential equations (ODEs) by taking the limit τ → 0:

dx(t)

dt
=

K∑
k=1

ãk(x(t))ζk. (2.14)

For a more in-depth discussion of the thermodynamic limit and its validity in the

context of well-mixed chemical reaction networks see [77].

We now have three different mathematical models describing the temporal evolu-

tion of the molecular species S1, . . . , SJ which can be seen as a chain of approximations

going from a CTMC with discrete state space to a CTMC with a continuous state

space to a deterministic ODE system. Each of these models can be analysed and

simulated in different ways and it is often an open question, and an area of active

research, which of these models is most applicable in a given circumstance, see for

example [41, 54, 89, 90, 116, 216].

4Note that we also implicitly assume that ak(X)/V is a function solely of X/V for every reaction
channel in the thermodynamic limit, which is true for the mass action kinetics and other reaction
kinetics encountered in practice [77].
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2.2 Simulation of well-mixed systems

Having presented the three different ways to model the evolution of interacting chem-

ical species in the preceding section we can now ask how to perform a mathematical

analysis on them. For the deterministic rate equations (2.14) we can use a wide array

of well-known analytical and numerical techniques and we will not go in detail here

but rather refer the reader to [98] and references therein.

Similarly for the CLE we can often use standard simulation procedures that are

used for SDEs and we refer the reader to [111] for an extensive exposition of that

subject. Note that, unlike general SDEs, the CLE should technically only be defined

on the positive orthant and for mass action kinectis no guarantee can be made as to

whether its diffusion and drift field obey this constraint, see for example [218, Section

1]. Different local and global changes to the CLE have been put forward that attempt

to remedy this issue, see for example [6, 47, 128, 195, 218].

The RTCR, equation (2.7), yields a pathwise representation of the dynamics of the

species in the system. An alternative description of the same dynamics is by use of

the chemical master equation (CME), which comprises a (high-dimensional) system

of ODEs [65]. The CME fully describes the evolution in time of the distribution of the

occupation probability of the state space of X(t). Though an attractive feature of this

approach is that the solution to the CME exactly describes the systems dynamics,

it also has a severe disadvantage, the dimension of this system of ODEs. As the

dimension is equal to the size of the state space this will generally be so high that

the problem is analytically intractable in practice. Only for a small class of problems

does the full CME have a known analytical solution [104, 184].

One therefore often has to rely on approximate methods or stochastic simulation

to explore the behaviour of the system. In this thesis we will focus on the stochastic

simulation approach and we refer the reader to [193] for an overview of alternative

methods that build on (computational) approximations, often only feasible for prob-
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lems of moderate dimensions, to the CME, such as the finite state projection method

[91, 140, 157], moment-closure methods [28, 194] and system-size expansions [107].

2.2.1 Exact simulation algorithms

Despite the existence of good (approximate) methods, approaches working directly

with the CME are bound to become too computationally expensive if the problem

dimension is high and this means that one often relies on a different approach to

get a handle on the model dynamics. Instead of looking at the evolution of the

probability over the whole state space at once we generate single sample paths which

evolve according to the rules of equation (2.7). The exact algorithm to compute

such sample paths in the context of chemical reaction networks is often called “the”

stochastic simulation algorithm (SSA) or (Gillespie’s) direct method (DM) after the

author who introduced it in this setting [78]. Given a current state X(t) the algorithm,

as depicted in Algorithm 2.1, provides a way to compute the time until the next

reaction fires and determines which reaction this is. In that way we can progress the

Markov chain one reaction at a time.

Algorithm 2.1 (Gillespie’s) direct method (DM).
This simulates a single sample path.

Input: Initial data X0

Input: Stoichiometric matrix ζ
Input: Propensity functions ak(X)
Input: Final time T

1: X ← X0

2: t ← 0
3: while t < T do
4: Generate u1, u2 ∼ U(0, 1)
5: ak ← ak(X) . Calculate reaction propensities.
6: a0 ←

∑
k ak . Calculate the total reaction propensity.

7: τ ← − log u1/a0 . Calculate the next reaction time.
8: t ← t+ τ . Update time.
9: Choose p such that

∑p−1
k=1 ak < a0u2 ≤

∑p
k=1 ak . Choose next reaction

to fire.

10: X ← X + ζp . Update state vector.
11: end while
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Algorithm 2.2 Modified next reaction method (MNRM).
This simulates a single sample path.

Input: Initial data X0

Input: Stoichiometric matrix ζ
Input: Propensity functions ak(X)
Input: Final time T

1: X ← X0

2: t ← 0
3: Tk ← 0 . Current internal time for each channel.
4: Pk ← Exp(1) . Generate internal time till next

reaction for each channel.
5: while t < T do
6: ak ← ak(X) . Calculate reaction propensities.
7: ∆k ← (Pk − Tk)/ak . Calculate absolute time till next

reaction for each channel.

8: p ← arg mink ∆k . Find the next reaction to fire.
9: τ ← ∆p . Find the time till the next reaction.

10: t ← t+ τ . Update time.
11: X ← X + ζp . Update state vector.
12: Tk ← Tk + akτ . Update current internal time for each channel.
13: Pp ← Pp + Exp(1) . Generate internal time till next reaction for channel p.
14: end while

This approach can be made more computationally efficient by, for example, using

the next reaction method (NRM) by Gibson and Bruck [68] or the modified next

reaction method (MNRM) by Anderson [1], depicted in Algorithm 2.2. These latter

two methods use just a single random variable per reaction fired by keeping track of

the individual Poisson processes in the RTCR in equation (2.7), which encode the

reaction times for each reaction channel.

2.2.2 Approximate simulation algorithms

Still, all variants of exact SSAs suffer from a drawback, namely their computational

costs. As these methods simulate each reaction individually their run time can be

significant if there are many molecules and reactions involved. This is the ratio-

nale behind the development of approximate methods to simulate sample paths from

equation (2.7) of which we will highlight two methods in particular.
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Algorithm 2.3 (Näıve) τ -leap method.
This simulates a single sample path.

Input: Initial data X0

Input: Stoichiometric matrix ζ
Input: Propensity functions ak(X)
Input: Time step τ
Input: Final time T

1: X ← X0

2: t ← 0
3: while t < T do
4: ak ← ak(X) . Calculate reaction propensities.
5: t ← t+ τ . Update time.
6: Generate Y1, . . . , YK Poisson random variables, s.t. Yk ∼ P (akτ)
7: X ← X +

∑K
k=1 Ykζk . Update state vector.

8: end while

τ-leap One of the most widely used methods is the τ -leap scheme [76]. To derive

this method we go back to equation (2.9) and this time we do not approximate the

Poisson process by Gaussian random variates to yield the CLE. In essence the τ -leap

method follows from the rationale that in a given small enough time interval [t, t+ τ)

the propensities of the reactions do not change much and therefore can be assumed

constant. This approach yields a discrete-time Markov chain (DTMC) with a discrete

state space, where the time between each state update is given by the time step τ

and the transitions are computed by

X(t+ τ) = X(t) +
K∑
k=1

Yk (ak(X(t))τ) ζk. (2.15)

The computational gain with this method comes from the fact that in order to cal-

culate Yk (ak(X(t))τ) we can simply generate a single Poisson random variable with

parameter ak(X(t))τ . This means that we can fire multiple reactions at once and

therefore progress quicker than was the case for the DM (and variants of the DM).

An algorithmic representation of the τ -leap method is depicted in Algorithm 2.3.

Being an approximate method the τ -leap method does not come without caveats,

a first major one being the possibility of achieving negative molecule numbers. Many
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possible workarounds to avoid negative copy numbers have been proposed [35, 36,

42, 211]. Furthermore, employing the τ -leap method has the potential of yielding a

significant systematic error in the outcome, which is generally of order O(τ), see e.g.

[4]. This is due to the fact that the sample paths from the τ -leap algorithm are not

drawn from the probability distribution described by the CME. Such a systematic

error is also known as bias and is discussed further in Section 2.3. The quality of the

approximation of the τ -leap sample paths to those of the exact SSAs depends on the

time step chosen in relation to the typical reaction time scale of the system, see for

example [36, 81] for a discussion on (adaptive) step size selection and its effect on

accuracy.

A different view on the τ -leap method is that it is a variant of the explicit Euler

method for ODEs applied to equation (2.7), where we approximate the time integral

by a left Riemann sum. This method therefore parallels the widely used Euler-

Maruyama scheme for SDEs and one could therefore ask the question whether it is

possible to adapt some other ODE time-stepping approaches to the CTMC simulation

case. Indeed this turns out to be possible for a large class of ODE methods such as

linear multistep methods [17] or Runge-Kutta methods [31], of which we highlight

here only the implicit Euler method from which implicit τ -leap approaches [183] can

be derived that perform better for systems exhibiting stiff behaviour.

R-leap Of the other approximations to equation (2.7) available in the literature

we only highlight R-leap [13], which parallels τ -leap in many respects. Where the

τ -leap method assumes constant propensities over a fixed time interval, the R-leap

method assumes constant propensities over a fixed number of reactions, say L. Using

the approximation of constant propensities we can, compared to the SSA, fire more

reactions at once and therefore progress in time more quickly. The R-leap approach,

like τ -leap, yields a DTMC. Under the assumption of constant propensities over

the next L reactions we know that the number of reactions per reaction channel is

16



Algorithm 2.4 (Näıve) R-leap method.
This simulates a single sample path.

Input: Initial data X0

Input: Stoichiometric matrix ζ
Input: Propensity functions ak(X)
Input: Reaction step L
Input: Final time T

1: X ← X0

2: t ← 0
3: while t < T do
4: ak ← ak(X) . Calculate reaction propensities.
5: a0 ←

∑
k ak . Calculate the total reaction propensity.

6: Generate τ ∼ Gamma (L, 1/a0) . Time span for L reactions.
7: if t+ τ > T then
8: Generate L ∼ B (L− 1, (T − t)/τ) . Find number of reactions in [t, T ].
9: t ← T . Update time.

10: else
11: t ← t+ τ . Update time.
12: end if
13: πk ← ak/a0 . Relative channel propensities.
14: Generate Y ∼M (L,π) . Reactions firing per channel.
15: X ← X +

∑K
k=1 Ykζk . Update state vector.

16: end while

multinomially distributed, with event probabilities given by the channel propensities

relative to the total propensity. This makes it easy to sample how many reactions

happen per channel per step of L overall reactions and therefore progress quicker than

was the case for the DM (and variants on the DM).

However, in contrast to τ -leap, we do not know a priori at which times t the

different state updates of the algorithm take place. If one desires to know the evolution

of t alongside X, i.e. to give a time stamp to every state in the algorithm, then this

can be calculated by adding an extra step to the algorithm. This extra step, however,

involves using an extra (gamma-distributed) random variable. Note that, in general,

this step is necessary to be able to ascertain whether a final simulation time has

been reached. An algorithmic representation of the R-leap method is depicted in

Algorithm 2.4.

It is therefore clear that the τ -leap and R-leap algorithms, although similar in
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spirit, control a different parameter in order to approximate the inhomogeneous Pois-

son processes, time for τ -leap versus number of reactions for R-leap. A recent study

shows that marginal gains can be achieved when one combines the benefits from

τ -leap and R-leap, resulting in a new method the authors called S-leaping [139].

2.3 Monte Carlo methods

The previously described simulation methods for well-mixed systems all provide a

means to generate (approximate) sample paths of chemical reaction networks, but a

remaining question is how one should infer information from these paths. Often one

is interested in expressions like f(X(t)), where f is a function of the state variable

at time t. For example, we could use f(x) = x if the population level is of interest,

or f(x) = 1{x>0} (x) if we are to determine whether a species becomes extinct or

not. However, as X(t) is a random variable it is often more practical to consider the

expectation of this function f applied to X(t), i.e.

Q = E [f(X(t))] , (2.16)

a quantity often called the summary statistic5. However, such summary statistics are

often intractable for reaction networks of interest due to the complex distribution of

X(t). To overcome this hurdle we can employ MC methods to estimate the quantity

in equation (2.16). In this methodology we generate N independent sample paths

X(1)(t), . . . ,X(N)(t) from the distribution of possible outcomes in the state space of

X(t) and construct from this the MC estimator of equation (2.16) by averaging over

the sample paths

Q̂ =
1

N

N∑
n=1

f
(
X(n)(t)

)
≈ E [f (X(t))] . (2.17)

Individual realisations of Q̂ will in general not be equal to Q and are random vari-

5Note that for notational ease we often drop the explicit dependency of the summary statistic Q
on t in this thesis.
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ates which therefore have an inherent uncertainty related to them. This uncertainty

can be quantified by the mean squared error (MSE)

MSE
[
Q̂
]

= E
[(
Q̂−Q

)2
]
. (2.18)

This MSE can be decomposed into two separate sources of error,

MSE
[
Q̂
]

= Var
[
Q̂
]

+ Bias2
[
Q̂
]
, (2.19)

where

Var
[
Q̂
]

= E
[(
Q̂− E

[
Q̂
])2
]
, (2.20a)

Bias
[
Q̂
]

= E
[
Q̂
]
−Q = E

[
Q̂−Q

]
, (2.20b)

denote the variance, which quantifies the statistical error, and bias, representing the

systematic error, respectively. An unbiased estimator for the statistical error based

on N samples is ŝ2/N , where ŝ2 is the usual sample variance

ŝ2 =
1

N − 1

N∑
n=1

(
f
(
X(n)(t)

)
− Q̂

)2

. (2.21)

The bias, however, is often hard to estimate if no information is available about

the true summary statistic Q (which is typically the case when one employs a MC

method).

Example 2.2 (MSE for Gillespie’s DM).

The sample paths generated with the DM are free of systematic error and therefore

unbiased. The MSE is thus purely determined by statistical error due to finite sample

size, i.e. the variance of the estimator Q̂. Given a sample variance σ2 of the desired

summary statistic we know that Var
[
Q̂
]

= σ2/N with N the number of sample paths

[129, Chapter 1]. As a result we see that the more samples, N , we use, the smaller
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the statistical error, and therefore the MSE, becomes. The squared error between

Q̂ and the (unknown) true summary statistic Q thus behaves like O (N−1) for this

unbiased method.

This section thus far has described the MC framework used to derive point esti-

mates for certain scalar summary statistics Q like (2.16). It is, however, possible to

extend this to vector summary statistics, f(X(t)), for example by using element-wise

application of previous material. A particular extension of relevance to the context of

this thesis is the estimation of the probability distribution giving rise to the observed

data. Such an estimate of the distribution can often give more information to the

observer than single point estimates such as the mean or variance, especially when

the underlying distribution is multimodal. We will therefore discuss the problem of

distribution estimation next before we move on to the question of the computational

complexity of MC methods.

2.3.1 Distribution estimation

Suppose we have a quantity Y taking values in the state space Ω which can be

described by some process Y ∼ p. If we have no explicit description of p, but are in

the position to simulate from it, we can attempt to derive a MC estimate for p. For

a fixed ω ⊆ Ω we first note that, similar to (2.16), we have the identity

p(ω) = E [1Y∈ω (Y)] . (2.22)

Because ω is taken fixed this is nothing else than a point summary statistic so that

we can use N samples Y(1), . . . ,Y(N) and apply (2.17) to find a MC point estimate

for (2.22) of the form

p̂(ω) =
1

N

N∑
n=1

1Y∈ω
(
Y(n)

)
≈ p(ω). (2.23)
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A distribution is, however, not a point estimate. To proceed we note that the fixed ω

was completely arbitrary which means we can define an (approximate) distribution

function p̂ : Ω 7AR+ by

p̂ (·) =
1

N

N∑
n=1

1Y∈·
(
Y(n)

)
. (2.24)

This specific approximate distribution function is known as the empirical distribution

function (EDF). Note, however, that there is a common class of approximate distribu-

tion functions derived via kernel density estimation methods which extend the EDF.

Such methods define estimators of the form

p̂ (·) =
1

N

N∑
n=1

Kh,·
(
Y(n)

)
, (2.25)

where Kh,· is a non-negative kernel function with a bandwidth parameter h used in

order to smooth the resulting distribution. One of the most popular alternatives

to distribution estimators, the histogram, is a blend between the aforementioned

methods and is discussed in more detail in Appendix 2.B. Note that the EDF is

a special case of a kernel density estimator where the kernel function is given by

the indicator function. For discrete distributions the EDF is also equivalent to a

histogram where the bin size is equal to unity.

Due to the finite sample size, N , these approximate distribution functions p̂ are

random functions and carry intrinsic uncertainty, just like we saw for the estimate Q̂

in (2.17). To quantify this uncertainty we note that the equivalent to the MSE in the

context of distribution estimation is the mean integrated squared error (MISE), with

respect to p, given by

MISE [p̂ ‖ p] = E
[
‖p̂− p‖2

2

]
= E

[∫
Ω

(p̂(ω)− p(ω))2 dω

]
, (2.26)

which can again be decomposed into statistical error and systematic error components
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via

MISE [p̂ ‖ p] = E
[∫

Ω

(p̂(ω)− E [p̂(ω)])2 dω

]
︸ ︷︷ ︸

statistical error

+E
[∫

Ω

(E [p̂(ω)− p(ω)])2 dω

]
︸ ︷︷ ︸

systematic error

. (2.27)

Note that the MISE is an example of a measure between two distributions on Ω, p̂

and p in this case. Such measures are generally known as statistical distances between

two distributions q and p on Ω. We will only mention two other notable examples of

statistical distance here; the total variation distance which is given in this context by

δTV [q ‖ p] = sup
ω⊆Ω
|q(ω)− p(ω)|, (2.28)

and Kolmogorov-Smirnov distance which considers cumulative discrepancies between

distributions p and q, given by

DKS [Fq ‖ Fp] = sup
y∈Ω
|Fq(y)− Fp(y)|, (2.29)

where Fq and Fp are the cumulative distribution functions (CDFs) for q and p, re-

spectively. Note that the choice of statistical distance to compare distributions can

have a significant influence in statistical testing procedures, see [40] for a comparison

in the context of discrete random variables. In this thesis, however, we are mainly

concerned with convergence of empirical distributions based on an increasing number

of samples, N , and therefore limit ourselves to the MISE and total variation distance.

The aforementioned general kernel density methods are particularly useful in prob-

lems where Y is a continuous random variable, in which case the discrete nature of

the EDF forms a severe hindrance. However, in this work we are mainly interested

in models where Y has a discrete state space. Discrete kernel densities have been

proposed for these problems such as (negative) binomial or Poisson distribution ker-

nels, see for example [112]. However, these kernel functions introduce a bias into p̂
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dependent on the bandwidth h. The resulting distribution approximations therefore

do not have a MISE that automatically converges to zero. It was also shown in [112]

that the benefit of such discrete kernels lies predominantly in the regime of very few

samples, N , where the bandwidth bias is frequently the less important contribution

to the MISE compared to the statistical error. Unless one’s computational budget

is very restrictive it is, in the context of chemical reaction networks, therefore often

sufficient to simply use the EDF given by (2.24), or a histogram, see Appendix 2.B,

which is what we will do from now on.

The assumption of a discrete state space Ω also simplifies the expressions for the

MISE and total variation distance into forms that allow for tractable calculations.

First, for the total variation distance we have

δTV [q, p] =
1

2
‖q − p‖1 =

1

2

∑
y∈Ω

|q(y)− p(y)|, (2.30)

see for example [137, Proposition 4.2]. For the MISE we note that the integral converts

into a sum which we combine with the linearity of expectation to give

MISE [p̂ ‖ p] = E
[
‖p̂− p‖2

2

]
=
∑
y∈Ω

E
[
(p̂(y)− p(y))2] , (2.31)

which we can interpret as the integrated mean squared error (IMSE) being equal to

the MISE. Note that this also provides a method to estimate the MISE by summing

the pointwise MSE over Ω.

Example 2.3 (Statistical error for EDFs).

For estimates Q̂ of scalar summary statistics we know that the statistical error behaves

like σ2/N , where σ2 = Var
[
Q̂
]
, e.g. see Example 2.2. If the scalar summary statistic,

however, is of the form (2.23) it follows that Np̂(ω) ∼ B(N,E [p̂(ω)]). Using known

results for the variance of a binomial random variable we therefore immediately see
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that

E
[
(p̂(ω)− E [p̂(ω)])2] =

1

N
E [p̂(ω)] (1− E [p̂(ω)]) , (2.32)

which gives a useful decomposition for (2.31) of the form

MISE [p̂ ‖ p] =
1

N

(
1−

∑
y∈Ω

E [p̂(y)]2
)

+
∑
y∈Ω

Bias [p̂(y)]2 . (2.33)

On the one hand this expression provides a means of calculating analytic values for

the MISE for test problems which have a known distribution, i.e. if p and p̂ are known

a priori. It also shows that the statistical error component of the MISE for the EDF

is bounded above by 1/N . On the other hand it provides a means to estimate the

statistical error component of the MISE for general problems by

Ŝ2
p̂ =

1

N − 1

(
1−

∑
y∈Ω

p̂(y)2

)
, (2.34)

which has the property that 0 ≤ Ŝ2
p̂ ≤ 1/N and it is unbiased, i.e.

E
[
Ŝ2
p̂

]
=

1

N

(
1−

∑
y∈Ω

E [p̂(y)]2
)
. (2.35)

2.3.2 Computational complexity and efficiency

MC methods often return increasingly accurate summary statistics in the limit of

increasing number of samples, N , an illustration of which we saw earlier in Exam-

ple 2.2. However, it is of course infeasible to generate an infinite number of sample

paths and as a result MC estimators like equation (2.17) will always have a degree of

uncertainty associated with them. The aim should therefore be to have a MSE that

is as small as possible given a fixed amount of computational resource.

In order to work towards this goal one must define a measure of computational
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complexity, which intuitively should quantify the computational cost associated to a

specific method used to find approximations to equation (2.16). In this work we will

denote such a complexity metric related to an approximate summary statistic Q̂ as

C[Q̂]. A common (and logical at first sight!) choice reported in the literature on SSAs

is the CPU wall-clock time for specific methods. We note, however, that there are

serious limitations to reporting such a metric, because it can depend heavily on the

specific implementation details of a method, such as choices in algorithm, hardware,

programming language and operating system. While method A might be reported to

be computationally more efficient than method B now and on this specific machine

it does not mean that the same will be true two years from now (even on the same

machine!). These limitations thus form a significant hurdle for the reproducibility and

portability of results on SSAs. We therefore opt for a different proxy for computational

complexity in this work, namely the (expected) number of random variables used to

generate a sample path (or ensemble of paths). This metric, though not perfect, is

more robust to the failures of the CPU wall-clock time metric mentioned earlier and

has recently been used to provide an extensive complexity analysis of some standard

SSAs such as the DM and τ -leap method in the classical population scaling [8]. It

also relates well to the number of steps that are needed in a SSA and thus could

be seen as an indicator for (relative) practical CPU wall-clock time. However, we

must preface that there is no perfect correlation between the CPU wall-clock time

and the computational complexity in terms of random numbers utilised. Though

the development of the NRM in [68] was partly stimulated by the observation that

generating random variables is relatively slow, the results in [221] show CPU wall-

time improvements of only up to 25% when reducing by half, via correct recycling

of recycling random variates, the number of random numbers used in the DM. We

do, however, note that many of the improvements in the literature that reduce run-

time of SSAs can also be easily combined with the majority of the variance reduction

methods that we discuss in this work. Finally, a notable shortcoming of our specific
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complexity measure is that it ignores, amongst other effects, the memory requirements

of a method. As a result performance on modern accelerated hardware such as GPUs

[100, 110, 113, 114, 160], which is often memory limited, could be poorly predicted

when solely focussing on the number of random variates used.

Example 2.4 (Complexity for Gillespie’s DM and τ -leap).

Here we show explicit expressions for the expected number of random variables com-

plexity metric for both the DM and (fixed step) τ -leap algorithm. To do so we assume

that we have a system composed of K reactions that we wish to simulate up until

some known final time T . If we define Nk(t) to be the random variable denoting the

number of reactions that have fired in the system up until time t, it becomes clear

from Algorithm 2.1 and Algorithm 2.3 that

C
[
Q̂DM

]
N

= 1 + 2
K∑
k=1

E [Nk(T )] , (2.36a)

C
[
Q̂τ -leap

]
N

= KTτ−1, (2.36b)

whereN is the number of sample paths used. Note that even thoughNk(t) is a random

variable it is possible to describe it in the same CTMC framework by extending all

reactions in the system with the dummy product species Nk, i.e.

α1,kS1 + · · ·+ αJ,kSJ
ck−A β1,kS1 + · · ·+ βJ,kSJ +Nk,

so that Nk increases by one every time reaction k fires. For some simple systems it is

possible to derive analytic expressions for E [Nk(T )] via the CME, but alternatively

one could keep track of it in any SSA via this extended reaction system.

In order then to compare two different estimates for (2.16) we need to take into

account both the MSE and the computational complexity of the methods. A quantity

which aims to balance the contribution from both is given by the (relative) efficiency,
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see for example [162, Chapter 8]. For two estimators Q̂ and Q̂0 the relative efficiency

of Q̂ with respect to Q̂0 is then defined as

E
[
Q̂, Q̂0

]
=
C
[
Q̂0

]
MSE

[
Q̂0

]
C
[
Q̂
]

MSE
[
Q̂
] . (2.37)

The definition of efficiency when estimating distributions is completely analogous

to equation (2.37), replacing the MSE with the MISE. Note that the above definition

is not dependent on the specific computational complexity measure. If the relative

efficiency is larger than unity we can conclude that Q̂ is the preferred estimator over

Q̂0. Two examples illustrating the concept of efficiency in the context of chemical

reaction networks are now given in Example 2.5 and Example 2.6.

Example 2.5 (MSE and efficiency for a simple linear system).

We consider a linear reaction system for a single species S1 in a volume V of the

following form:

∅ c0−A S1, (2.38a)

S1

c1−A 2S1, (2.38b)

S1

c2−A ∅. (2.38c)

This system, a linear birth-death system with inflow, can be used to analytically study

some properties of the τ -leap method and the DM due to its relative simplicity. If we

take as a summary statistic the average value of S1 at some time T , i.e. Q = E [X1(T )],

we can use the methods of Appendix 2.A to find exact expressions for Q̂ and its

variance for the DM and the τ -leap method in terms of system parameters c0, c1, c2,

the observation time, T , and the time step, τ . Combined with the explicit complexity

expression as found in Example 2.4 we can evaluate the MSE for Q̂DM and Q̂τ -leap

analytically as a function of the number of samples, N , and the complexity, C, as

shown in Figure 2.1.
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Figure 2.1: MSE as a function of the number of samples, N , used and computational
complexity, C, for the τ -leap method and the DM. Results are for the single species
system (2.38) in a volume V = 1 with parameters c0 = 0.4, c1 = 0.7, c2 = 0.6 and
initial condition X0 = 10, run until T = 10.

We can make some general observations based on Figure 2.1. Firstly, it is clear that

the MSE for the τ -leap method can be quickly dominated by the bias term if the step

size is taken too large (as is evident from the curve for τ = 2.00). Using more samples

in this case will not result in more accurate estimates from ∼ 102 samples onwards

due to the bias. In addition we see that the bias clearly depends on the step size τ .

We can also see in Figure 2.1(a) that, if we consider the MSE as a function of the

number of samples, N , it seems as if the τ -leap method is better than Gillespie’s DM

for any τ (until the bias dominates). This, however, is misleading as we can see when

we consider the MSE as a function of the complexity in Figure 2.1(b). Depending

on the desired MSE target it can be orders of magnitude better to use the τ -leap

method, but taking τ too small leads to a method which compares unfavourably to

the DM based on efficiency.

Example 2.6 (Distribution estimation for a simple linear system).

For the simple linear system in the previous example, defined by (2.38), the exact

transient distribution for S1 can be derived, see Appendix 2.C. In addition we can
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calculate the distribution for sample paths generated using the τ -leap method using

the observation that its dynamics are governed by a time-homogeneous DTMC with

known transition probabilities, which turn out to be related to the Skellam distribu-

tion. This allows us to illustrate some of the concepts introduced in Section 2.3.1

by calculating the statistical distance of the EDF to the true distribution, both as a

result of using the DM and the τ -leap method, and the results are shown in Figure 2.2.
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Figure 2.2: Comparing convergence of the error in the EDF from the τ -leap method
and the DM with respect to the true distribution for single species system (2.38).
Two types of statistical distance, the MISE and total variation distance, are used.
Results are for the single species system (2.38) in a volume V = 1 with parameters
c0 = 0.4, c1 = 0.7, c2 = 0.6 and initial condition X0 = 10, run until T = 10.
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Comparing Figure 2.1 and Figure 2.2 we can identify many similarities between the

results for the estimation of the mean and the distribution, e.g. the bias contribution

from applying the τ -leap method when enough samples, N , are used. Furthermore,

the results for the MISE and total variation distance look qualitatively the same,

though we note that, as we can expect, the total variation distance converges as

O(N−1/2) rather than the O(N−1) rate for the MISE.

In contrast to moment estimation we see that, if we only consider the number

of samples, N , used, the τ -leap method has a higher error, both for the MISE and

the total variation distance, for any step size τ . Due to the lower computational

complexity of the τ -leap method, however, we see that for a given computational

complexity and MISE target it can still be advantageous to use the τ -leap method.

This leads us to a similar conclusion for distribution estimation problems as at the

end of Example 2.5.

From the decomposition of the MSE into statistical and systematic error and the

definition of (relative) efficiency it becomes clear that there are two main ways of

achieving an optimal method in a MC setting.

Firstly, we can aim to use a “better” SSA in terms of its complexity. This way one

hopes to increase the number of sample paths, N , generated for a given computational

budget and therefore reduce the statistical error (and hence the MSE or MISE). As

we alluded to earlier, methods with the same complexity, defined in terms of number

of random variables used, could have different CPU run-times. Therefore a related

way to achieve the same goal in a practical scenario is to change the implementation

of the SSA so as to keep the computational complexity constant, but reduce the

CPU run-time for a specific instance. This approach has been most popular in the

context of chemical reaction networks, both on a hardware, software or language

implementation level, and on an algorithm design level. For example, a variety of

(computational) modifications to the DM [1, 37, 68, 134, 148, 221] exist which aim

to improve the runtime by optimising certain steps, predominantly steps 5 and 8, of
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(variants of) Algorithm 2.1 without affecting the statistically exact sampling (and in

many cases without changing the computational complexity). On a related note we

have seen approximate methods such as τ -leap and R-leap which trade a (hopefully

slight) increase in systematic error for a reduction in computation time per sample

path.

The alternative, however, is the design of new methods which keep the run-time

per sample path (nearly) equal whilst at the same time reduce either the systematic

or statistical error in the computation of estimates to equation (2.16). Efforts in

this direction in the more general MC framework are known as variance reduction

techniques and will be discussed in Section 2.4. They also form the main inspiration

for this work and their adaptation to the context of chemical reaction networks is the

common thread in this thesis.

2.4 Variance reduction methodology

The focus of variance reduction techniques is to reduce the statistical error per unit

of computational complexity in simulations and thereby increase the efficiency, as

defined in equation (2.37), of the simulation procedure. Many different methods to

achieve variance reduction have been proposed since the invention of MC simulations

and their theoretical foundation is often stated in very generic terms, showing the

versatility and general applicability of these approaches. In general, however, “there

is no such thing as a free lunch” and the largest benefits from variance reduction

techniques come from exploiting specific properties of the underlying model.

We will therefore next discuss three broad classes of general variance reduction

techniques with relevance to the simulation of chemical reactions and, where possible,

highlight how these methods can be used in the context of this thesis.
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2.4.1 Correlation based techniques

To start we return to the common case of estimating a summary statisticQ = E [f(Y)]

for some Y ∼ p. A generic MC method proceeds by sampling N sample paths,

Y(1), . . . ,Y(N), to construct the estimate Q̂ via equation (2.17). However, in contrast

to the standard MC method, we now remove the independence assumption between

these sample paths. In addition we generalise the estimate to allow non-equal weight-

ing of the different sample paths via

Q̂ =
N∑
n=1

wnf
(
Y(n)

)
≈ E [f (Y)] = Q, (2.39)

which holds under the condition that
∑

nwn = 1. Standard MC is recovered by letting

wn = 1/N for all n = 1, . . . , N and requiring the sample paths to be independent.

Note that these changes do not alter the systematic error of this method, but do

change the statistical error, which is now given by

Var
[
Q̂
]

= σ2

(
N∑
n=1

w2
n

)
+ 2

∑
1≤i<j≤N

wiwjCov
[
f
(
Y(i)

)
, f
(
Y(j)

)]
, (2.40)

where σ2 = Var [f(Y)]. The first term on the right in equation (2.40) can be easily

identified as the statistical error for the standard MC method, i.e. assuming the sample

paths Y(n) are i.i.d. distributed. We therefore see that by removing the assumption of

independent sample paths we can either increase or decrease the statistical error of Q̂

relative to the standard MC method, depending on the resulting pairwise covariances

between f(Y(i)) and f(Y(j)). The next three methods aim to reduce the estimator

variance by exploiting structure in f and Y.

Antithetic variables

The method of antithetic variables attempts to introduce pairwise negative correla-

tions by generating for every sample path Y(n) a complementary sample path Ỹ
(n)
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such that, in some sense, Ỹ
(n)

and Y(n) are opposite. By equation (2.40) this can

lead to a reduction in the variance of the estimator Q̂. In order to achieve this the

antithetic method, in its most widespread form, assumes that we can write Y = ψ(u)

where u ∼ U(0, 1)d. Note that this is a very common situation in simulation methods,

where we often generate generic random variates or decisions using uniform random

variables on the hypercube. Next we define ũ = 1− u (element-wise) and note that

ũ ∼ U(0, 1)d as well. This, in turn, implies that Ỹ = ψ(ũ) ∼ p, i.e. Ỹ follows the

correct distribution and yet is in some sense opposite to Y.

To generate 2N antithetic samples we therefore first sample N standard uniform

random variables u(1), . . . ,u(N) on the hypercube [0, 1)d. These variates define N sam-

ple paths Y(n) = ψ(u(n)) and their antithetic counterparts Ỹ
(n)

= ψ(ũ(n)), yielding a

total of 2N sample paths. The antithetic estimator is then given by

Q̂anti =
1

N

N∑
n=1

f
(
Y(n)

)
+ f

(
Ỹ

(n)
)

2
, (2.41)

which has statistical error, via equation (2.40), equal to

Var
[
Q̂anti

]
=

1

2N

(
σ2 + Cov

[
f (Y) , f

(
Ỹ
)])

=
σ2

2N
(1 + ρ) , (2.42)

where σ2 = Var [f(Y)] and −1 ≤ ρ ≤ 1 is the correlation between f(Y) and f(Ỹ).

The introduction of a dependency between the sample paths means that we can no

longer use equation (2.21) to estimate the statistical error. Instead we have to define

a new estimator

ŝ2
anti =

1

N − 1

N∑
n=1

f
(
Y(n)

)
+ f

(
Ỹ

(n)
)

2
− Q̂anti

2

, (2.43)

which has the property E [ŝ2
anti/N ] = Var[Q̂anti].

Equation (2.42) shows that the relative efficiency of the antithetic method com-
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pared to standard MC is given by 2/(1 + ρ), which can take values in [1,∞). This

result indicates that we are guaranteed to improve the efficiency by blindly applying

the antithetic method. We should stress, however, that this is under the assumption

that the computational complexity is defined solely in terms of the random numbers

used (see Section 2.3.2) and therefore any function calls, such as f , incur negligible

cost. In any practical application this will not be strictly true and the efficiency

gains of the antithetic method will depend on how much of the negative correlation

between u and ũ is retained after applying the functions ψ and f to them (relative to

computational overhead). For a special class of problems it can be proven that ρ < 0

under certain monotonicity conditions on f and ψ, see for example [129, Section 4.3].

Of particular interest in the context of this thesis is the recent resurfacing of

different methods to generate Poisson processes, dating back originally to [63]. In

[141] the authors show that applying the antithetic method to the simulation of a

unit-rate Poisson process yields negatively correlated Poisson processes. These can

then, in turn, be used to reduce the variance of chemical reaction sample paths if we

view the Poisson processes as inputs to a simulation of the RTCR of the dynamics,

e.g. using the NRM [68] or MNRM [1]. We will discuss an extension of this work in

more detail in Chapter 5. An illustration of a more direct application of antithetic

sampling to the simulation of chemical reactions can be found in Example 2.7 below.

A study of direct application of antithetic sampling to the DM and a rejection based

alternative can be found in [205].

Example 2.7 (Antithetic variables for a simple linear system).

We consider again the simple linear system (2.38) that we first encountered in Exam-

ple 2.5. Instead of focussing on the comparison with the exact answer according to

the CME, as done in Example 2.5, we now consider purely the statistical error in a

simulation using the τ -leap method. Inspection of Algorithm 2.3 shows that we can

think of the τ -leap method to generate sample paths X as a function X = f(u) where

u ∼ U(0, 1)d. This link follows when we note that each component of u defines a
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Poisson random variate in step 5 of Algorithm 2.3. The dimensionality of the random

input is given by the computational complexity, see equation (2.36b) (K = 3 here).

This means that we can directly apply antithetic sampling on the random input

u of the τ -leap method. An illustration of the resulting decay of the statistical error,

compared to standard MC, is shown in Figure 2.3. It is clear from this figure that the

antithetic method provides an improvement over the standard MC method, in this

case a statistical error which is roughly ten times smaller for the same computational

complexity, C. As a sanity check we see that the estimated sample variance using

equations (2.21) and (2.43) (solid lines) agrees well with the actual squared error

(open circles, calculated using Appendix 2.A).

We note that this method was previously considered in [142, 143] and the authors

proved in [142, Corollary 2] that it improves upon standard MC for a (sub)class of

reaction systems with affine propensity functions (such as in this example).

Figure 2.3: Statistical error, Var
[
Q̂
]
, as a function of the computational complexity,

C, for the τ -leap method (τ = 0.5) using either standard MC sampling or antithetic
sampling for the uniform random number input. The summary statistic is the mean
species count for S1 at time T . Results are for the single species system (2.38) in
a volume V = 1 with parameters c0 = 0.4, c1 = 0.7, c2 = 0.6 and initial condition
X0 = 10, run until T = 10. Solid lines show the estimated sample variance and the
open circles show the average of the exact squared error over 32 realisations with
given complexity (calculated using Appendix 2.A).
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Stratified sampling

Rather than directly sampling from p we first divide the state space Ω of Y into

disjoint sets such that Ω = ∪Jj=1Ωj, where J can theoretically be infinite6. These sets

will be denoted as strata. We will use the notation pDj
= P (Y ∈ Ωj) and define Dj to

be the event that Y ∈ Ωj. In the case that the distribution of Y is time-dependent,

i.e. Y ∼ p(t), note that pDj
(t) will also be time-dependent. With this notation, and

using the fact that the sets are disjoint, we can use conditional expectation and the

law of total expectation to write

Q = E [f (Y)] =
J∑
j=1

pDj
E [f (Y) |Dj] =

J∑
j=1

pDj
QDj

, (2.44)

where QDj
= E [f (Y) |Dj] denotes the summary statistic conditional on the event

Dj. If the pDj
are known this suggests a new way to construct an estimator of Q:

Q̂str =
J∑
j=1

pDj
Q̂Dj

, (2.45)

where the Q̂Dj
are estimators of QDj

. To construct these conditional estimators we

denote Y(i,j) to be the i-th sample drawn from the conditional distribution of (Y|Dj)
which yields

Q̂Dj
=

1

Nj

Nj∑
i=1

f
(
Y(i,j)

)
. (2.46)

Note that if conditional sampling from (Y|Dj) can be carried out exactly, the Q̂Dj

are unbiased estimators of QDj
and, as a result, Q̂str is an unbiased estimator of the

summary statistic Q. We can write the resulting stratified estimator in the form of

equation (2.39) via

Q̂str =
J∑
j=1

Nj∑
i=1

pDj

Nj

f
(
Y(i,j)

)
. (2.47)

6Note that taking J =∞ in a stratified sampling strategy will lead to infinite sampling cost. The
case J = ∞ is therefore mainly of use in asymptotic analysis of stratified sampling so that we find
an upper bound to the variance reduction that can be achieved using this method.
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The main benefit of this stratified sampling approach, however, lies in the fact

that by a judicious choice of the number of samples, Nj, per stratum we can make

sure that Q̂str has a lower variance than the standard MC estimator Q̂. To see this,

note that the law of total variance decomposes the variance of our object of interest,

f(Y), as

σ2 = Var [f (Y)] = E [Var [f (Y) |Dj]] + Var [E [f (Y) |Dj]] . (2.48)

If we introduce σ2
j as the conditional variance of f(Y) given Dj we can rewrite (2.48)

as

σ2 =
J∑
j=1

pDj
σ2
j +

J∑
j=1

pDj

(
Q−QDj

)2
. (2.49)

As a result we see that for the standard MC estimator, i.e. via equation (2.17) and

i.i.d. samples, the sample variance is given by

Var
[
Q̂
]

=
1

N

J∑
j=1

pDj
σ2
j +

1

N

J∑
j=1

pDj

(
Q−QDj

)2
, (2.50)

where N again denotes the number of sample paths used. On the other hand, for the

stratified estimator with independent sample paths in each stratum we have sample

variance

Var
[
Q̂str

]
=

J∑
j=1

p2
Dj

σ2
j

Nj

. (2.51)

Note that it is possible to deviate from independence within strata, e.g. using the

antithetic method within the strata, which would alter the sample variance for Q̂str

accordingly. Equation (2.51) demonstrates the fact that, in order to reduce the sample

variance of a stratified estimator, we need to carefully specify how many samples, Nj,

will be used per stratum, Dj. Perhaps the simplest and most common choice is

proportional allocation, i.e. given a budget of N samples in total we set Nj = pDj
N .

For this choice the stratified estimator has a sample variance that is guaranteed to

37



be at least as small as the standard MC sample variance:

Var
[
Q̂prop

]
=

J∑
j=1

p2
Dj

σ2
j

NpDj

≤ 1

N

J∑
j=1

pDj
σ2
j +

1

N

J∑
j=1

pDj

(
Q−QDj

)2
= Var

[
Q̂
]
,

(2.52)

where Q̂prop is given by equations (2.45) and (2.46) with Nj = pDj
N . It is therefore

clear that a judicious stratification strategy, such as proportional allocation, can in

fact be a variance reduction technique. Other choices of sample allocation can be

made, such as optimal allocation and post-stratification, leading to different sample

variances. We will not discuss such strategies further here, but refer the reader to

[129, Section 4.7].

In order to estimate the sample variance of a stratified estimator, just as for

the antithetic method, we need to modify equation (2.21), which only holds for the

standard MC method. Given the conditional estimators as in equation (2.46), we can

write down the unbiased conditional sample variance estimator

ŝ2
j =

1

Nj − 1

Nj∑
i=1

(
f
(
Y(i,j)

)
− Q̂Dj

)2

. (2.53)

The unbiased estimator of the sample variance of the stratified estimator of the sum-

mary statistic, Q̂str, is then given by

ŝ2
str =

J∑
j=1

p2
Dj

ŝ2
j

Nj

. (2.54)

Stratification has its roots in the field of statistical surveys, see for example [43],

but has since seen application to problems outside the survey literature [84, Section

4.3]. Relevant in the context of this thesis, and in particular to both stratified and

antithetic sampling, is the problem of generating (unit rate) Poisson processes. We

can, for example, stratify with respect to the number of times these Poisson processes

fire over a fixed time interval [0, T ), an idea which seems to date back to [63]. An
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application of stratification using this idea in the context of chemical reactions is

discussed in more detail in Section 3.3.

Latin hypercube sampling

The stratified sampling strategy attempts to spread out the sample paths over a

(fixed) number of strata. This, however, becomes problematic if the number of strata

grows very large. A classical example of this issue is the sampling of points uniformly

on the unit hypercube [0, 1)d using the method of grid-based stratification [162, Sec-

tion 10.1]. In this method we want to achieve stratification into equisized hypercubes

with sides of length 1/N . This results in Nd strata, in each of which we need at least

two samples. As the number of dimensions d grows this method therefore quickly

becomes infeasible. The same observation can be made for Cartesian products of

numerical quadrature schemes, which are used to approximate integrals over the hy-

percube. One common approach to circumvent exponential growth of the number of

strata with d is to restrict the stratification to a small subset of variables of dimen-

sion d̃� d, see Section 3.3 for an example where we only stratify with respect to one

dimension of the problem.

It is, however, possible to achieve stratification of the samples onto all the one-

dimensional projections of the points by using Latin hypercube sampling [149]. We

work again on the premise that Y = ψ(u) where u ∼ U(0, 1)d and start with N

samples u(1), . . . ,u(N). We define u
(n)
j to be the projection of the n-th sample point

u(n) onto the j-th dimension and note that in general u
(n)
j ∼ U(0, 1). Though this

means that in the limit N →∞ the one-dimensional projections provide good cover,

for finite N we can improve the equidistribution. To do so we enforce the condition

that for each dimension j and each interval [(i − 1)/N, i/N), where i = 1, . . . , N ,

we have exactly one (and only one) u
(n)
j contained in the interval. Note that this

can be easily achieved by sampling points along the diagonal of the hypercube, see

Figure 2.4(a). This does provide good cover for the one-dimensional projections, but
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does not yield a uniform cover of the whole hypercube. We therefore apply an extra

transformation and define ũ(n) via

ũ
(n)
j =

πj(n)− 1 + u
(n)
j

N
, (2.55)

where πj are independent random permutations of {1, . . . , N}. The resulting Latin

hypercube point set retains the good coverage for the one-dimensional projections,

but at the same time is uniformly spread out over the hypercube, see Figure 2.4(b).

(a) π1 = π2 = id. (b) π1 = id, π2 = [3; 6; 5; 7; 4; 8; 9; 1; 10; 2].

Figure 2.4: Latin hypercube sample construction on [0, 1]2 (N = 10). First points
are sampled in a stratified manner along the hypercube diagonal in Figure 2.4(a).
Applying the permutation transformation (2.55) yields a uniform covering point set
with good one-dimensional projection properties in Figure 2.4(b). Note that id is the
identity permutation.

In addition we note that we can view Latin hypercube sampling as a way to induce

(component-wise) negative correlations between the random points ũ(n) and ũ(m), as

we can easily derive the identity

Cov
[
ũ

(n)
i , ũ

(m)
j

]
=

1

12
δij


1, m = n,

−N+1
N2 , m 6= n.

(2.56)

It is possible to generalise the concept of the Latin hypercube sampling method to
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yield better coverage of two or higher dimensional projections. The most straightfor-

ward extension along this line is orthogonal array sampling and we refer the reader to

[162, Section 10.4] and references therein for more information on this approach. Al-

ternatively the Latin hypercube can be seen as a first step in the QMC methodology,

which we discuss in more detail in Chapter 4.

Using the Latin hypercube samples ũ(1), . . . , ũ(N) we then define the Latin hyper-

cube estimator

Q̂LH =
1

N

N∑
n=1

f
(
ψ
(
ũ(n)

))
. (2.57)

Note that this estimator is unbiased due to the observation that ũ ∼ U(0, 1)d [162,

Theorem 10.1]. The sample paths, however, are not independent which will make the

sample variance deviate from the standard MC method variance. It was shown in

[164] that for Latin hypercube sampling with N samples we have

Var
[
Q̂LH

]
≤ 1

N − 1
σ2 =

N

N − 1
Var

[
Q̂
]
, (2.58)

where σ2 = Var [f(Y)]. In addition it can be proved that for models which are to first

order described by the independent addition of d random contributions, Latin hyper-

cube sampling forms a significant improvement over the standard MC approach [162,

Proposition 10.1]. These results guarantee that, whilst Latin hypercube sampling can

be a marked improvement on standard MC, in a worst case scenario its statistical

error is only as large as using a standard MC method with one fewer sample point.

One of the downsides of the Latin hypercube sampling methodology is the lack of

a simple estimator for the statistical error given N sample paths. To get a grip on

the sample variance for a posteriori analysis we replicate M independent realisations

of N sample paths, Y(n,m), and from these construct Q̂
(m)
LH for m = 1, . . . ,M . Using

the M independent estimates we define the overall estimator Q̂LH = (1/M)
∑

m Q̂
(m)
LH .

An unbiased estimate for the sample variance of this estimator Q̂LH is given by the
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usual MC sample variance

ŝ2
LH =

1

M − 1

M∑
m=1

(
Q̂

(m)
LH − Q̂LH

)2

. (2.59)

Note that this sample variance should be compared against other methods using NM

sample paths.

Due to its simplicity and guaranteed efficiency Latin hypercube sampling is widely

used in (high-dimensional) parameter sampling problems, see for example [213] and

references therein. However, so far few direct use cases have been reported in the

context of chemical reaction simulations. An example application of Latin hypercube

sampling in the context of chemical reaction simulations is shown in Example 2.8

below.

Example 2.8 (Latin hypercube sampling for a simple linear system).

Identically to Example 2.7 we directly identify the τ -leap method with a function

X = f(u), where u ∼ U(0, 1)d with d given by the computational complexity in

equation (2.36b). Replacing the i.i.d. uniform random input for an ensemble of N

sample paths using τ -leap with a Latin hypercube sample of N points in [0, 1)d we

see a clear improvement in terms of the statistical error in Figure 2.5.

Two observations are in place here; to begin with we note that the standard Latin

hypercube samples are not trivial to extend, i.e. given a Latin hypercube sample of

N points in [0, 1)d it is not trivial to create a Latin hypercube sample of 2N points

in [0, 1)d. Two different approaches can therefore be taken, reflected by options

(1) and (2) in Figure 2.5, respectively. First, we can simply sample a full Latin

hypercube sample set of size N and if we need more samples not re-use the previous

N samples, but instead generate new samples with a larger N . This seems of course

an incredibly wasteful procedure, but it could in principal be beneficial due to the

fact that increasing the number of points in a Latin hypercube set increases the

one-dimensional stratification properties of the samples, which could further reduce
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(a) Number of samples, N . (b) Computational complexity, C.

Figure 2.5: Statistical error, Var
[
Q̂
]
, for the τ -leap method (τ = 0.5) using either

standard MC sampling or Latin hypercube sampling for the uniform random number
input. The summary statistic is the mean species count for S1 at time T . Results are
for the single species system (2.38) in a volume V = 1 with parameters c0 = 0.4, c1 =
0.7, c2 = 0.6 and initial condition X0 = 10, run until T = 10. Solid lines show the
estimated sample variance and the open circles show the average of the exact squared
error over 32 realisations (calculated using Appendix 2.A). Latin hypercube (1) uses
full size N Latin hypercube samples, whereas Latin hypercube (2) joins independent
Latin hypercube samples of size 26 until sample size N is reached.

the statistical error. Such a situation does arise in practice when simulating models

that can be accurately described by d independent one-dimensional contributions.

The alternative method samples a size N Latin hypercube set and, when needing

to increase the sample size, we simply add the results of another independent Latin

hypercube sample, for example again of size N (resulting in a total of 2N samples).

For the example system in Figure 2.5 it is clear that option (2) is roughly on par with

option (1) in terms of the variance reduction, and because option (2) is extensible, in

the sense that it re-uses computations, it is the preferred method in this case. The

final observation that we make is that Figure 2.5 reports the results both in terms of

the number of sample paths, N , and the computational complexity, C. This is done

under the standard assumption that generating the Latin hypercube samples uses an

extra O(dN) random numbers for the random permutations. The variance reduction

as a function of the complexity is therefore lower (roughly four-fold), than when only
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considering the number of sample paths (roughly nine-fold).

We note that a related approach previously appeared in a different form in [143],

although it was considered as a stratification approach, rather than Latin hypercube

sampling. Though equation (2.58) shows that the statistical error for Latin hypercube

sampling is at worst only marginally larger than using standard MC, we can prove that

Latin hypercube sampling is superior to standard MC when using the τ -leap method

for a class of reaction systems with affine propensity functions. A direct proof of this

fact follows from the observation that Latin hypercube sampling induces negative

correlations on the level of the uniform random input, see equation (2.56), which

proves a variant of [142, Lemma 4] for Latin hypercube sampling by [127, Theorem 2].

As a result [142, Corollary 2], which guaranteed improvement of antithetic sampling

over standard MC sampling, is also valid for Latin hypercube sampling.

2.4.2 Coupling based techniques

A different scenario one often encounters in the literature on stochastic simulation

methods is the estimation of a summary statistic related to the difference between

two random variables Y and Z,

Q = Q(y) −Q(z) = E [Y]− E [Z] . (2.60)

Using the assumption that the two random variables Y and Z can be generated using

uniform random variables we write

Q(y) = E
[
g(y)(u,v1)

]
Q(z) = E

[
g(z)(u,v2)

]
,

where u is the random input that can be shared between g(y) and g(z). Note that u,

v1 and/or v2 can be empty, but v1 and v2 are independent. This specific structure
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of the problem can be leveraged to create lower sample variance estimates compared

to a näıve MC estimator that uses 2N independent samples to yield Q̂(y) and Q̂(z),

respectively. This is in general achieved by coupling the simulation of the Y and

Z variables (using g(y) and g(z)) and we will now discuss some common techniques

related to this topic.

Common random numbers

Instead of using independent estimates for Q(y) and Q(z) we write by linearity of

expectation

Q = E
[
g(y)(u,v1)− g(z)(u,v2)

]
. (2.61)

This means we can generate N coupled sample paths for Y and Z by first sampling

u(1), . . . ,u(N), v
(1)
1 , . . . ,v

(N)
1 and v

(1)
2 , . . . ,v

(N)
2 independently. Note that we share the

randomness in u between the sample paths, which explains the name of the common

random numbers (CRN) method. Using the coupled samples we find an unbiased

estimate for Q via

Q̂CRN =
1

N

N∑
n=1

(
Y(n) − Z(n)

)
=

1

N

N∑
n=1

(
g(y)(u(n),v

(n)
1 )− g(z)(u(n),v

(n)
2 )
)
. (2.62)

The sample variance of this coupled estimator is given by

Var
[
Q̂CRN

]
=

1

N

(
σ2

1 + σ2
2 − 2σ1σ2ρ1,2

)
, (2.63)

where σ2
1 = Var [Y], σ2

2 = Var [Z] and ρ1,2 = Corr
[
g(y)(u,v1), g(z)(u,v2)

]
. Estimating

the sample variance of Q̂CRN can be done effectively using the usual (unbiased) MC

estimator

ŝ2 =
1

N − 1

N∑
n=1

[(
Y(n) − Z(n)

)
− Q̂CRN

]2

. (2.64)

We note that the standard MC sample variance (using 2N samples) would be

given by (σ2
1 + σ2

2)/N and therefore equation (2.63) shows that we might improve
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efficiency using CRNs if we can simulate Y and Z such that their sample paths are

positively correlated, i.e. ρ1,2 > 0. For certain classes of problems, just as for the

antithetic method, we can prove that ρ1,2 > 0, see for example [129, Section 4.8].

In general, though, the CRN method, despite being perhaps the intuitive way to

calculate difference summary statistics like (2.60), is not guaranteed to improve upon

simple MC; the efficiency of the CRN approach, relative to simple MC, is problem-

dependent and influenced by the complexity of the CRN sampling versus the simple

MC sampling.

A common scenario in which the CRN method can be effectively employed is the

estimation of parameter sensitivities. Suppose the model of interest depends on a

variable θ, e.g. one of the reaction rate constants in a chemical reaction network, then

one might want to know how quantities like f(u, θ) vary as θ is changed. This can be

quantified using a finite difference approximation of the derivative with respect to θ,

dE [f (u; θ)]

dθ

∣∣∣∣
θ=θ∗
≈ E [f (u; θ∗ + ε)]− E [f (u; θ∗ − ε)]

2ε

=
E [f (u; θ∗ + ε)− f (u; θ∗ − ε)]

2ε
.

Note that this (local) measure of sensitivity takes the form of equation (2.61) and

we can therefore use the CRN approach to find an accurate estimate of the deriva-

tive. Because we generally take ε small to suppress the bias in the finite-difference

approximation we expect f(u; θ∗±ε) to have high correlation, and therefore by equa-

tion (2.63) there is a large benefit from using the CRN method. For an overview and

more information on the problem of parameter sensitivity analysis in the context of

chemical reaction networks we refer the reader to [11, 131, 203] and references therein.

Later in this section we will discuss two further variance reduction techniques relevant

to the context of chemical reaction networks, the multifidelity Monte Carlo (MFMC)

and multilevel Monte Carlo (MLMC) methods, which also both heavily rely on cou-

pling sample paths and this is predominantly achieved using some form of the CRN

approach.
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Control variates

Any technique derived for difference summary statistics, like those in equation (2.60),

can also be used to create improved estimators for general summary statistics Q =

E [Y] where Y ∼ p. To do so we note that in general we can write by linearity of

expectation

Q = E [Y − αZ] + αE [Z] . (2.65)

To make this representation useful we note that Z is completely arbitrary and we

can therefore choose it so that we either know E [Z] = µZ exactly, see for example

[84, Section 4.1] for examples in the context of SDEs in finance, or can estimate µZ

more easily than Q [58, 169]. This turns the summary statistic Q again into the

expectation of the difference of two quantities, Y and Z, respectively. As a result

we can use a variance reduced estimator for Q if we can find a suitable stochastic

process Z so that i) we can generate it together with Y such that their sample paths

are correlated and ii) its expectation is either known or inexpensive to compute. This

control variate estimator is then defined by

Q̂cv(α) = αµZ +
1

N

N∑
n=1

(
Y(n) − αZ(n)

)
, (2.66)

where we recall that Y(n) and Z(n) are generally coupled. Note that the sample

variance of Q̂cv is given by

Var
[
Q̂cv(α)

]
=

1

N

(
σ2 + α2Var [Z]− 2αCov

[
Y(n),Z(n)

])
,

where σ2 = Var [Y]. Using the freedom in the weight, α, we can determine its optimal

value

α∗ =
Cov

[
Y(n),Z(n)

]
Var [Z]

. (2.67)
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This optimal weight parameter, α∗, then yields the lowest variance estimator, Q̂cv(α∗),

with variance given by

Var
[
Q̂cv(α∗)

]
=

1

N

σ2 −
Cov

[
Y(n),Z(n)

]2

Var [Z]

 =
σ2

N
(1− ρ2), (2.68)

where ρ is the correlation between Y(n) and Z(n). In general, however, it is not pos-

sible to take α = α∗, because the covariance between Y and Z is unknown. One

therefore often estimates α via linear least squares [129, Section 4.4], yielding an ap-

proximate α̂. If we use our original samples used for the construction of Q̂cv to also

perform the linear least squares estimation then this complicates matters slightly by

introducing a bias in the estimator Q̂cv(α̂). Even though this bias is ordinarily negli-

gible if we consider enough samples, N , we can also remove the bias by either using

a few independent pilot samples (O(
√
N) is often optimal) to estimate α̂ or by split-

ting our samples into independent sets [14]. Using any of the methods described to

estimate α∗ means the control variate method becomes very versatile and the sample

variance is often only marginally larger than the optimal result in equation (2.68)7.

Generalisation of the method to multiple control variates Z1, . . . ,ZL is also trivial in

this framework; we simply estimate multiple weight parameters α1, . . . , αL using a

single least squares approach.

Looking at the sample variance of a control variate estimator usingN sample paths

(for both Y and Z) we see that it is always equal to or smaller than the standard

MC estimator using N sample paths for Y. Note that this shows that the efficiency

of the control variate method relative to the standard MC method depends on the

complexity of generating the Z(n) control variates coupled to the Y(n) samples, which

in general is problem dependent.

Effective direct applications of the control variate method in the context of chem-

7This is generally true when α̂ ≈ α∗ (which is guaranteed when N grows large) by the observation

that the derivative of Var
[
Q̂CV(α)

]
with respect to α is zero at α∗.
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ical reaction networks can be found in [15, 154]. In [154] an alternative τ -leap path

driven by a solution of the RRE is coupled to a regular τ -leap sample path. This

approach is effective due to the observation that the control variate has known (non-

zero) expectation and is inexpensive to calculate. An alternative approach was taken

in [15] where known constraints on the raw moments of the species, derived from the

direct integration of the CME, are used to derive control variates with zero expecta-

tion. We note that this latter approach relies on mass action kinetics modelling of

the reaction propensities.

A different extension of control variates, called Monte Carlo with least-squares

(MCLS), was recently proposed in [158]. Using this method we can derive control

variates for any black box simulator via function approximation theory using suitably

chosen basis functions and random input into the simulator, often in the form of

standard uniform random variates on the hypercube. An illustration of the efficacy

of MCLS in the context of chemical reactions can be found in Example 2.9 below.

Example 2.9 (MCLS for a simple linear system).

Again we consider the same set-up as in Example 2.7 and consider the τ -leap method

as a function X = f(u), where X is a sample path and u ∼ U(0, 1)d with d given by the

computational complexity in equation (2.36b). Using the monomial basis functions

to approximate the unknown f yields the simplest form of the MCLS method and

in Figure 2.6 we show the convergence of the statistical error when we restrict the

basis functions to degree-one monomials. There is roughly a six-fold improvement of

MCLS over standard MC.

Note that the number of basis functions in this case is equal to d + 1. Taking

higher degree basis functions will yield larger variance reductions, but this comes at

the price of a more complex least-squares system to solve. Though the MCLS does

not use any extra random numbers, and therefore would have the same complexity

as the standard MC method, we note that it involves the solution of a possibly large

linear algebra problem (scaling with the number of samples and the number of basis
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Figure 2.6: Statistical error, Var
[
Q̂
]
, as a function of the number of sample paths, N ,

for the τ -leap method (τ = 0.5) using either standard MC sampling or MCLS (degree
1 monomial basis functions). The summary statistic is the mean species count for
S1 at time T . Results are for the single species system (2.38) in a volume V = 1
with parameters c0 = 0.4, c1 = 0.7, c2 = 0.6 and initial condition X0 = 10, run until
T = 10. Solid lines show the estimated sample variance and the open circles show the
average of the exact squared error over 32 realisations with a given number of sample
paths, N .

functions), which will add significantly to the memory requirement and run-time of

the simulations.

Multilevel and multifidelity Monte Carlo

A more recent and very successful variance reduction technique, also used in the

context of chemical reaction networks, is the MLMC method, which was first pro-

posed in [71]. We first consider the most popular variant of the MLMC method,

geometric MLMC. For this method we consider a sequence of hierarchical models for

l = 0, . . . , L, which we will denote as the levels, with sample paths Zl. Generally

speaking we assume that the models for small l, the coarse levels, are inexpensive

to simulate, but provide inaccurate, or biased, results; whereas for large l, the fine

levels, the situation is reversed in the sense that the models are more accurate, but
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it is expensive to generate sample paths from them. Suppose then that we want to

estimate Q = E [ZL], which by standard MC would be expensive to do. Instead we

note that we can use the hierarchical models to write

Q = E [ZL] = E [ZL−1] + E [ZL − ZL−1] (2.69a)

= E [ZL−2] + E [ZL−1 − ZL−2] + E [ZL − ZL−1] (2.69b)

. . .

= E [Z0]︸ ︷︷ ︸
Q0

+
L∑
l=1

E [Zl − Zl−1]︸ ︷︷ ︸
Ql

. (2.69c)

Using equation (2.69) to estimate Q would in general use sample paths from all

hierarchical models via

Q̂MLMC = Q̂0 +
L∑
l=1

Q̂l (2.70a)

=
1

N0

N0∑
n=1

Z
(n)
0 +

L∑
l=1

1

Nl

Nl∑
n=1

(
Z

(n)
l − Z

(n)
l−1

)
. (2.70b)

This expansion of Q onto a coarse level Q0 and a series of corrections Ql might initially

seem like a counterproductive approach to estimate Q, due to the increased number

of summary statistics that now need computation as well. However, if we note the

similarity between equation (2.69) and the control variate formalism we encountered

in the previous section, it should be clear that if we can couple the generation of Z
(n)
l

and Z
(n)
l−1 sample paths, e.g. using the CRN approach, the variance of the corrections

Q̂l could be much lower than if they were estimated using standard MC. This way one

can reduce the estimator complexity by using many inexpensive simulations for the

coarse level combined with a few expensive fine level corrections to reduce the bias.

This was first realised in the context of SDE simulations in [71], where hierarchical

models follow from the Euler-Maruyama numerical discretisation of the SDE with

different step sizes. It was shown that a judicious choice of the number of samples
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used to construct each of the Q̂l can yield a variance reduction method that improves

upon standard MC by several orders of magnitude. For an excellent overview and

more details on the MLMC method in general we refer the reader to [72].

In the context of chemical reaction networks it was shown in [5] how to construct a

multilevel method using a hierarchy of models stemming from using the τ -leap method

with different step sizes. Rather than using the more standard CRN approach with

inverse transform sampling to generate coupled paths, the authors use the thinning

and thickening properties of Poisson processes to provide a good coupling approach.

In addition they show how to remove the bias stemming from using the τ -leap method

for the levels in the MLMC approach. This is done by using as the finest level

correction, QL+1, the difference between sample paths from the exact SSA and the τ -

leap method with the smallest step size used. The complexity of the resulting MLMC

method for chemical reaction networks is studied in [7, 8] and it is shown that a

correct implementation of the MLMC method will be at least as efficient as standard

MC. For a practical guide on how to implement the MLMC method and choose the

number of samples for each level we refer the reader to [133]. Several extensions and

refinements of the original algorithm in [5] have been proposed over the last few years,

which we will point out next. Firstly, in [132] the use of an adaptive step size in the

τ -leap levels is introduced in order to efficiently simulate models for which reaction

activity changes strongly over the course of a sample path of interest, e.g. in stiff

systems. In a similar vein the use of implicit τ -leap methods allows one to take larger

time steps for stiff systems and an MLMC variant was developed in [22]. An MLMC

method using a hybrid between τ -leap and the MNRM for the correction levels in

order to ensure that τ -leap simulations do not yield negative species counts can be

found in [154]. An extension of this hybrid method is described in [153] and is used to

adaptively speed up the simulation of fast and slow reaction channels by allowing one

to switch between the τ -leap method and an exact SSA for each individual reaction

channel. Even though most MLMC methods have used the τ -leap method for the
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coarse level simulations it is also possible to use the R-leap method in an MLMC

approach [135]. This latter work also describes a different coupling technique for

τ -leap sample paths, which can improve upon the standard coupling in [5]. Though

most of the MLMC methods consider the problem of estimating moments of chemical

species it is possible to extend the MLMC approach to estimate densities [220].

Finally, a recent variant of the MLMC method is the MFMC method [172], which,

unlike the most common MLMC variant, geometric MLMC, does not assume a hier-

archical sequence of models. This method, in a similar vein to the MLMC method,

provides a way to combine (cheaper) low-fidelity surrogate models, e.g. based on

model approximations, with (expensive) high-fidelity models in an optimal control

variate framework. We refer the reader to [171, 172] for mathematical details of

the MFMC method and [173] for a comprehensive review of multifidelity methods

in general. Though the MFMC method does not yet appear widely in the context

of chemical reaction networks, the final example in [5, Section 9] shows that multi-

fidelity approaches, in that case based on a quasi-steady state approximation, have

large potential benefits. Another example of this methodology, relevant for multiscale

systems in terms of species abundance, can be found in [136]. Future example usages

could be the combination of methods based on the full CME, such as the DM, with

reduced and biased models based on multiscale arguments, e.g. see [193, Section 4.6]

and references therein, or other reduction techniques, e.g. [29, 61].

2.4.3 Importance sampling

Importance sampling is the final category of variance reduction methods we discuss

in this thesis and has perhaps been the most explored variance reduction technique

in the context of the simulation of chemical reaction networks. We start with the

summary statistic Q = E [f(Y)] where Y ∼ p, but rather than sampling directly
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from the distribution p we note that we can write

Q = E [f(Y)] =

∫
Ω

f(ω)p(ω) dω =

∫
Ω

f(ω)
p(ω)

q(ω)
q(ω) dω, (2.71)

for some function q with the property that q(ω) 6= 0 when f(ω)p(ω) 6= 0. Due to the

generality of equation (2.71) we note that we can take q to be a new distribution, i.e.

q ≥ 0 and normalised to unity. Defining the new function r(ω) = p(ω)/q(ω), called

the likelihood ratio, we then see via equation (2.71) that if we let Ỹ ∼ q

E [f(Y)] = E
[
f(Ỹ)r(Ỹ)

]
. (2.72)

The significance of this result is that we can estimate Q, which is related to the

distribution p, via sampling from an alternative distribution, q, called the importance

distribution. Using N sample paths, Ỹ
(n)

, drawn from the distribution q we construct

the importance sampling estimate

Q̂IS =
1

N

N∑
n=1

f
(
Ỹ

(n)
)
r
(
Ỹ

(n)
)
, (2.73)

which is an unbiased estimate for Q. The variance of Q̂IS in general, however, is

different from the usual MC estimator and given by

Var
[
Q̂IS

]
=

1

N
Var

[
f
(
Ỹ
)
r
(
Ỹ
)]
. (2.74)

A variant of the usual MC sample variance estimator, in equation (2.21), gives an

unbiased estimate for the sample variance of the importance sampling estimator

ŝ2 =
1

N − 1

N∑
n=1

[
f
(
Ỹ

(n)
)
r
(
Ỹ

(n)
)
− Q̂IS

]2

. (2.75)
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One can show that a judicious choice of importance distribution, q, yields lower

variance estimators, whilst a bad choice for q can make matters significantly worse as

well. Importance sampling is therefore not guaranteed to improve upon standard MC,

though its potential can be large, see e.g. [84, Sections 4.6 and 4.7]. The best choice

of q is problem-dependent, relating to both the type of summary statistic via f and

the underlying distribution p, and its construction can require numerical optimisation

and/or expert knowledge8. For more background information and a discussion of the

subtleties of importance sampling we refer the reader to [162, Chapter 9].

In the context of chemical reaction networks importance sampling is predomi-

nantly used for rare event simulation, i.e. the exploration of an event, e.g. extinction

of a specific species, or system state when its occurrence probability is very small. By

sampling from an importance distribution we can force the dynamics of an altered

system to encounter such rare events of interest more frequently, whilst keeping the

sampling correct for the original system of interest by weighting via the likelihood

ratio. Importance sampling is achieved by changing the (relative) reaction propen-

sities, either increasing or decreasing them depending on the rare event of interest.

The resulting weighted stochastic simulation algorithm (wSSA) was first proposed

in [118] and further developed in the following years, see for example [46, 74, 82,

189, 190, 191]. Finally, the use of a variant of the wSSA was recently proposed in

the context of the MLMC method for chemical reaction simulations in [21]. Rather

than using the wSSA to focus on more traditional rare event simulation they employ

importance sampling via changing reaction propensities in order to reduce the phe-

nomenon of catastrophic coupling. This occurs when sample paths are almost too

tightly coupled and appear identical in all but a few of the simulations. Such a tight

coupling naturally arises at the fine levels of an MLMC algorithm, where the two

different levels become increasingly similar. Though in expectation this is the desired

behaviour, the variance estimation in this circumstance becomes troublesome due to

8On a theoretical level the condition q ∝ fp yields the optimal results, i.e. the variation of q is
proportional to variation in the product of f and the original distribution p.

55



the high kurtosis. By forcing the difference between the two sample paths to increase

in a controlled manner via scaling of the reaction propensities the authors show they

can alleviate the issue of high kurtosis.

2.5 Outlook

In this review chapter we introduced the framework for this thesis, namely the efficient

simulation of CTMC models of chemical reactions using MC methods. Historically

much of the progress in increasing efficiency has been made by either introducing ap-

proximate SSAs or by making the implementation of currently available SSAs faster.

An orthogonal approach, which has received less attention, however, is the use of

variance reduction techniques. These methods directly tackle the major bottleneck

for many stochastic simulation scenarios, namely the statistical error. A general

overview of the common trends among these methods was given at the end of this

chapter. Theory and background information were supplemented with illustrations

on how these techniques can be used to improve simulations of chemical reaction

networks; either by referring to relevant literature or by showcasing the methods’

effectiveness on tractable test problems.

Many of these variance reduction techniques are not only orthogonal to previ-

ous efforts to increase efficiency, but also to each other. As a result there is scope

to combine variance reduction techniques with each other and with known efficient

(approximate) SSAs, without the need to drastically change them. This rest of this

thesis therefore explores the use of the variance reduction approach in the context

of chemical reaction simulations. Using these ideas we discuss new methods with

improved efficiency, both by building on existing SSAs and by introducing new sim-

ulation methodologies.
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Chapter appendix

2.A Analytic moments for the τ-leap method in systems with

affine propensity functions

Inspired by convergence studies for τ -leap methods such as [103, 182], we derive ex-

pressions for the first two central moments when applying the (näıve) τ -leap method

to a system for which the propensity functions are affine functions of the state vari-

ables, i.e. ak(X) = a+bᵀX. The availability of exact moments can be useful in testing

correct implementation of algorithms and to study properties of the τ -leap method

on a more theoretical level, for example convergence and consistency [10, 103, 181,

182]. Exact expressions for the first moment of systems with purely linear propensity

functions using both the explicit and implicit τ -leap simulation method can also be

found in [182].

To see how these systems arise in practice consider a linear reaction system, which

is defined by having K reactions of the form

α1,kS1 + · · ·+ αJ,kSJ
ck−A β1,kS1 + · · ·+ βJ,kSJ ,

where the restriction is that αj,k ∈ {0, 1} for all j, k and at most one αj,k = 1 for a

given reaction channel k. In addition we assume mass-action kinetics which by the

previous restriction implies that we can write the propensity function as an affine

function of the state vector, i.e. ak(X) = γkV + cᵀ
kX, where ck = ck(α1,k, . . . , αJ,k)

ᵀ

and γk = ck if αj,k = 0 for all j and 0 otherwise. For future reference we further

define R as the set of all reactions in the system, i.e. R = {R1, . . . , RK}. We then

note that R = R0 ∪ R1, where R1 denotes the set of all reactions with one reactant

and R0 is the set of all zeroth order reactions, i.e. those of the form

∅
γk−A β1,kS1 + · · ·+ βJ,kSJ .
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We note that for a large class of systems within the set of all linear reaction systems

it is possible to make analytic progress with the CME, as shown in [104, 184]. Here,

however, we derive analytic results when applying the τ -leap method to the system.

For the remainder of this appendix we abuse notation and let Xn = X(nτ). Using

this notation we find using equation (2.9) the recurrence relation for X when applying

the τ -leap method9

Xn+1 = Xn +
∑
R0

Yk (γkV τ) ζk +
∑
R1

Yk (cᵀ
kXnτ) ζk. (2.76)

We therefore see that to compute expectations of Zn+1 we need to use known results

on the expectation of Poisson random variables, e.g.

E [Yk (λk)] = λk,

E [Yk(λk)Yk′ (λk′)] = λkλk′ + δkk′λk.

We note that the above equalities, whilst true for Poisson random variables, do in fact

also hold if we replace Yk(λk) with its normal approximation Nk(λk, λk). Therefore

the results for the first two moments derived in this appendix for the τ -leap method

are actually also equal to the first two moments obtained when applying the Euler-

Maruyama scheme to the CLE approximation to the system, which can be thought

of as the τ -leap equivalent for the CLE, see for example (2.10). Note that a similar

equivalence holds in the limit τ → 0 between the first two moments of the CLE and

the CME for linear reaction systems [89].

9Here we implicitly assume that the τ -leap method yields feasible sample paths, i.e. we assume
the absence of negative molecule numbers when applying the τ -leap method. This is typically the
case in parameter regimes for which the τ -leap method is applicable, but refer the reader to [182]
for a more detailed discussion.
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Mean

We start by taking an expectation of equation (2.76) conditional on Xn and use the

mean of the Poisson random variables to find

E [Xn+1 | Xn] = Xn +

(∑
R0

ζkγkV

)
︸ ︷︷ ︸

b

τ +

(∑
R1

ζkc
ᵀ
k

)
︸ ︷︷ ︸

A

Xnτ.

Then, by the law of total expectation, we find the recurrence relation for the mean

of the system

E [Xn+1] = E [E [Xn+1 | Xn]]

= (I + Aτ)︸ ︷︷ ︸
L0

E [Xn] + bτ.

Using the recurrence relation we find a general solution

E [Xn] = Ln0X0 +

(
n−1∑
i=0

Li0

)
bτ = (I + Aτ)n X0 +

(
n−1∑
i=0

(I + Aτ)i
)

bτ (2.77)

As a sanity check we see that in the limit of small step size, τ , we recover the solution

given by solving the CME directly:

lim
τ→0,nτ→t

E [Xn] = exp (At) X0 +
(
I − exp (At)

)
A−1b, (2.78)

if A is invertible. When A is not invertible we can use the Jordan normal form of A

to recover the standard solution in the same limit

lim
τ→0,nτ→t

E [Xn] = exp (At) X0 +

(∫ t

0

exp (As) ds

)
b. (2.79)
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Covariance

For the covariance the calculations become more involved, but we can proceed as

before if we use the law of total covariance, i.e.

Cov [Xn+1,Xn+1] = E [Cov [Xn+1,Xn+1 | Xn]] + Cov [E [Xn+1 | Xn] ,E [Xn+1 | Xn]] .

(2.80)

We start by considering the matrix Xn+1X
ᵀ
n+1 and its conditional expectation with

respect to Xn to first calculate the conditional covariance

Cov [Xn+1,Xn+1 | Xn] = E
[
Xn+1X

ᵀ
n+1 | Xn

]
− E [Xn+1 | Xn]E [Xn+1 | Xn]ᵀ

= L2Xn + Bτ,

where L2 is a deterministic linear operator and B given by

L2v =

(∑
R1

ζkζ
ᵀ
kc

ᵀ
k

)
︸ ︷︷ ︸

A

vτ,

B =

(∑
R0

ζkγkV ζ
ᵀ
k

)
.

The covariance of the conditional expectation is easily shown to be equal to

Cov [E [Xn+1 | Xn] ,E [Xn+1 | Xn]] = L1Cov [Xn,Xn] ,

where L1 is another deterministic linear operator given by

L1M = (I + A1τ) M (I + A1τ)ᵀ .

Because the linear operators are deterministic and taking the expectation is also

linear operation we can interchange them. We therefore find, by the law of total

60



expectation, a generalised recurrence relation for Cov [Xn+1,Xn+1]:

Cov [Xn+1,Xn+1] = L1Cov [Xn,Xn] + L2E [Xn] + Bτ. (2.81)

This then yields a general solution of the form

Cov [Xn,Xn] = Ln1 Cov [X0,X0] +
n−1∑
i=0

Li1L2E
[
X(n−1)−i

]
+

(
n−1∑
i=0

Li1

)
Bτ. (2.82)

Using the results in the previous section for the mean of Xn and assuming determinis-

tic initial conditions we find the covariance matrix for the τ -leap method in symbolic

form

Cov [Xn,Xn] =

(
n−1∑
i=0

Li1L2L(n−1)−i
0

)
X0 +

(
n−1∑
i=0

Li1L2

n−2−i∑
j=0

Lj0

)
bτ +

(
n−1∑
i=0

Li1

)
Bτ.

(2.83)

This covariance formula is explicit and can therefore be used to calculate the covari-

ance for a given set of parameters by applying all the linear operators. However,

it is also insightful to consider some examples for certain special classes of reaction

networks in which the expressions can be simplified. These will be used throughout

this thesis.

Example (Single species). A single species S1 system is any system of the form

∅
γj−A βjS1,

S1

cj′−A βj′S1,

where we assume βj, βj′ ∈ N≥0. In this case we can further simplify the algebra

by noting that X = X. This means that we have a one-dimensional state vector.
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Furthermore we have

A = a1, A = a2, b = b1V, B = b2V, (2.84)

where we have used

a1 =
∑
R1

ζkck,

a2 =
∑
R1

ζ2
kck,

b1 =
∑
R0

ζkγk,

b2 =
∑
R0

ζ2
kγk.

We therefore find the following expressions for the mean

E [Xn] =


(1 + a1τ)n (X0 + V b1/a1)− V b1/a1, a1 6= 0,

X0 + b1V nτ, a1 = 0.

(2.85)

Note that from this expression for the mean we recover the asymptotic stability result

from [182], i.e. we need |1 + a1τ | < 1 for asymptotic stability when a1 6= 0. For the

variance the expression becomes slightly more cumbersome but is given by

Var [Xn] = X0
a2

a1

(1 + a1τ)n−1 (−1 + (1 + a1τ)n)

+ V
a2b1

a2
1

(
(1− (1 + a1τ)n) (1 + a1τ − (1 + a1τ)n)

(1 + a1τ) (2 + a1τ)

)
+ V

b2

a1

(
(1 + a1τ)2n − 1

2 + a1τ

)
,

(2.86)

in the case where a1 6= 0. If we have a1 = 0 this simplifies to

Var [Xn] = X0a2nτ +
1

2
b1V a2n(n− 1)τ 2 + b2V nτ. (2.87)
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Example (Isomerisation). The second example often used as a simple test system

contains two species S1 and S2 and describes the isomerisation reactions between the

two,

S1

c1−A S2,

S2

c2−A S1.

Note that, due to conservation of mass, the dynamics of this system can be effectively

described by a one-dimensional system. To proceed we define c = c1 +c2 and r = c1/c

and note that

A = c

−r 1− r
r −(1− r)

 , A = c

 1 −1

−1 1

 (r, 1− r) , b = 0, B = 0. (2.88)

This yields the following expression describing the mean evolution of the τ -leap solu-

tion

E [Xn] =

 1− r 1− r
r r

+

 r −(1− r)
−r 1− r

 (1− cτ)n

X0. (2.89)

Note that conservation of mass is also valid for the mean, i.e. (1, 1)ᵀ · E [Xn] =

(1, 1)ᵀ ·X0. Asymptotic stability of the τ -leap method requires |1 − cτ | < 1 in line

with [182]. For the covariance we find

Cov [Xn,Xn] =

 1 −1

−1 1

σ2
n, (2.90)
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where we have the scalar variance given by

σ2
n =

1− (1− cτ)n

(2− cτ)

2r(1− r)

1

1

+ (1− cτ)n−1

 r(2r − cτ)

(1− r)(2(1− r)− cτ)

 ·X0.

(2.91)

Note that the covariance structure clearly shows the effectively one-dimensional na-

ture of the isomerisation system.

2.B Histograms and self-distance

A commonly used alternative to the EDF from Section 2.3 when estimating distri-

butions is the histogram. To construct a histogram we pick a pre-selected number of

bins B and divide the state space of interest Ω into B bins ωb so that Ω ⊇ ∪Bb=1ωb

and ωi ∩ ωj = ∅ when i 6= j. Note that, unlike for the EDF, for a histogram we do

not necessarily need to consider the whole state space Ω. For the one-dimensional

problems often encountered in the context of chemical reaction networks, the usual

bins are intervals on the positive half-line. Given N sample paths we can then define

histogram function hB by

hB(ωb|Y) =
1

|ωb|N
N∑
n=1

1Y∈ωb

(
Y(n)

)
≈ p(ωb)

|ωb|
. (2.92)

Note that the histogram function approximates the average probability density inside

the bins ωb. If we keep all bin sizes of the same order of magnitude we observe that

as B →∞ the size of the bins tends to zero and the histogram function converges to

the EDF.

To quantify the convergence of simulations to a ground truth on a distribution

level we introduced the concept of a statistical distance in Section 2.3. Next we aim

to define the distance between two sets of samples {Y(n)}Nn=1 and {X(m)}Mm=1 of not
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necessarily the same sizes N and M , respectively. Note that a typical example in

the context of this thesis would be the comparison of a histogram based on samples

Y(n) from an approximate SSA, such as the τ -leap method, with a histogram based

on samples X(m) coming from an exact SSA like the DM.

Similar to the MISE for the EDF, we define the MISE for histograms by

MISE [hB( · |Y) ‖ hB( · |X)] =
B∑
b=1

|ωb|2E
[
(hB(ωb|Y)− hB(ωb|X))2] . (2.93)

For histograms one can also define a new statistical distance similar to the total

variation distance for the EDF, the histogram distance. This was introduced in [36]

and is given by

DhB [hB( · |Y) ‖ hB( · |X)] =
B∑
b=1

|ωb| |hB(ωb|Y)− hB(ωb|X)| . (2.94)

The dependency of DhB and the MISE on the number of samples N,M and the

number of bins B is subtle. Taking B = 1 means all observations fall in the same

bin and so the distance between the two sets will be zero. However, we will not be

able to deduce anything from that trivial observation. Taking B larger will increase

our ability to discriminate between the two sets of samples, but the accuracy of a

comparison with B large will be severely hampered by the large number of samples

that will be required due to the growing statistical error per bin as the bins become

smaller in size.

As a result of the above property it is generally not true that for a finite number of

samples and finite bin size the histogram distance between histograms generated by an

exact SSA and a τ -leap method vanishes, even if we take τ → 0. Note that a similar

observation holds when considering summary statistics like the mean. We can show

convergence of the τ -leap mean to that of the exact SSA in expectation when τ → 0,

but when considering the MSE we see that unless the number of samples N → ∞
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the MSE does not go to zero when τ → 0 due to the statistical error. This behaviour

is reminiscent of the round-off error, e.g. for floating point arithmetic, in classical

numerical analysis which prevents convergence to an answer in exact arithmetic.

We will now discuss the expected MC behaviour of these two often used statistical

distances in the context of discrete state space models.

Self-distance

We start with two independent sets of samples {Y(n)}Nn=1 and {X(m)}Mm=1 of not nec-

essarily the same sizes N and M . We will derive estimates for the self-distance, which

describes the statistical distance between the two sets when the samples follow the

same distribution. We denote the estimated (empirical) distributions and histograms

for these sets by p̂X, p̂Y and hB,X, hB,Y, respectively.

To consider the distance between sets not following the same distribution, e.g.

when comparing the τ -leap method and exact SSA samples, we get the self-distance

plus a (positive) bias contribution. The self-distance therefore forms a lower-limit of

what one can expect the size of the statistical distance between two sets of a fixed

number of samples N and M to be given. Sets with statistical distance less than

the self-distance should be treated with caution and are likely to be due to random

effects, similar to the case of answers below machine precision in classical numerical

computations.

L2-norm squared for histogram. We can use the observations from Exam-

ple 2.3 and the fact that there is no bias between X and Y samples, because they

follow from the same distribution, to find

MISE [hB,X ‖ hB,Y] =

(
1

N
+

1

M

)(
1−

B∑
b=1

p(ωb)
2

)
≤ 1

N
+

1

M
, (2.95)
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where p is the distribution for the X and Y samples. This shows the familiar MC

error convergence behaviour, now O(N−1) because we are considering the squared

error, and the upper bound is both independent of the underlying distribution for X

and Y and the dimension of the underlying distribution (which is not the case for

the histogram distance).

L2-norm squared for EDF. Similar to the histogram case we find

MISE [p̂X ‖ p̂Y] =

(
1

N
+

1

M

)(
1−

∑
y∈Ω

p(y)2

)
≤ 1

N
+

1

M
. (2.96)

Again this shows the upper bound is both independent of the underlying distribution

for X and Y and the dimension of the underlying distribution (which is not the case

for the histogram distance).

L1-norm for histogram. We note that this was covered in [38, Theorem 4.1]

and we quote here the resulting upper-bound on the expected histogram distance

E [DhB [hB,X ‖ hB,Y]] /

√
2B

π

√
1

N
+

1

M
, (2.97)

where the approximation comes from using a large N,M sample size approximation.

This bound is independent of the underlying distribution for X and Y and was shown

to be in many cases a good estimate of the actual histogram distance in [38]. Note that

this bound clearly shows the effect of increasing B, which intuitively should increase

the error by enlarging statistical errors. In addition we see the familiar inverse square

root error convergence behaviour, i.e. O(N−1/2), for standard MC methods. Finally

we note that the estimate for the histogram self-distance has an implicit dependency

on the dimension of the distribution via B, because for higher dimensional problems

B should grow exponentially with the dimension to keep the same level of resolution.
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L1-norm for EDF. If instead of the histograms hB,X, hB,Y we consider the

EDFs p̂X, p̂Y we could be tempted to simply use the fact that for B → ∞ suitably

defined histograms converge toward the EDF. Due to the dependency of the histogram

distance on
√
B, however, this does not directly yield a useful finite bound showing the

rate of convergence. We therefore adapt the proof laid out in [38] to derive an upper

bound for the self-distance for the EDF for one-dimensional data (generalisation to

higher-dimensional data is possible but cumbersome and therefore omitted). If we let

the true distribution of X and Y be p then we note that for the EDF we have the

distributions Mp̂X(n) ∼ Bin(M, p(n)) and Np̂Y (n) ∼ Bin(N, p(n)). This yields the

results

E [p̂X(n)− p̂Y (n)] = 0,

Var [p̂X(n)− p̂Y (n)] = p(n)(1− p(n))

(
1

N
+

1

M

)
.

For large enough N,M � 1 we can employ a normal approximation for the pointwise

self distance via

(p̂X(n)− p̂Y(n)) ∼ N
(

0, p(n)(1− p(n))

(
1

N
+

1

M

))
. (2.98)

Using the (pointwise) normal approximation and the expectation of its absolute value

we then find that we can write the expected total variation distance as

E [δTV [p̂X ‖ p̂Y ]] ≈ 1

2

√
2

π

(
1

N
+

1

M

)∑
n

√
p(n)(1− p(n)). (2.99)

Note that unlike in [38] the summation in equation (2.99) does not necessarily need

to be finite. Existence of any moment of order higher than one, however, is enough
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as we will now show:

∑
n

√
p(n)(1− p(n)) =

√
p(0)(1− p(0)) +

∑
n6=0

√
p(n)(1− p(n) (2.100)

≤ 1

2
+
∑
n6=0

√
p(n) (2.101)

≤ 1

2
+

√√√√(∑
n6=0

1

|n|α

)(∑
n6=0

|n|αp(n)

)
(2.102)

≤ 1

2
+
√

2ζ(α)E [|Y |α], (2.103)

where the second inequality follows from the Cauchy-Schwarz inequality and ζ(α) is

the Riemann zeta function evaluated at α. Note that in order to get a finite bound we

need α > 1 and therefore impose a regularity condition on the underlying distribution,

namely that more than just the first moment of the distribution should be finite.

A counterexample testing the limits of this new bound is the discrete distribution

law described by p(n) = 0 when n < 2 and p(n) ∝ 1/(n2 log2 n) for n ≥ 2. Note that

all moments for this distribution apart from the first are infinite, and the above bound

is thus not applicable. In addition, for this law we see that
∑

n

√
p(n)→∞ and thus

by the limit comparison test
∑

n

√
p(n)(1− p(n)) → ∞. As a result the method

described above cannot yield a finite estimate for the total variation self-distance.

In conclusion, we have derived an upper bound on the expected total variation

distance for EDFs of the form

E [δTV [p̂X ‖ p̂Y ]] /
1

2

√
2

π

(
1

2
+
√

2ζ(α)E [|Y |α]

)√
1

N
+

1

M
, α > 1. (2.104)

We note that if we take α = 2, i.e. the assumption of finite variance, this becomes

E [δTV [p̂X ‖ p̂Y ]] /
1

2

√
2

π

(
1

2
+

π√
3

√
E [Y 2]

)√
1

N
+

1

M
. (2.105)

This result implies that when constructing the EDF via MC samples we get the
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standard MC error convergence behaviour (under mild regularity conditions of the

underlying distribution), even for discrete distributions with (semi-)infinite support.

However, this new upper bound, unlike for the MISE and the histogram distance,

does depend on the underlying distribution via its moments.

Finally we point out that this new bound is not tight in many practical examples

and serves mainly as a theoretical justification for the expected convergence rate. In

practice the histogram self-distance, where for example we take B to be equal to the

number of unique data points10, provides a better pragmatic estimate for the total

variation self-distance.

2.C Probability generating functions for test systems

The availability of exact solutions to the CME is crucial when testing new methods

or implementations. Here we therefore provide explicit expressions for the transient

distribution of molecules in some simple test systems. These results are used in this

thesis to test exact SSAs, just like the results in Appendix 2.A form a benchmark for

τ -leap method testing.

We state the results in terms of the probability generating function (PGF), which

is defined for a system of J species by

G(z1, . . . , zJ , t) =
∑

n1,...,nJ

(
J∏
j=1

z
nj

j

)
P (n1, . . . , nJ , t), (2.106)

where P (n1, . . . , nJ , t) is the time-dependent solution to the CME describing the

probability to be in a state X(t) = (n1, . . . , nJ). We can use the PGF to get explicit

expressions for the moments of the underlying distribution by considering its series

expansion around zi = 1, and to find the distribution values we consider the series

expansion around zi = 0. Though the analytic series expansion to derive the distri-

10In practice the number of unique data points in finite-precision arithmetic is necessarily finite,
which means that in practice B is bounded above.
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bution from the PGF can be cumbersome, the PGF can be used to quickly evaluate

the probability distribution numerically using the discrete fast Fourier transform, see

for example [184].

Example 2.10 (Isomerisation system). In Appendix 2.A we encountered the simple

test system describing the isomerisation between two species S1 and S2, i.e.

S1

c1−A S2,

S2

c2−A S1.

The solution to the CME is known to be the convolution between two multinomial

distributions, see for example [104, Example 5.2]. For simplicity we provide here

the PGF G(z1, z2, t) for the transient probability distribution, assuming deterministic

initial conditions S1(0) and S2(0)

G(z1, z2, t) =

(
z1 − (z1 − z2)

(
1− e−(c1+c2)t

)( c1

c2 + c1

))S1(0)

×
(
z2 + (z1 − z2)

(
1− e−(c1+c2)t

)( c2

c2 + c1

))S2(0)

.

(2.107)

For a derivation we refer the reader to [65, Chapter 11]. Note that the marginal

distributions for S1 and S2 can be found by considering G(z1, 1, t) and G(1, z2, t),

respectively.

Example 2.11 (Linear birth-death with inflow). The second example we discuss is

another linear system, but now for a single species S1 in a volume V

∅ c0−A S1,

S1

c1−A 2S1,

S1

c2−A ∅.
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Note that this is Example 2.5, as we encountered earlier in Section 2.3. Despite

many advances in the understanding of solutions for linear reaction systems the exact

solution for the transient distribution of S1 was, to the best of our knowledge, not

reported in the literature until recently a new approach using path integrals [212] was

shown to be successful in finding an explicit expression. Here, however, we show that

this result can also be found using more elementary methods directly using generating

functions. Incidentally this allows for easier interpretation of the final result in terms

of well-known distributions and forms the basis for fast numerical evaluation of the

distribution.

It can easily be shown that the PGF G(z, t) for this system with deterministic

initial conditions satisfies the following partial differential equation (PDE)

∂G

∂t
= c0V (z − 1)G− (z − 1)(c2 − c1z)

∂G

∂z
, (2.108)

subject to the initial condition G(z, 0) = zS1(0). It is relatively straightforward to

solve this PDE via the method of characteristics , i.e. we aim to find the solution to

the following system of ODEs, also known as the characteristic equations,

dg(s)

ds
= c0V (z(s)− 1)g(s), subject to g(0) = z

S1(0)
0 ,

dz(s)

ds
= (z(s)− 1)(c2 − c1z(s)), subject to z(0) = z0,

dt(s)

ds
= 1, subject to t(0) = 0,

where we have defined g(s) = G(z(s), t(s)). We first solve for the characteristic curves

(t(s), z(s)) by using that their respective ODEs are separable. The characteristic

curves are given by

t(s) = s, (2.109)

z(s) =
c1z0e

s(c1−c2) − c2e
s(c1−c2) − c2z0 + c2

c1z0es(c1−c2) − c2es(c1−c2) − c1z0 + c1

. (2.110)
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Upon substitution of z(s) into the ODE for g(s) we arrive at a separable first-order

linear homogeneous ODE with solution

g(s) =

(
c2 − c1

(
z0 + (1− z0)e(c2−c1)s

)
c2 − c1

) c0V
c1

z
S1(0)
0 . (2.111)

Expressing s and z0 in terms of t and z we find the final PGF solution to equa-

tion (2.108)

G(z, t) =

(
1

1 + c1
1−e−(c2−c1)t

c2−c1 (1− z)

) c0V
c1

︸ ︷︷ ︸
negative binomial

(
z + c2

1−e−(c2−c1)t

c2−c1 (1− z)

1 + c1
1−e−(c2−c1)t

c2−c1 (1− z)

)S1(0)

︸ ︷︷ ︸
initial condition

. (2.112)

We note that equation (2.112) is the exact PGF for the distribution described by

equation (134) in [212, Section 9], though our result can be interpreted in terms of

common distributions more easily. To interpret equation (2.112) we note that we can

split the PGF into two independent contributions, from the molecules initially present

at t = 0 and molecules created when t > 0, respectively. The latter contribution

can be described by a negative binomial distribution, NB(c0V/c1, (c2 − c1)/(c2 −
c1 exp(−(c2 − c1)t))). We therefore find that the long-time limit distribution, valid

in the limit t→∞ where the contribution of the initial conditions vanishes, is given

by a negative binomial distribution. A similar result for the stationary distribution

can be found in [200], but it should be noted that this result is only valid for c2 > c1.

Alternatively, when the system initially contains zero S1 molecules, the distribution

is again a negative binomial distribution. Finally we discuss simplifications of the

system which yield results found in the literature.

For c1 = 0, i.e. no autocatalytic reactions, we find that the initial condition

contribution becomes a binomial distribution with parameters S1(0) (number of trials)

and exp(−c2t) (success probability per trial). The negative binomial contribution

turns into a Poisson distribution with rate parameter c0V (1 − exp(−c2t))/c2. As a
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result the distribution can be characterised by the sum of a binomial and a Poisson

random variable in this case, see for example [104, Example 5.1].

For c2 = 0, i.e. no decay reactions, we find that the initial condition contribution

becomes a shifted negative binomial distribution, i.e. the sum of S1(0) and a negative

binomial random variable, NB(S1(0), exp(c1t) − 1). This was also observed in [104,

Proposition 7]. We therefore find that the overall distribution is given by a shifted neg-

ative binomial distribution, i.e. the sum of S1(0) and a NB(S1(0)+c0V/c1, exp(c1t)−1)

random variable.
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Chapter 3

Uniformisation methods

In this chapter we discuss the use of the uniformisation technique in the context of

chemical reaction network models. This technique has appeared in various forms

before in this context [11, 95, 214, 223], but here we provide extra insight and ap-

plications of the method. Firstly we provide a new way to simulate a uniformised

system efficiently. We also show how uniformisation can be used as a variance reduc-

tion technique if combined with stratification. Finally we show how uniformisation

can be used for the transient analysis of Markov chains and how this ties in with the

estimation of time-dependent summary statistics.

Comment on originality This chapter is (partially) reproduced with the permis-

sion of AIP Publishing from the following publication:

Beentjes, C. H. L. & Baker, R. E. Uniformization techniques for stochastic simu-

lation of chemical reaction networks. The Journal of Chemical Physics 150, 154107

(Apr. 2019).

3.1 Uniformisation

The uniformisation method is a well-known method in probability theory, and it can

be used to convert a CTMC into a DTMC. First introduced in 1953 [105] it was

75



popularised in [88] as an efficient tool to compute transient solutions to CTMCs via

matrix multiplications. As a more general computational tool for CTMCs it seems

to trace back to a 1990 paper by Fox and Glynn [64] and some ideas in this chapter

parallel that paper. In the context of simulating jump-diffusion models the method

is more widely known as “thinning of Poisson random measures”, e.g. [85]. For a

recent review of uniformisation from a probability perspective we refer to [51]. Here,

however, we describe how to employ the uniformisation technique in the context of

the simulation of exact sample paths according to the RTCR, which has previously

appeared, albeit in slightly different forms and with different motivation, in [11, 95,

192, 206, 214, 223].

For simplicity we make the assumption that the reaction propensities, ak, have

no explicit time-dependence and only depend on time through the state vector X(t).

This assumption restricts the class of problems to time-homogeneous Markov chains

and thus excludes, for example, time-dependent reaction rates. It is, however, possible

to extend most of the results in this work by relaxing this condition, as we show in

an appendix to this chapter, Appendix 3.B.

We start with a generic reaction system containing K reaction channels, as given

in Section 2.1 in equation (2.1), and consider an extension of this system by adding

a new reaction channel RK+1 which takes the trivial form

∅ −A ∅, (3.1)

and we denote this as a virtual reaction. It should be clear that the addition of this

virtual reaction does not change the dynamics of X because the new channel has

none of the species as reactant or product. We note that, as a result, the statistics

from this new extended system are equal to that of the original system and therefore

sample paths for the extended system are exact realisations of the original RTCR

(2.7). This observation is independent of the reaction propensity aK+1(X(t)) that we
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choose for the virtual reaction. Given some ā > 0 we therefore use this liberty to set

aK+1(X(t)) = ā− a0(X(t)) = ā−
K∑
k=1

ak(X(t)). (3.2)

In order for (3.2) to constitute a well-defined reaction propensity we need ā ≥ a0(t)

for all t ∈ [0, T ), the time interval of interest. We will come back to discuss this

assumption later in this section.

The choice (3.2) for the reaction propensity of the reaction channel RK+1 might

seem peculiar at first, but we note that in the new extended system the total propen-

sity of a reaction happening is given by a0 +aK+1 = ā, which is therefore independent

of the particular state X(t) the system is in. This is in contrast to the original system

where the total reaction propensity, a0, is generally state dependent. We therefore

have a uniform total reaction propensity ā which we will call the uniformisation rate,

and we will denote the extended system consisting of reactions R1, . . . , RK , RK+1

from now on as the uniformised system. This uniformisation of the system has a few

implications which we will discuss next.

Firstly, in the uniformised system (trivially) at least as many reactions fire (on

average) as in the original system, because of the addition of the independent virtual

reaction channel, as illustrated in Figure 3.1. Näıve application of the DM to the

uniformised system means we explicitly simulate every virtual reaction firing in ad-

dition to the “real” reactions present in the original system. As a result of the extra

time taken to simulate the virtual reaction channel firing, such näıve application of

the DM to the uniformised system yields slower run-times for exactly the same level

of statistical accuracy compared to the DM for the original system.

Secondly, the reaction times in the uniformised system are i.i.d. distributed ex-

ponential random variables with parameter ā. As a simple consequence of this we

observe that the number of reactions, M , firing in a time interval [t, t+ τ) is Poisson

distributed with parameter āτ , which we will denote as M ∼ P(āτ). Note that this is
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Original system

0

time

Uniformised system

0

time

∅ −A ∅

Figure 3.1: Illustration of reactions R1, . . . , RK firing in the original system and
the uniformised/extended system, indicated by dots (•). We observe extra virtual
reactions firing (•) in the uniformised system.

similar to the τ -leap method, where one makes the approximation that the reaction

propensities of the original system stay constant within the time interval [t, t+τ). For

the uniformised system, however, this expression for the number of firing reactions is

instead exact and leads to a uniformised version of the DM, which we name the näıve

uniformised direct method (NUDM), as shown in Algorithm 3.1.

Algorithm 3.1 Näıve uniformised direct method (NUDM).
This simulates a single sample path.

Input: Initial data X0

Input: Stoichiometric matrix ζ
Input: Propensity functions ak(X)
Input: Uniformisation rate ā
Input: Final time T

1: X ← X0

2: Generate M ∼ P(āT ) . Total number of reactions that fire in [0, T ).
3: ak ← ak(X) . Calculate real reaction propensities.
4: a0 ←

∑
k ak . Calculate the total real reaction propensity.

5: for m = 1, . . . ,M do
6: Generate u1 ∼ U(0, 1)
7: if āu1 > a0 then . Check if a virtual reaction fires.
8: continue . If a virtual reaction fires skip to next iteration.
9: end if

10: Find p such that
∑p−1

k=1 ak < āu1 ≤
∑p

k=1 ak . Choose next reaction to fire.
11: X ← X + ζp . Update state vector.
12: ak ← ak(X) . Calculate real reaction propensities.
13: a0 ←

∑
k ak . Calculate the total real reaction propensity.

14: end for
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Note that steps 7-9 in Algorithm 3.1 are an optimisation of the DM applied to the

uniformised system which relies on the observation that firing a virtual reaction does

not change the state vector and therefore also does not alter the reaction propensities.

We therefore first check in a single comparison whether a virtual reaction fires so that

we can potentially skip the current iteration. In the NUDM there is no explicit

computation of the next reaction time (c.f. step 7 in Algorithm 2.1). For every

reaction firing the NUDM only needs to generate a single uniform random variate

to determine which reaction takes place and, therefore, involves fewer computations.

As a result the computational complexity of the NUDM will be smaller than the

DM applied to the uniformised system. It is possible to generate the reaction times,

if required, by noting that we can condition on the fact that M reactions happen

in [0, T ) with uniform rate. The reaction times are then distributed as the order

statistics of M uniform random variables in [0, T ).

We observe, however, that in the current form the NUDM still suffers from two

drawbacks. Firstly, the simulation will in general involve the firing of virtual reactions

that do not contribute to the dynamics of the original system. This can therefore be

thought of as computational waste and, as a result, the computational complexity of

the NUDM in its current form will still be comparatively larger than that of the DM

applied to the original system for time-homogeneous systems. Secondly, we mentioned

that (3.2) needs to be a well-defined propensity function, i.e. ā ≥ a0(t) needs to hold

for all t ∈ [0, T ). It is not clear a priori whether such a uniformisation rate ā exists1

or what happens when a0 becomes greater than ā in the course of a simulation. These

two issues are discussed next and we will show that the NUDM can be adapted to be

at least as fast as the DM applied to the original system.

1In the case of a system with a bounded state space it is (theoretically) possible to find a uniformi-
sation rate by taking the maximum of the total propensity over all allowed states. Note, however,
that the size of the state space, albeit finite, could be prohibitively large for such an approach to be
practically feasible.
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3.2 Efficient simulation

3.2.1 Firing virtual reactions

In order to get around the issue of potentially slowing down the simulation by having

to fire many virtual reactions we look at the distribution of the number of virtual

reactions firing in between real reactions in the uniformised system.

Suppose the system is in a state with propensity a0 for the real reactions to fire.

If the system is uniformised with rate ā > a0 this means that the probability that the

next reaction firing belongs to one of the K real reaction channels is given by a0/ā

and, equivalently, the probability a virtual reaction will fire next is 1 − a0/ā. Note

that when a virtual reaction fires none of the propensities of the real reactions change

because none of the copy numbers of the species Si are changed in the reaction. The

repeated firing of the virtual reaction channel before a real reaction fires can therefore

be viewed as a series of Bernoulli trials with probability a0/ā of success (firing a

real reaction) and 1 − a0/ā of failure (firing a virtual reaction). In this scenario we

are interested in the number of failures until the first success, i.e. the number of

consecutive virtual reactions firing before a real reaction fires. This quantity has a

well-known distribution, namely the geometric distribution, so that we have

P (r consecutive virtual reactions before next real reaction fires) =
(

1− a0

ā

)r a0

ā
.

(3.3)

As a result it is possible to fire all consecutive virtual reactions at once by sampling

a single geometric random variable. This can be done efficiently for a0/ā < 1/3 by

generating a uniform random variable u ∼ U(0, 1) and calculating bln(u)/ ln(1 −
a0/ā)c, akin to the sampling of an exponential random variable. For a0/ā ≥ 1/3

we can use a direct search strategy [48, Chapter 10], which is similar to steps 6-

9 in Algorithm 3.1. As a result we can improve upon steps 6-9 of Algorithm 3.1
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whenever the (expected) number of consecutive reactions firing is approximately 3 or

more. This observation leads to an improved version of the NUDM, as depicted in

Algorithm 3.2. Note that this version is always at least as efficient as the NUDM if

we use a geometric random variable generator as described previously.

Algorithm 3.2 (Improved) uniformised direct method (UDM).
This simulates a single sample path.

Input: Initial data X0

Input: Stoichiometric matrix ζ
Input: Propensity functions ak(X)
Input: Uniformisation rate ā
Input: Final time T

1: X ← X0

2: Generate M ∼ P(āT ) . Total number of reactions that fire in [0, T ).
3: m ← 0 . Counter for number of reactions that have fired.
4: while m < M do
5: Generate u1 ∼ U(0, 1)
6: ak ← ak(X) . Calculate real reaction propensities.
7: a0 ←

∑
k ak . Calculate the total real reaction propensity.

8: Generate mvirtual ∼ Geom(a0/ā) . Number of virtual reactions fir-
ing consecutively.

9: m ← m+mvirtual

10: if m ≥M then
11: m ← M
12: break
13: end if
14: Find p such that

∑p−1
k=1 ak < a0u1 ≤

∑p
k=1 ak . Choose next reaction to fire.

15: X ← X + ζp
16: m ← m+ 1
17: end while

In this form the uniformised direct method (UDM) is comparable with the DM

applied to the original system, i.e. the gold standard in the field of simulation chemical

reaction networks. Both methods now fire an equal number of reactions, and need

two random numbers per reaction firing. In addition to this we note that many

improvements that have been made to the DM, related to speed-ups in the choice of

the next reaction firing and the update of the propensities such as in [37, 68, 138, 148,

198, 208] and/or the re-use of random numbers [221], can be equally well applied to the

improved UDM. Although it is not possible to use the τ -leap approach in combination
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with the (improved) UDM, it is trivial to apply the R-leap approximation [13] to the

(näıve) UDM. The complexity of the improved version of the UDM is also insensitive

to the uniformisation rate, ā, as can be seen in Figure 3.2. This can be intuitively

understood from the observation that increasing or decreasing ā only changes the

number of consecutive virtual reactions firing which is taken care of in a single step

in the UDM.

Figure 3.2: Computational complexity in terms of (expected) number of random
variates needed to generate a sample path with the NUDM and improved UDM
compared with the DM for different uniformisation rates ā relative to the initial
total propensity a0. Results are for the isomerisation system, Example 3.3.2, with
c1 = 0.2, c2 = 0.1 and X0 = (20, 0)ᵀ, run until T = 50.

We note from Figure 3.2 and the description of the UDM that the computational

complexity of simulations of the uniformised system can be brought back to the that

of the DM applied to the original system. However, there is no intrinsic reason to

expect the UDM to be faster than the DM for the original system2 and this is also

observed in Figure 3.2. A computational speed-up, as such, is therefore not a suffi-

cient motivation to employ the uniformisation technique in the stochastic simulation

of chemical reaction networks. However, as mentioned earlier, the usage of uniformi-

sation allows one to consider new applications, such as variance reduction methods,

that are not possible under the standard SSAs for the original system.

2This observation is mainly true for time-homogeneous systems, as considered in this section. For
time-inhomogeneous systems, methods based on the DM for the original system can often compare
unfavourably with uniformisation-based methods, as discussed in [214] and the appendix to this
chapter, Appendix 3.B.
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3.2.2 Adapting the uniformisation rate

In the exposition so far the uniformisation rate has been a free parameter and we

mentioned the caveat that, by expression (3.2), ā ≥ a0(t) should hold for all t ∈ [0, T )

in order for the system to remain a well-defined chemical reaction model. We therefore

discuss here the ramifications of a simulation in which the total propensity a0(t)

exceeds ā.

A first approach to the situation a0 > ā in the course of a simulation might be to

classify such sample paths as invalid and generate a new, independent, sample path for

each of the invalid paths until we end up with the desired number of sample paths that

all satisfy a0 ≤ ā across [0, T ). This approach, which we call restarted UDM, comes

at a cost, because it introduces a bias due to the new sampling strategy. Effectively,

this approach only samples from a subset of the distribution defined by the CME and

it is clear from Figure 3.3 that the effect of the resulting bias can be dramatic and

should be avoided if possible. A second alternative is approximate uniformisation,

which was first described in [50], albeit not in a pathwise form. For the pathwise

representation we consider in this chapter, approximate uniformisation in practice

only changes step 7 in Algorithm 3.2; if a0 > ā the geometric distribution used in

step 7 is ill-defined and therefore we take instead mvirtual = 0 in the approximate

approach. Effectively this means that when a0 > ā we recover the standard DM

(minus the reaction time selection) until a0 ≤ ā, at which point we return to the

standard UDM. In this case the error due to approximation is solely due to the fact

that the number of reactions in the system, M , that are sampled is too low. Again

Figure 3.3 shows that the systematic error can be significant for a uniformisation

rate, ā, that is too low. Despite the fact that approximate uniformisation is biased

Figure 3.3 does show that it is certainly better than the restarted UDM approach we

described earlier and in certain scenarios can be a viable method.

To circumvent systematic errors we therefore propose a way to keep samples for
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which the uniformisation rate is breached, whilst keeping the estimator unbiased at

the same time.

(a) Isomerisation system, see Example 2.10,
with parameters c1 = 0.1, c2 = 0.4 and initial
condition X0 = (20, 0)ᵀ.

(b) Single species linear system, see Exam-
ple 2.11, with parameters c0V = 0.1, c1 =
0.5, c2 = 0.4 and initial condition X0 = 10.

Figure 3.3: Bias effect due to invalid samples of the uniformised system for different
uniformisation rates ā relative to the initial total propensity a0. The summary statis-
tic in both cases is the number of S1 molecules at final time T = 10 and estimators
are shown with 99.5% confidence interval for N = 103 samples.

To do so, we start with a uniformised system with uniformisation rate ā and

sample the number of reactions M ∼ P(āT ) firing in [0, T ). Now suppose that we

observe that a0 > ā after M∗ ≤ M reactions have fired. Rather than discarding

this sample path completely we can ask at what time T ∗ ∈ [0, T ) reaction M∗ took

place, i.e. at what time did a0 become larger than ā? As mentioned earlier, given

that M reactions fire in [0, T ), the reaction times t1, . . . , tM are uniformly distributed

on [0, T ). The reaction time T ∗ = tM∗ of the M∗-th reaction out of M reactions

therefore follows the distribution of the M∗-th order statistic of a collection of M

uniform random variables on [0, T ). This is a well-known distribution and leads to

T ∗/T ∼ Beta(M∗, (M −M∗) + 1).

We can therefore sample T ∗ and use the Markov property to restart the simulation

from the state after M∗ reactions for the remaining time interval [T ∗, T ) with a new

uniformisation rate, ānew. This procedure to describe T ∗ conditional on M reactions
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in [0, T ) leads to the correct unconditional distribution for T ∗ and therefore does not

introduce a bias, see the appendix to this chapter, Appendix 3.A, for more detail. If

we choose this new uniformisation rate such that ānew ≥ a0(T ∗), the simulation for the

remaining t ∈ [T ∗, T ) can be done in exactly the same manner with the (improved)

UDM, and this approach is illustrated in Figure 3.4. The sampling of the number of

reactions remaining in [T ∗, T ) can be done either by generating a new, independent,

Poisson variable with rate ānew(T − T ∗), relying on the memoryless property, or in a

similar fashion to the post-leap check variant of the τ -leap method [2].

0 T

time
ā uniformisation rate

M reactions

(a) With uniformisation rate ā we sample M reactions to fire in [0, T ).

0 T

time
ā uniformisation rate

e.g. a0 > ā

M∗

(b) After M∗ reactions we want to adapt the uniformisation rate, for example because the
uniformisation rate is breached, a0 > ā.

0 T

time
ā uniformisation rate

M∗ reactions

T ∗
ānew uniformisation rate

Mnew reactions

(c) We sample the time T ∗ at which to adapt the uniformisation rate and restart the
simulation at T ∗ with a new uniformisation rate ānew and Mnew ∼ P(ānew(T − T ∗)).

Figure 3.4: Illustration of the procedure to adapt the uniformisation rate.

The approach of changing the uniformisation rate, ā, as described in Figure 3.4,

can be applied throughout the simulation and this yields a method that is effectively a

pathwise version of adaptive uniformisation [152]. We note that the adaptation of the

uniformisation rate is not restricted to time points T ∗ at which a0(T ∗) > ā is observed,

adapting the uniformisation rate can be done at any point in the simulation, as shown

in Algorithm 3.3, and yields unbiased sample paths. For example, one could have a

system that initially has a high total propensity, a0, requiring a high uniformisation
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rate, ā, but after M∗ reactions a0 dips considerably. In this scenario one might want

to adapt the uniformisation rate to make it smaller. Such an approach is similar to

the adaptive fluctuation intervals as used in the rejection-based SSA algorithms [207,

208, 210]. An even more extreme choice might be to update the uniformisation rate

after every reaction, which yields a procedure akin to the Extrande-method [214].

Algorithm 3.3 Adaptive (improved) UDM.
This simulates a single sample path.

Input: Initial data X0

Input: Stoichiometric matrix ζ
Input: Propensity functions ak(X)
Input: Uniformisation rate ā
Input: Final time T

1: X ← X0

2: Generate M ∼ P(āT ) . Total number of reactions that fire in [0, T ).
3: m ← 0 . Counter for number of reactions that have fired.
4: while m < M do
5: Generate u1 ∼ U(0, 1)
6: ak ← ak(X) . Calculate real reaction propensities.
7: a0 ←

∑
k ak . Calculate the total real reaction propensity.

8: Set adapt_flag . For example, when a0 > ā we set adapt_flag=true.
9: if adapt_flag then . Option to adapt the uniformisation rate.

10: Generate T ∗/T ∼ Beta(m, (M −m) + 1)
11: Adapt the uniformisation rate ā
12: Generate M̄ ∼ P(ā(T − T ∗)) . Total number of reactions that

fire in [T ∗, T ).
13: M ← m+ M̄
14: end if
15: Generate mvirtual ∼ Geom(a0/ā) . Number of virtual reactions fir-

ing consecutively.
16: m ← m+mvirtual

17: if m ≥M then
18: m ← M
19: break
20: end if
21: Find p such that

∑p−1
k=1 ak < a0u1 ≤

∑p
k=1 ak . Choose next reaction to fire.

22: X ← X + ζp
23: m ← m+ 1
24: end while

We finally mention two observations regarding the adaptive uniformisation method.

Firstly, the sample paths in this framework are again exact samples according to the
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distribution described by the CME and can therefore be used to create unbiased sum-

mary statistics. Secondly, from the formulation of the improved UDM in the previous

section we can see that the choice of ā ultimately does not influence the run-time of

the simulation. One might therefore be tempted to take ā very large in the hope that

ā > a0(t) for all t ∈ [0, T ) and we never have to adapt the uniformisation rate ā.

However, for some choices of the reaction propensities, such as mass action kinetics,

it is not always possible to select such an upper bound for a0 as a uniformisation

rate, ā, because the reaction propensities are unbounded. This is, for example, the

case in a system where at least one of the species involved in mass action kinetics

is unbounded itself, a situation that is often encountered. In [95] it was suggested

to run a few pre-simulations to determine an empirical upper bound to a0 on [0, T )

as a workaround if we do not know an analytical expression for an upper bound.

Alternatively, one might have other motives to not choose the uniformisation rate

much higher than a0, an example of such a situation will be given in Section 3.3. To

create unbiased estimators with the (improved) UDM it can therefore be necessary

to employ an adaptive uniformisation method, as described in this section.

In conclusion we can create an (improved) UDM that is equally as versatile and

applicable as the DM. The main benefit of uniformisation, however, lies in the fact

that it opens the door to new applications that are not possible in the DM framework,

as we will see next.

3.3 Variance reduction via stratification

Using the (improved) UDM will yield exact sample paths from the distribution defined

by the CME, just like the DM. The resulting MSE of the standard MC estimates based

on these sample paths will therefore behave exactly like the MSE for the DM. In this

section, however, we will show that it is possible to create a new (unbiased) estimator

that has a lower sample variance, and therefore MSE, by using a stratification strategy

in combination with uniformisation.
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3.3.1 Stratification of the number of reactions

Stratification, as discussed in Section 2.4.1, is a technique that can be used to in-

corporate some exact knowledge of part of the stochastic process into the required

estimator so as to lower the sample variance. In the case of chemical reaction net-

works we can apply stratification ideas if we first uniformise the system with some

rate ā. We can think of the uniformised system in terms of an extended state space

of the form Y = (X,M) with X the state of the species after M reactions have fired.

The distribution of M is known a priori (as shown in Section 3.1) and therefore

we can stratify with respect to the number of reactions, M , that fire in the time

interval of interest, [0, T ]. Because M ∈ N≥0 all we need to specify is a division of

the non-negative integers into disjoint sets. For this work we consider the following

stratification strategy: Dj = {Mj ≤M < Mj+1}, for some collection of non-negative

integers M1 < M2 < · · · < MJ+1. This divides the state space of Y = (X,M) by

Ω = ∪Jj=1Ωj with Ωj = {(X,M) s.t. Mj ≤ M < Mj+1}, i.e. Ωj represents all sample

paths where the total number of reactions that have fired lies in the prescribed range

[Mj,Mj+1). Note that for this choice the strata probabilities are given by a simple

sum of Poisson probabilities

pDj
(t) =

Mj+1−1∑
m=Mj

(āt)m

m!
e−āt. (3.4)

To construct the conditional estimators Q̂Dj
we need to be able to construct sample

paths conditional on Dj. This can be easily achieved by replacing step 1 of the (im-

proved) UDM with drawing M from the truncated Poisson distribution on [Mj,Mj+1)

rather than drawing M ∼ P(āT ), as illustrated in Algorithm 3.43. Therefore there

3Sampling from the truncated Poisson distribution can be easily carried out via the in-
verse transform sampling method combined with the truncated CDF, Ftruncated(x) = (F (x) −
F (Mj))/(F (Mj+1) − F (Mj)), where F (x) is the standard Poisson CDF. In practice this means
we use the Poisson inverse CDF on a transformed uniform random variable, see for example [162,
Example 4.10].
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is no extra cost associated with this stratification strategy compared to the original

(improved) UDM and, as a result, the computational cost for the stratified estimator

is comparable to that of the (improved) UDM and the DM. However, at the same

time it is guaranteed to have a sample variance that is at least as small as that of

the standard estimator from the DM and (improved) UDM. Before applying this new

estimator to some examples we mention a few caveats and observations.

Algorithm 3.4 Stratification with the (improved) UDM.
This simulates a (stratified) ensemble of N sample paths.

Input: Initial data X0

Input: Stoichiometric matrix ζ
Input: Propensity functions ak(X)
Input: Uniformisation rate ā
Input: Final time T
Input: Number of samples N
Input: Stratum definitions M1, . . . ,MJ+1

1: for j = 1, . . . , J do
2: Nj ← dωDj

(T )Ne . Proportional allocation for number of
samples per stratum.

3: for n = 1, . . . , Nj do
4: X ← X0

5: Generate M from the truncated distribution P(āT ) on [Mj,Mj+1)
6: m ← 0
7: while m < M do
8: Generate u1 ∼ U(0, 1)
9: ak ← ak(X) . Calculate real reaction propensities.

10: a0 ←
∑

k ak . Calculate the total real reaction propensity.
11: Generate mvirtual ∼ Geom(a0/ā)
12: m ← m+mvirtual

13: if m ≥M then
14: m ← M
15: break
16: end if
17: Find p such that

∑p−1
k=1 ak < a0u1 ≤

∑p
k=1 ak

18: X ← X + ζp
19: m ← m+ 1
20: end while
21: end for
22: end for

Firstly, in order for the stratification method to yield a correct unbiased estimate
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it is important that the uniformisation rate ā is in fact a valid uniformisation rate

over the interval of interest [0, T ), i.e. ā ≥ a0(t) for all t ∈ [0, T ). If this is not the case

and we are required to adapt the uniformisation rate, the samples (X,M) are not all

drawn from the same distribution and cannot be combined to yield the conditional

estimators Q̂Dj
. Alternatively, we can choose to not adapt the uniformisation rate,

but instead resort to approximate uniformisation, as described in Section 3.2.2. In

this case we can continue to use the stratification method, at the cost of introducing

a bias due to the use of the approximate uniformisation method, which we note is

O(ā−1) [51, Section 7]. For accurate results it is therefore necessary to either know

an upper bound to the total propensity a priori or to run some pre-simulations to

generate an empirical (approximate) upper bound.

Secondly, the effectiveness of stratification will hinge on the choice of strata. If

we use the proportional allocation strategy we see that the variance reduction benefit

of stratification over standard MC comes from the 1
N

∑J
j=1 pDj

(
Q−QDj

)2
term that

is lacking in the sample variance. This term represents the inter-strata variance,

i.e. how much the conditional summary statistics deviate from the overall summary

statistic. The larger this inter-strata variance, the bigger the variance reduction gain

is. Unfortunately, it is in general not possible to know how to choose the strata so as

to attain a relatively large inter-strata variance.

In choosing the strata we have to make a choice as to the number of strata. One

might be tempted to take as many strata as possible as this will in theory yield the

largest variance reduction. Note that theoretically we could use an infinite number

of strata if we use the strata boundaries Mj = (j − 1) for all j ∈ NN≥0. However,

in order to get accurate estimators for every stratum we need at least two samples

per stratum, and ideally more. Therefore, increasing the number of strata will also

increase the number of sample paths needed to get accurate estimates of, for example,

the sample variance. It has been observed that increasing the number of strata beyond

six, under some mild assumptions, yields very little extra benefit [43, Section 5A.8].
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We will show that this is also true for the simulation of chemical reaction networks

in an example in the next section.

Finally there is the choice of the strata boundaries. Without knowing the joint

distribution of (X,M) we simply choose to use the quantiles of the distribution of M

to define the strata. For example, if we require four strata we use the quartiles q1, q2,

q3 to define M1 = 0, M2 = q1, M3 = q2, M4 = q3 and M5 =∞. Note that this choice

roughly allocates an equal proportion of the total N samples to each stratum because

the weights ωDj
are equal4. An alternative choice, reminiscent of work in [95], is to

define M1 and MJ+1 such that P(M < M1 or M > MJ+1) ≤ ε. We can either use

Mj = M1 +(j−1) or some other stratification for M1 ≤M ≤MJ+1. This will yield a

biased estimator, because the ε-tails of the distribution of M are neglected. However,

if ε is sufficiently small this bias will be negligible by construction.

3.3.2 Examples

In this part of the work we consider two examples to test the variance reduction

effects of using stratification in combination with uniformisation for chemical reaction

networks. The first example is a linear bi-molecular system and therefore it is possible

to show some analytical results to complement numerical results. The second example

is a MAPK cascade model comprising eight species interacting via ten reactions with

non-linear reaction propensities. We will use the following notation to denote the

variance reduction factor (VRF)

VRF =
Var

[
Q̂
]

Var
[
Q̂str

] . (3.5)

Note furthermore that the complexity of the stratified UDM and the DM are equal and

that both methods are unbiased. As a result the relative efficiency, E , of the stratified

4Due to the discrete nature of the Poisson distribution it is not possible to define strata that have
exactly equal weights.
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UDM compared to the DM, as defined in equation (2.37), is equal to the VRF.

Additionally we can perform a similar exact analysis of the benefits of stratification

when the summary statistic of interest is the distribution using Section 2.3.1.

Isomerisation

In this example we consider the simple reversible isomerisation of species S1 into S2:

S1

c1−A S2, (3.6a)

S2

c2−A S1. (3.6b)

Due to the linear nature of the reactions we can write down an analytical expression

for the probability distribution P(X, t) [104]. We note that the state space of X is

bounded and as a result there exists a uniformisation rate valid for all T > 0, e.g.

ā = max(c1, c2) · (S1(0) + S2(0)). Furthermore, because it is a simple linear system,

we can find the joint distribution of (X,M) numerically. This is achieved by writing

down the transition matrix for the DTMC of the uniformised system. This allows

one to numerically evaluate equation (2.49) and therefore give an analytic value for

the variance reduction that can be attained.

We first look at the influence of the uniformisation rate, ā, on the VRF. Because

the system is linear and effectively monomolecular we can calculate the VRF for both

proportional allocation and optimal allocation. The latter method maximises the

VRF, but for general systems is not a practical method. It does, however, provide

an upper bound for the VRF for any stratification strategy and is therefore included

here. As can be seen in Figure 3.5 the VRF is moderate and decreases monotonically

as a function of ā. Furthermore, the VRF depends on the number of strata, J , used

and, as expected, more strata entails a larger VRF. Note, however, that as expected

the VRF is always larger than unity, meaning that regardless of ā there is always a

(slight) variance reduction. One might be tempted to take a lower value of ā than
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drawn in the hope of getting larger VRFs. Unfortunately, there is a balance between

the uniformisation rate needing to be large enough so as to not bias the simulations

and keeping ā small enough to see a more significant VRF. The benefit from using

stratification also depends on the summary statistic of interest as can be seen from

comparing Figure 3.5(a) and Figure 3.5(b). When estimating moments, rather than

a distribution, it appears that the improvement is significantly larger.

(a) Moment estimation (MSE). (b) Distribution estimation (MISE).

Figure 3.5: VRF of the stratified UDM compared to the DM, see equation (3.5), for
different uniformisation rates ā relative to the initial total propensity a0. Isomeri-
sation system (3.6) was considered with c1 = 0.3, c2 = 0.1 and X0 = (20, 0)ᵀ until
T = 5. The summary statistic is the average copy number of species S1 at final time
T for (a) and the distribution of S1 copy numbers at final T for (b).

To see the effect of varying the number of strata we look at the same system

that was used to generate Figure 3.5, but fix the uniformisation rate ā whilst we

vary the number of strata, J . The results are presented in Table 3.1 and clearly

show that increasing the number of strata beyond a moderate number like J = 6

has only a marginal effect. We can also observe that there seems to be an inverse

relationship between the uniformisation rate, ā, and the variance reduction factor of

the form VRF = 1 + A(J)/ā for some constant A(J) depending on the number of

strata. Similar observations hold when considering distribution estimation, rather

than moment estimation.
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Number of strata

J

Relative uniformisation rate ā/a0(X0)

1 10 100

2 7.9 · 10−2 7.7 · 10−3 7.7 · 10−4

4 1.2 · 10−1 1.1 · 10−2 1.0 · 10−3

6 1.3 · 10−1 1.1 · 10−2 1.1 · 10−3

12 1.4 · 10−1 1.2 · 10−2 1.2 · 10−3

∞ prop. 1.5 · 10−1 1.2 · 10−2 1.2 · 10−3

∞ opt. 1.5 · 10−1 1.2 · 10−2 1.2 · 10−3

Table 3.1: Effect of the number of strata, J , and the uniformisation rate, ā, on the
VRF when estimating the mean number of molecules S1 at final time T . Tabulated
is VRF−1 (higher is better) for the isomerisation model (3.6) with c1 = 0.3, c2 = 0.1
and X0 = (20, 0)ᵀ, run until T = 5. The last two rows, J =∞, indicate the maximal
VRF that can be achieved for both proportional allocation and optimal allocation,
respectively.

We can understand the relatively small VRF that we observe based on the de-

composition of the estimator variances (2.50) and (2.51). The difference between the

two variances is due to the inter-strata variance and the VRF therefore increases with

increasing inter-strata variance. However, by increasing the uniformisation rate, ā,

the virtual reactions become more prevalent. This has the result that most of the

reactions in a stratum become virtual reactions and therefore the strata distributions

become more similar, diminishing the inter-strata variance.

Finally, we note that numerical verification of the VRF is computationally in-

tensive, because the VRF is small. We used N = 214 sample paths from the uni-

formised system with uniformisation rate ā = a0(X0) = 6 and J = 6 strata, pa-

rameters c1 = 0.3, c2 = 0.1 and X0 = (20, 0)ᵀ at time T = 5 to find the esti-

mator variances for the summary statistic Q = E [S1(T )] using the standard MC

sample variance estimator and (2.54). By repeating this procedure 256 times, yield-

ing roughly 4 · 106 sample paths in total, we can construct confidence intervals for

the variances of both estimators. This yields the 99.7% confidence intervals for the
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standard MC method, Var
[
Q̂
]
∈ (4.549, 4.568)/N , and for the stratified estimator,

Var
[
Q̂prop

]
∈ (4.035, 4.052)/N . Both of these results agree with the theoretical val-

ues of Var
[
Q̂
]

= 4.559/N and Var
[
Q̂prop

]
= 4.047/N , respectively, and show that

numerically there is a variance reduction visible, albeit a small one.

MAPK-cascade with feedback

The second example is a mitogen-activated protein kinase (MAPK) cascade model

from [109]. It consists of eight species linked by ten reaction channels with Michaelis-

Menten kinetics and Hill functions. A schematic representation of the network struc-

ture is shown in Figure 3.6.

MKKK
S1

MKKK-P
S2

MKK
S3

MKK-P
S4

MKK-PP
S5

MAPK
S6

MAPK-P
S7

MAPK-PP
S8

1

2

3 4

56

7 8

910

Figure 3.6: MAPK-cascade network, adapted from [109]. Reaction channels are de-
picted by the numbered horizontal arrows. Vertical dashed lines in black and the grey
dotted line denote positive and negative feedback effects, respectively.

The MAPK-cascade network describes phosphorylation of MAPK by a layered

process involving several kinases. MAPK, the terminal kinase, is phosphorylated by
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MAPK kinases (MKKs), depicted by the interaction between the second and third

layer in Figure 3.6. In turn the MKKs are phosphorylated by the MAPK kinase

kinases (MKKKs), which is visible as the interaction between the first and second

layer in Figure 3.6. The activation of MKKK is thought to be inhibited by MAPK

via membrane-bound Ras and is modelled as a negative feedback loop, as can be seen

in Figure 3.6.

For this system there exist three elementary conservation laws and every chemical

species is involved in one of them:

S1(t) + S2(t) = S1(0) + S2(0); (3.7a)

S3(t) + S4(t) + S5(t) = S3(0) + S4(0) + S5(0); (3.7b)

S6(t) + S7(t) + S8(t) = S6(0) + S7(0) + S8(0). (3.7c)

It is therefore possible to bound the total propensity uniformly. In this case we

uniformise the system with uniformisation rate ā = 15 and apply stratification using

J = 6 strata, i.e. the 6-quantiles. We use the parameter values and initial conditions

(X0 = (100, 0, 300, 0, 0, 300, 0, 0)ᵀ) for the model as given in [109, Table 2]. Because of

the non-linearity of the reaction dynamics it is not possible to find analytical values

for the estimator sample variances and VRF. We therefore perform 256 repeated

stochastic simulations using N = 214 sample paths per simulation to get estimates

for the sample variances. As summary statistics we use the number of molecules at

the final time T = 200 for the eight different species in the system and the results are

tabulated in Table 3.2.

As we can see in Table 3.2 the VRF depends heavily on the chosen summary statis-

tic. The MAPK-cascade is a hierarchical system in the sense that the conversion of the

downstream species S6, S7 and S8 depends on other upstream species, in particular

S5. The inter-strata variation will therefore likely be larger. The lower quantile strata

observe fewer reactions and therefore will not see much activation of the downstream
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Sample variance
Summary statistic Q = E [Si]

S1 S2 S3 S4

N · Var
[
Q̂
]

(22.6, 22.7) (22.6, 22.7) (202.4, 203.2) (225.3, 226.2)

N · Var
[
Q̂prop

]
(22.2, 22.3) (22.2, 22.3) (193.7, 194.5) (225.0, 225.9)

VRF 1.016± 0.003 1.016± 0.003 1.045± 0.003 1.004± 0.003

(a) First four species summary statistics

Sample variance
Summary statistic Q = E [Si]

S5 S6 S7 S8

N · Var
[
Q̂
]

(259.6, 260.7) (199.8, 201.2) (347.4, 348.7) (777.1, 779.9)

N · Var
[
Q̂prop

]
(246.8, 247.9) (180.0, 181.3) (312.3, 313.6) (670.6, 673.4)

VRF 1.052± 0.003 1.110± 0.006 1.112± 0.003 1.159± 0.003

(b) Last four species summary statistics

Table 3.2: Sample variance and estimated VRF for the MAPK cascade for both the
standard MC estimator and the stratified estimator. The system is run until T = 200
with parameter values and initial conditions as given in [109, Table 2] and using a
uniformisation rate ā = 15. Values tabulated are the 99.7% confidence intervals.

species, in contrast to the higher quantile strata, where more reactions fire and we

see more conversion of the downstream species. The conditional summary statistics

will therefore differ significantly between the different strata, which we know leads to

a larger VRF by the decomposition of the variance (2.49).

If instead we consider the marginal distribution of the species at time T = 200 we

find a VRF between 1.000 and 1.005, which is smaller than when computing moments

of the species, just as we observed for the isomerisation example. Larger improvements

are, again, achieved for the downstream species S6, S7 and S8. Considering marginal

bivariate joint distributions of the species yields similar results.

We can therefore conclude that the VRF using stratification and uniformisation

can vary strongly depending on the model system, the summary statistic of choice,

the uniformisation rate and the number of strata used. It is, however, also true that
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for the same amount of computational complexity a variance at least as small as

for the standard DM is observed, at no extra cost. The stratified UDM is therefore

an improvement for models which would normally be simulated with (an optimised

version of) the DM.

3.4 Transient analysis

Up to this point we were primarily concerned with summary statistics that depend

on the value of the paths at some (fixed) time T , a commonly encountered scenario in

practice. However, one might also be interested in path-dependent summary statis-

tics, such as the transient evolution or mean value of a species over a series of time

points T1, . . . , Tn. A straightforward approach to generate such summary statistics

with the standard SSAs would be to run the paths over [0, T1] and record the state,

then over [T1, T2] and record the state, etc. Such an approach applies equally well to

the (improved) UDM, where we can either generate the total number of reactions M

on each interval individually or use the fact that given that M reactions occur in [0, Tn]

the numbers of reactions in the intervals defined by T1, . . . , Tn follow a multinomial

distribution, M(M,π) where πi = (Ti − Ti−1)/Tn. Using uniformisation, however,

there is also an alternative way to estimate transient summary statistics as we will

discuss next.

3.4.1 A weighted uniformisation method

We start with a general time-dependent summary statistic Q(t) = E [f(X(t))] for

some functional of the (time-dependent) sample paths X(t). Using uniformisation we

recall that we can then expand this summary statistic using the state of the system

after a fixed number of m (uniformised) reactions, denoted as Xm, via a weighted

average

Q(t) = E [f(X(t))] =
∞∑
m=0

pm(t)E [f(Xm)] =
∞∑
m=0

pm(t)Qm, (3.8)
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where pm(t) is the probability that exactly m (uniformised) reactions have fired at

time t. Importantly this shows that the time-dependence of the summary statistic

Q(t) is completely encoded in the (known) probabilities pm(t). Earlier in this chapter

we proposed the UDM as a way to generate a MC estimate for the time-dependent

summary statistic Q(t) from the representation in equation (3.8). In the UDM we

sample first m̃ ∼ pm(t) and then generate a single sample estimate for Qm̃ by running

the system for exactly m̃ reactions. Repeating this with N samples then yields an

unbiased estimate for Q(t).

However, we now note that generating a sample path with m̃ reactions also yields

information about the system state after 0, . . . , m̃− 1 reactions, crucially at no extra

(simulation) cost. As an alternative method we can therefore successively approxi-

mate Q0, Q1, . . . if we run N (uniformised) sample paths in parallel and record their

state after each reaction. This then directly yields a series of (unbiased) MC estimates

Q̂0, Q̂1, . . . which we can combine to yield

Q̂(t) =
∞∑
m=0

pm(t)Q̂m. (3.9)

Note, however, that the Q̂0, Q̂1, . . . are not independent under this construction,

which makes the analysis of the sample variance more complicated.

Generalised weights

More generally we note that using this formalism we can construct estimates for any

time-dependent summary statistic of the form

Q̃(t) =
∞∑
m=0

W (m, t)Qm, (3.10)

where we now allow generalised weights W(m, t). Note that generalised weights,

unlike the canonical weights, W(m, t) = pm(t), do not necessarily need to be positive
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or sum to unity. We do, however, require them to be regularised in such a way that

equation (3.10) is well defined and Q̃(t) is finite.

To see how such generalised weights could arise in practice we consider the prob-

lem of estimating the time-derivative of an expectation E [f(X(t))]. Employing the

uniformisation approach we can simply use

d

dt
E [f(X(t))] =

d

dt

( ∞∑
m=0

pm(t)E [f(Xm)]

)
=

∞∑
m=0

(
d

dt
pm(t)

)
E [f(Xm)] . (3.11)

This means that if we define the weight functionW(m, t) = dpm(t)/ dt = ā(pm−1(t)−
pm(t)), where ā is the uniformisation rate, we have the identity

Q̃(t) =
d

dt
E [f(X(t))] =

∞∑
m=0

W (m, t)Qm. (3.12)

More generally, for any linear operator, Lt, depending only on time, t, we see that by

similar logic we can find the action of Lt on E [f(X(t))] via the relation

Lt [E [f(X(t))]] =
∞∑
m=0

(Lt [pm(t)])E [f(Xm)] =
∞∑
m=0

W (m, t)Qm. (3.13)

For example, if Lt is the integral operator we find a weight function W(m, t) =

ā−1(1−∑i≤m pi(t)).

Computational approach

To estimate such weighted summary statistics in practice we must approximate the

infinite sum via

Q̃(t) =
∞∑
m=0

W (m, t)Qm ≈
MR∑

m=ML

W (m, t)Qm, (3.14)

where we choose MR and ML such that the (relative) error we commit by truncating

the sum is small. This can, for example, by done by specifying a tolerance level εR
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from where we calculate MR as the smallest integer such that
∑

m≥MR
|W(m,T )| <

εR. A similar construction via a tolerance level εL yields ML as the largest integer

such that
∑

m≤ML
|W(m,T )| < εL. The resulting estimator takes the form

Q̂wUDM(t) =

MR∑
m=ML

W (m, t) Q̂m, (3.15)

where we recall that the Q̂m are summary statistic estimates after m reactions. Note

that due to the trunctation of the infinite sum this estimator is biased, though we can

directly control its bias via the truncation points. Alternatively one could introduce

a random truncation point for the infinite series to remove the bias following ideas in

[186] and we provide more detail on this approach in Appendix 3.C.

To construct an algorithmic method built upon equation (3.15) we simulate N

sample paths in parallel and calculate after each step Q̂m = N−1
∑

n f(X(n)
m ), where

the X(n)
m are the sample path states after m reactions. This method, which we call

the weighted uniformised direct method (wUDM), Algorithm 3.5, has complexity

C[Q̂wUDM] = N ·MR. A earlier variant of the wUDM, which solely considered the

standard weight functionsW(m, t) = pm(t), appeared in [95] and we will discuss that

version in more detail in Section 4.3.3.

Due to the fact that the estimators Q̂m, Q̂n used in the wUDM are not independent

we find that the sample variance for the wUDM estimator in equation (3.15) satisfies

Var
[
Q̂wUDM(t)

]
=

MR∑
m=ML

MR∑
n=ML

W (m, t)W (n, t) Cov
[
Q̂m, Q̂n

]
(3.16a)

=
1

N

(
MR∑

m=ML

MR∑
n=ML

W (m, t)W (n, t) Cov [Qm, Qn]

)
. (3.16b)

Note that the terms Cov[Qn, Qm] are related to the autocorrelations of the under-

lying DTMC (at lag |m − n|). Although we can estimate all the covariances via
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Algorithm 3.5 Weighted uniformised direct method (wUDM).
This simulates an ensemble of N sample paths.

Input: Initial data X0

Input: Stoichiometric matrix ζ
Input: Propensity functions ak(X)
Input: Final time T
Input: Uniformisation rate ā
Input: Algorithm parameters εL and εR.
Input: Weight function W(m, t)

1: X ← X0

2: Compute largest ML s.t.
∑

m≤ML
|W(m,T )| < εL.

3: Compute smallest MR s.t.
∑

m≥MR
|W(m,T )| < εR.

4: m ← 0
5: while m < MR do
6: Sample ṽ(n) pseudo-random points in [0, 1) for n = 1, . . . , N
7: for n = 1, . . . , N do
8: ak ← ak(X

(n)) . Calculate real reaction propensities.
9: aK+1 ← ā−∑K

k=1 ak . Calculate virtual reaction propensity.
10: Find p such that

∑p−1
k=1 ak < āṽ(n) ≤∑p

k=1 ak . Choose next reaction to
fire.

11: if p ∈ {1, . . . , K} then . Only need to fire real reactions.
12: X(n) ← X(n) + ζp . Update state vector.
13: end if
14: end for
15: if m ≥ML then
16: Compute summary statistic after m reactions, Q̂m, using

X(1), . . . ,X(N) and add to weighted estimator via equation (3.15).
17: end if
18: m ← m+ 1 . Update reaction count.
19: end while

their usual unbiased estimators, this will generally be a computationally very inten-

sive method to estimate the sample variance for Q̂wUDM(t). We therefore treat the

sample variance formula, equation (3.16), in practice as intractable and instead, just

as, for example, for Latin hypercube sampling, generate M independent replicates5,

Q̂
(1)
wUDM, . . . , Q̂

(M)
wUDM. Using these replicates we define Q̂wUDM = M−1

∑
m Q̂

(m)
wUDM and

5Note that if we use the wUDM in combination with standard pseudo-random points, i.e. regular
MC, we can take N = 1 in Algorithm 3.5 and generate M replicates as usual to get an estimator
for the sample variance using a total of M samples. In Chapter 4 we will see an example where we
can not directly take N = 1.
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then note that the sample variance for this averaged estimator is given by

ŝ2 =
1

M − 1

M∑
m=1

(
Q̂

(m)
wUDM − Q̂wUDM

)2

. (3.17)

Note that from equation (3.16) it is not clear whether the wUDM improves upon

the (U)DM and thus could be seen as a variance reduction method. We will therefore

explore the performance of the wUDM method on a tractable example in Section 3.4.2.

A posteriori transient calculation

Before looking at the wUDM method in practice we highlight a different way to

analyse output from the wUDM. Suppose that we simulate the (uniformised) system

up until M∗ reactions have fired and we are willing to store the estimates Q̂0, . . . , Q̂M∗

in memory. In that case we can analyse a posteriori transient summary statistics Q̃(t),

defined by equation (3.10), via equation (3.15), which shows that uniformisation can

therefore yield an (unbiased) offline analysis method.

Using a (U)DM approach one would only be able to store Q̂(T1), . . . , Q̂(Tn) and

then need to interpolate, which incurs a bias, for any Q̂(t) where t is not equal to the

saved time-points, T1, . . . , Tn. On the other hand, this new offline approach does not

rely on such a posteriori interpolation and is accurate as long as the truncation error

in equation (3.14) remains small. However, this approach is only practical for a given

problem and time-range if it is actually feasible to store Q̂0, . . . , Q̂M∗ in memory,

which will depend on M∗ and the type of summary statistic, Q̂m, used.

3.4.2 Examples

We consider again the isomerisation example from Section 3.3.2 and recall that this

system, given in equation (3.6), can be uniformised exactly with uniformisation rate

ā = max(c1, c2)N0, where N0 is the total number of molecules in the system. Due to

its relative simplicity we can analytically calculate both the results for the original
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system, governed by the CME, and the uniformised system, which is now a DTMC.

Note that throughout this example we use the wUDM method with truncation pa-

rameters εL = εR = 10−16/2. This results in a (relative) bias due to truncation on

the order of machine precision.

Moment estimation

First we examine the case when the summary statistic of interest is the average

copy number of S1 molecules, i.e. Q(t) = E [X1(t)]. Results for the evolution of the

normalised statistical error of the DM and wUDM are shown in Figure 3.7(a).

(a) Normalised MSE. (b) Normalised computational complexity C.

Figure 3.7: Comparison between the wUDM and the DM for the isomerisation system,
see Section 3.3.2, with parameters c1 = 0.3, c2 = 0.1 and initial condition X0 =
(0, 30)ᵀ. The summary statistic Q(t) is the average number of S1 molecules at time t.

We can see that in terms of the statistical error the wUDM clearly outperforms

the DM, even when we take a uniformisation rate which is five times larger (ā = 45)

than strictly needed (ā = 9). On the other hand we also see in Figure 3.7(b) that the

wUDM has a higher computational complexity than the DM. This can be understood

from observing that in the uniformised system we will have to simulate more reactions

due to the addition of the virtual reaction channel.

For this simple system we analytically compute the statistical error for the wUDM

using equation (3.16) and the covariance between the different states in the uni-
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formised systems is depicted in Figure 3.8. Comparing Figures 3.8(a) and 3.8(b) we

can see the effect of increasing the uniformisation rate; effectively this increases the

virtual reaction propensity leading to a smaller difference between states with similar

numbers of reactions.

(a) ā = 9. (b) ā = 45.

Figure 3.8: Covariance between the states after m and n reactions in the uniformised
system when the summary statistic Q is the average number of S1 molecules at time
t. Model is the isomerisation system, see Section 3.3.2, with parameters c1 = 0.3,
c2 = 0.1 and initial condition X0 = (0, 30)ᵀ.

Combining the results on computational complexity and statistical error we find

for the parameters in Figure 3.7(a) at time t = 20 a relative efficiency (see equa-

tion (2.37)) of the wUDM with respect to the DM of E ≈ 1.02 when ā = 9 and

E ≈ 0.20 when ā = 45. In fact when t & 20 we find E > 1 when ā = 9 making the

wUDM more efficient than the DM. The wUDM, however, for t . 20 is less efficient

(for any choice of uniformisation rate, ā) than the DM when estimating the mean

number of S1 molecules, as can be seen in Figure 3.10.

Taking the uniformisation rate larger than strictly necessary decreases the variance

reduction that is achieved by using the wUDM relative to the DM and increases the

computational complexity of the wUDM, both of which reduce the efficiency of the

wUDM. In fact, comparing the wUDM and the DM, the relative efficiency is such that

E < 1 when the uniformisation rate ā = 45. It is therefore clear that a good choice
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for the uniformisation rate is paramount for the performance of the wUDM. A more

robust strategy could be the use of adaptive uniformisation so that the uniformisation

rate is close to the total reaction propensity throughout the time domain of interest.

Distribution estimation

Next we aim to estimate the distribution of species S1 at time t via the EDF. We

take the MISE as a measure for the statistical error and show the results for the same

isomerisation system in Figure 3.9.

(a) Normalised MISE. (b) Covariance between the states after m
and n reactions in the uniformised system
when ā = 9, integrated over the state space
of S1.

Figure 3.9: Comparison between the wUDM and the DM for the isomerisation system,
see Section 3.3.2, with parameters c1 = 0.3, c2 = 0.1 and initial condition X0 =
(0, 30)ᵀ. The summary statistic Q is the distribution of S1 molecules at time t.

Changing the summary statistic can have a large effect on the decay of the statis-

tical error as we can see by comparing Figures 3.7(a) and 3.9(a). We can see that the

benefit from using the wUDM relative to the DM is larger if we aim to estimate the

distribution of S1 molecules, rather than solely its mean. Because the computational

complexity is independent of the summary statistic of interest we find that when the

uniformisation rate ā = 9, for all times t > 0 the relative efficiency of the wUDM

with respect to the DM is larger than one (and up to an order of magnitude larger)
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as can be seen in Figure 3.10. Even if we increase the uniformisation to ā = 45 we

see that for t & 60 the relative efficiency is still E > 1. This seems to indicate that

the wUDM is better suited to scenarios in which we aim to estimate distribution of

species rather than (raw) moments.

We can understand this observation by considering the wUDM as a type of low-

pass filter. Note that over an effective window, defined by the weighting functions

W(m, t), we average the contributions of subsequent states in the DTMC. As a result

we suppress high-frequency noise stemming from the firing of single reactions. If

a summary statistic is influenced by this high-frequency noise the wUDM will thus

smooth the output summary statistic. Note that the firing of a single reaction will

only marginally change the copy number of a species (by an amount ζk) and the

wUDM is thus less effective in this case. However, when we estimate distributions

the effect of a single reaction is much larger due to the use of the indicator function,

as described in Section 2.3.1, because a single reaction can completely change the

state for which the indicator function returns a non-zero value, thereby effectively

removing information on the previously occupied state if we use a conventional SSA.

The wUDM, however, will retain this information by the averaging over subsequent

states. We will explore this filter property of the wUDM in more depth in Section 4.3.

Time-derivative estimation

Finally, we consider the problem of estimating Q̃(t) = dE [X1(t)] / dt, i.e. the rate

of change of the average copy number of S1 molecules at a time t. We can use the

wUDM with general weights (see equation (3.11)) to construct an efficient estimator

of Q̃(t). As a first alternative to the wUDM approach we consider a finite difference

approach by using

Q̃(t) =
dE [X1(t)]

dt
≈ E [X1(t+ ε)]− E [X1(t− ε)]

2ε
=
Q(t+ ε)−Q(t− ε)

2ε
. (3.18)
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(a) Efficiency when estimating mean species
number, based on MSE.

(b) Efficiency when estimating species distri-
bution, based on MISE.

Figure 3.10: Efficiency comparison between the wUDM and the DM for the iso-
merisation system, see Section 3.3.2, with parameters c1 = 0.3, c2 = 0.1 and initial
condition X0 = (0, 30)ᵀ. The summary statistics Q are (a) the mean number and (b)
the distribution, respectively, both of S1 molecules at time t.

If we define Q̂ε(t) = (2ε)−1(Q̂(t+ ε)− Q̂(t− ε)) as the corresponding MC estimator

we see that the bias of this estimator is of the order O(ε2) via

E
[
Q̂ε(t)− Q̃(t)

]
= E

[
Q̂(t+ ε)− Q̂(t− ε)

2ε

]
− dE [X1(t)]

dt
(3.19)

=
Q(t+ ε)−Q(t− ε)

2ε
− dE [X1(t)]

dt
(3.20)

= ε2

(
1

3!

d3E [X1(t)]

dt3

)
+O(ε4). (3.21)

The variance of the finite difference approach, however, depends on how we couple the

sample paths at times t+ ε and t− ε, respectively. Assuming a CRN type approach

one can show that in fact Var[Q̂ε] = O(ε−1). Note that this means that taking ε

small, so as to reduce the bias, does increase the statistical error in Q̂ε. These two

sources of error, systematic and statistical, respectively, must therefore be balanced

in practice by a judicious choice of ε. We show results for the resulting normalised

statistical error component and total MSE in Figure 3.11.
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A second alternative6 is the use of conditional Monte Carlo [162, Section 8.7]. We

note that for a infinitesimal time interval [t, t+ dt) using equation (2.3) we can write

E [X(t+ dt) | X(t)] = P
(
no reaction fires in [t, t+ dt)

)
X(t)

+
K∑
k=1

P
(
Rk fires in [t, t+ dt)

)
(X(t) + ζk)

=
(
1− a0(X(t)) dt)

)
X(t) +

K∑
k=1

(X(t) + ζk) ak(X(t)) dt

= X(t) +
K∑
k=1

ζkak(X(t)) dt.

Using the limit definition of the derivative and integrating out the conditioning on

X(t) we therefore arrive at

dE [X(t)]

dt
=

K∑
k=1

ζkE [ak(X(t))] . (3.22)

This expression means that we can derive unbiased estimators for the time-derivatives

by finding unbiased estimators for the value of the individual reaction propensities at

a given time t, ak(X(t)). This can simply be achieved by evaluating the propensity

functions, ak, over the course of N independent sample paths and we denote this

approach by “conditional Monte Carlo” in Figure 3.11.

From Figure 3.11(a) we can see that the wUDM approach is superior to the finite

difference approach when ε = 0.1. For ε = 1.0 we see that for small t the finite

difference approach can have smaller statistical error than the wUDM. This does,

however, come at a price, because the bias contribution is larger when ε = 1.0 and in

Figure 3.11(b) we see that the overall MSE already for N = 103 samples is dominated

by this bias for small t. The comparison with conditional Monte Carlo is less clear-

cut. We note that for small t the conditional Monte Carlo approach is preferable,

6Proposed in personal communication by Michael B. Giles who attributes the original idea to
David F. Anderson. It also bears similarity to the smoothed perturbation analysis method [83].
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(a) Normalised variance. (b) Normalised MSE when using N = 103

sample paths.

Figure 3.11: Comparison between the wUDM and the DM-based finite difference
approach for the isomerisation system, see Section 3.3.2, with parameters c1 = 0.3,
c2 = 0.1 and initial condition X0 = (0, 30)ᵀ. The summary statistic Q is the rate of
change of the average copy number of S1 molecules at time t, i.e. dE [X1(t)] / dt.

but for moderate values of t its performance degrades and becomes worse than that

of the wUDM. We can understand this degradation of performance by observing

the increase in the variance of estimates of the mean of X(t) in Figure 3.8 which

will subsequently increase the variance of estimators of the quantities E [ak(X(t))]

needed for the conditional Monte Carlo method. For the wUDM, however, we note

that the filter property mentioned in the previous section is stronger for larger t,

i.e. we incorporate more information in the filter, which boosts its performance. We

therefore conclude that in the case of estimating the time-derivative the wUDM is

also a competitive method and both conditional Monte Carlo and the wUDM should

be preferred over the finite difference approach.

3.5 Discussion

Uniformisation techniques are well-known tools in probability theory and have pre-

viously appeared in the context of chemical reaction networks in various forms [11,

95, 206, 214, 223]. In this chapter we revisited the uniformisation technique in the
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context of pathwise simulation of realisations of said chemical reaction networks and

focussed on the question of whether pathwise simulations under uniformisation can be

carried out efficiently and whether there are any benefits of employing uniformisation

methods.

To simulate a uniformised system one will introduce computational overhead by

virtue of virtual reactions firing, and a priori it might therefore be expected that

uniformisation-based methods are outperformed by more standard approaches like

Gillespie’s DM. However, the performance benefits of approaches building on uni-

formisation have been observed in the literature, albeit mainly in the context of time-

inhomogeneous reaction networks [214]. We therefore, affirmatively, answer the ques-

tion of whether in the case of time-homogeneous systems, which is still the predom-

inant modelling choice of practitioners, it is possible to find a stochastic simulation

approach based on uniformisation that is as at least efficient as the aforementioned

golden standard, Gillespie’s DM. By addressing the issues of efficiency and adaptive-

ness of the uniformised systems we arrived at Algorithm 3.3 which, complexity-wise,

is on par with Gillespie’s DM. We reiterate that many of the improvements that have

been made to the basic implementation of Gillespie’s DM, such as those leading to the

sorting DM and optimised DM [39, 148], are equally applicable to the uniformised

approaches discussed in this chapter, because the approach to choose the reaction

channel that is to fire next is the same as for Gillespie’s DM. The work in this chap-

ter therefore opens up the exploration of new approaches built on uniformisation by

removing a previously perceived complexity problem.

Extensions of Gillespie’s DM for time-homogeneous models to include delays have

been proposed previously [18, 34, 208, 209]. It is also possible to apply uniformi-

sation to systems including delay reactions. In order to simulate such uniformised

systems a first approach would be to explicitly generate the reaction times of the

reactions as done for the time-inhomogeneous case, see the appendix to this chapter,

Appendix 3.B. Thereafter we can proceed as in the delayed-SSA algorithm in [18].
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We note that this approach also explicitly generates the reaction times of the virtual

reactions and therefore has an extra overhead cost relative to the original system. We

leave exploration of complexity, delays and uniformisation for future work.

As mentioned in Section 3.3, one can use stratification to improve the estimation

of summary statistics for a wide variety of functionals of the sample path solutions.

In the examples of Section 3.3 we focused on the mean species numbers and (empiri-

cal) distribution at a fixed time T , but reiterate that the stratification method is not

restricted to such use cases only. Following the arguments from Section 3.3 it is clear

that for a general class of summary statistics we can expect a performance at least

as good as implementations using Gillespie’s DM. At the same time, however, we

note that when applying stratification to estimate, for example, the one-dimensional

marginal distributions of the species in the MAPK-cascade or isomerisation system,

a smaller variance reduction, now defined in terms of the MISE, was observed in

Section 3.3.2 than when looking at the mean number of molecules as the summary

statistic of interest. This shows that the improvement from using stratification de-

pends on the summary statistic one is interested in. An issue appears when one is

interested in using a summary statistic that inherently depends on lower order mo-

ments of the random variable Y, such as the population variance. To use (unbiased)

stratified sampling for such summary statistics is a non-trivial task and a variance

reduction is no longer guaranteed, see for example [215]. This raises the question as to

what kind of problems, both in terms of the chemical reaction network and in terms

of the employed summary statistic, result in a substantial variance reduction when

combining uniformisation and stratification. Though to conclude we reiterate again

that in many common scenarios stratification will always yield a lower statistical error

for the same computational complexity.

Finally we discussed in Section 3.4 the use of the wUDM, a weighted variant of the

UDM. Effectively this method averages the states after consecutive reactions in the

uniformised system, whilst maintaining an unbiased overall estimate. Note that we
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can view this procedure as a type of low-pass filter in the following sense; by averaging

subsequent states we suppress high-frequency noise stemming from the firing of single

reactions and thereby smooth the output summary statistic. It was shown that this

method can outperform the standard DM (and UDM), especially when the summary

statistic of interest is a species distribution. In addition, the wUDM can yield an

unbiased estimator for a wider class of (time-dependent) summary statistics, such as

the rate of change of species moments. We note that the wUDM does not rely on a

fixed uniformisation rate and can therefore also be used in combination with adaptive

uniformisation.
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Chapter appendix

3.A Unbiased adapting of the uniformisation rate

Here we provide an alternative view on the sampling of the time T ∗ at which one

adapts the uniformisation rate, as discussed in Section 3.2.2. At the same time we

show that the conditional sampling of T ∗ does in fact yield unbiased samples from

the correct distribution.

Derivation of the conditional distribution of T ∗

For completeness we first show that the M∗-th order statistic of M uniform random

variables follows a beta distribution. We start with the assumption that we know that

M reactions fire in the time interval [0, T ) as sampled from the Poisson distribution

with parameter āT . Their reaction times are then uniformly distributed on [0, T ).

To find the distribution of the time T ∗ of the M∗-th reaction we note that in order

to have T ∗ ∈ [t, t + ∆t) we need exactly M∗ − 1 reactions in [0, t), one reaction in

[t, t+ ∆t) and (M −M∗) reactions in [t+ ∆t, T ). This yields the following expression

P (T ∗ ∈ [t, t+ ∆t)) =
M !

(M −M∗)!(M∗ − 1)!

(
t

T

)M∗−1
∆t

T

(
1− t+ ∆t

T

)M−M∗
,

(3.23)

where the pre-factor stems from the indistinguishable nature of the reactions in [0, t)

and [t + ∆t, T ). By letting ∆t → 0 we get the probability density function f(t) for

T ∗

f(t) =
Γ(M − 1)

Γ(M −M∗ − 1)Γ(M∗)

(
t

T

)M∗−1
1

T

(
1− t

T

)M−M∗
. (3.24)

We now let u = t/T , i.e. we consider the distribution of T ∗/T , and recognise the

pre-factor as 1/B(M −M∗ + 1,M∗), where B is the beta-function. This leads to the
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following probability density function g(u) for T ∗/T

g(u) =
1

B(M −M∗ + 1,M∗)
(u)M

∗−1 (1− u)M−M
∗
, (3.25)

which is readily seen to be equivalent to the beta distribution on [0, 1) with parameters

M∗ and (M −M∗) + 1.

Unconditional distribution of T ∗

In our approach to adapt the uniformisation rate we sample a time T ∗ conditional on

the fact that M reactions within the interval [0, T ) were sampled at the uniformisation

rate ā. For the unconditional distribution of T ∗, the time of the M∗-th reaction and

the point at which we adapt the uniformisation rate, as in Algorithm 3.3, we start

with the following observation

P (T ∗ ≤ t) =
∞∑

M=0

P (T ∗ ≤ t|M reactions in [0, T ))P (M reactions in [0, T ))

=
∞∑

M=M∗

P
(
T ∗

T
≤ t

T

∣∣∣∣M reactions in [0, T )

)
P (M reactions in [0, T )) ,

where we now recognise the first term in the sum to be described by a beta distribution

(with parameters M∗ and (M−M∗)+1) and the second term by a Poisson distribution

(with parameter āT ). Substitution of the relevant expressions for these distributions

then yields

P (T ∗ ≤ t) =
∞∑

M=M∗

{(
1

B(M∗, (M −M∗) + 1)

∫ t/T

0

sM
∗−1(1− s)M−M∗ ds

)
(āT )M

M !
e−āT

}

=

∫ t/T

0

sM
∗−1 (āT )M

∗
e−aTs

Γ(M∗)

( ∞∑
M=M∗

(āT (1− s))M−M∗

(M −M∗)!
e−āT (1−s)

)
ds

=
1

Γ(M∗)

∫ āt

0

uM
∗−1e−u du,
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which is the distribution function for the Gamma(M∗, ā) distribution. This is ex-

actly the distribution of M∗ i.i.d. exponential random variables with parameter ā.

As a result, T ∗ is distributed as the M∗-th reaction time in a system with constant

propensity ā. This proves that the conditional sampling of T ∗ as described in Sec-

tion 3.2.2 yields in fact samples from the correct distribution and therefore makes the

construction of sample paths with an adaptive uniformisation rate unbiased.

3.B Time-inhomogeneous models

The results presented so far in this chapter are valid for time-homogeneous Markov

chains, i.e. models where the propensity functions do not have an inherent time-

dependency and only depend on the state of the system X. This assumption is

generally sufficient to model intrinsic noise in a system, but whenever extrinsic noise

effects are to be taken into account one has to relax this assumption. Extrinsic noise

can be used to model the influence of external environments on the model behaviour

and has been shown to influence the model dynamics [27, 99, 204, 214].

Stochastic model and simulation

The most common modelling change to account for extrinsic noise is to assume that

the reaction rate constants are allowed to be time varying functions, i.e. ck(t). This

dependency can be prescribed as a simple function, e.g. ck(t) = 10(1 + sin(t)), or

be more elaborate, e.g. rates of the form ck(t) = 2 exp(Z(t)) with Z(t) some other

stochastic process, which can, for example, be described by an SDE. The result is

a time-inhomogeneous Markov chain model and currently the best-known SSA for

such systems is the Extrande method [214] which uses the uniformisation method

to avoid having to (numerically) integrate the propensity functions, ck(t). Methods

built on the (numerical) integration of the propensity functions such as the modified

next-reaction method [1] can also be constructed, but these methods do not compare

favourably with methods based on uniformisation in general [214]. The difference
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between the Extrande method and the UDM described in Section 3.1 is that the

former method, like the DM, generates all the reaction times in a serial fashion. In

contrast to the case of time-homogeneous models, where it is not necessary to generate

the reaction times explicitly for the UDM, in the case of a time-inhomogeneous model

one has to know the reaction times to account for the explicit time dependence of

the reaction propensities. We therefore have to adapt the UDM (Algorithm 3.1) to

account for this. As mentioned in Section 3.1 we can sample the reaction times, ti,

conditional on the knowledge that the number of reactions firing in [0, T ) is M . We

note that the reaction times t1, . . . , tM are then distributed as the order statistics of

M uniform random variables in [0, T ). To generate these one can simply generate

M uniform random variables in [0, T ) and sort them in ascending order. Alternative

methods to generate sorted uniform random numbers exist with better complexity

properties, see, e.g. [48, Chapter 3]. This extra step can be done prior to the reaction

dynamics loop as depicted in Algorithm 3.6.

Algorithm 3.6 UDM for time-inhomogeneous models.
This simulates a single sample path.

Input: Initial data X0

Input: Stoichiometric matrix ζ
Input: Propensity functions ak(X, t)
Input: Uniformisation rate ā
Input: Final time T

1: X ← X0

2: Generate M ∼ P(āT ) . Total number of reactions that fire in [0, T ).
3: Generate t1, . . . , tM ∼ U (0, T ) s.t. t1 < t2 < · · · < tM . Reaction times.
4: for m = 1, . . . ,M do
5: Generate u1 ∼ U(0, 1)
6: ak ← ak(X, tm) . Calculate real reaction propensities.
7: aK+1 ← ā−∑K

k=1 ak . Calculate virtual reaction propensity.
8: Find p such that

∑p−1
k=1 ak < āu1 ≤

∑p
k=1 ak . Choose next reaction to fire.

9: if p ∈ {1, . . . , K} then . Only need to fire real reactions.
10: X ← X + ζp . Update state vector.
11: end if
12: end for

We note that if a0 > ā is observed in the course of a sample path the procedure
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to adapt the uniformisation rate is largely the same as described in Section 3.2.2.

However, when using Algorithm 3.6 the time T ∗ at which we adapt the uniformisation

rate does not have to be sampled, as was done in step 10 in Algorithm 3.2. We can

simply set T ∗ = tM∗ , with M∗ the number of reactions that have fired up until

the point at which a0 > ā, which we note is available after completing step 3 in

Algorithm 3.6.

The extra computational gain that was achieved by firing virtual reactions consec-

utively cannot be realised in this framework. For time-homogeneous models we used

the fact that the distribution of the number of consecutive virtual reactions firing

was geometric, but this is no longer valid for time-inhomogeneous models. Due to

the explicit dependence on time of the propensity functions we get an expression for

the distribution of the number of consecutive virtual reactions of the form

P (r consecutive virtual reactions before next real reaction fires) =

a0(tr+1)

ā

r∏
i=1

(
1− a0(ti)

ā

)
. (3.26)

This is no longer a single parameter distribution and, although it is analytically

tractable, sampling from it will generally involve evaluating the total propensity a0

at the time points of the virtual reactions. We describe such a procedure, which is

effectively the inverse sampling transform, in Algorithm 3.7.

This approach is efficient in terms of its use of the random number generator

as only a single random number is needed to fire consecutive virtual reactions. In

addition, we could re-use this random number using methods described in [221] to find

the next real reaction firing, therefore effectively requiring a single random number

per real reaction fired in the interval of interest just like for the time-homogeneous

methods.

However, as we previously noted, this process of firing consecutive virtual reac-

tions requires the evaluation of the reaction propensities at the times of the virtual
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Algorithm 3.7 Firing virtual reactions in UDM for time-inhomogeneous models.

Input: Propensity functions ak(x, t)
Input: Uniformisation rate ā
Input: Current state X
Input: Reaction times ti, ti+1, . . .

1: Generate u ∼ U(0, 1)
2: r ← 0 . Count for number of virtual reactions to fire.
3: b ← 1
4: ak ← ak(X, ti) . Calculate real reaction propensities.
5: a0 ←

∑K
k=1 ak . Calculate the total real reaction propensity.

6: s ← (a0/ā)b . CDF for consecutive virtual reactions.
7: while s < u do
8: r ← r + 1
9: b ← b(1− a0/ā)

10: ak ← ak(X, ti+r) . Calculate real reaction propensities.
11: a0 ←

∑K
k=1 Ak . Calculate the total real reaction propensity.

12: s ← s+ (a0/ā)b
13: end while
14: return r

reactions, which can become time-intensive if many virtual reactions are to be fired.

As a result we do not want to have to choose a uniformisation rate ā that is much

larger than a0 over [0, T ) as every virtual reaction will incur a propensity evaluation

for the time-inhomogeneous case in Algorithm 3.6 (combined with Algorithm 3.7). If

the total propensity, a0, varies strongly over the course of [0, T ) it might be beneficial

to regularly adapt the uniformisation rate, ā, which in the extreme case of adapting

the rate after every reaction yields the Extrande method [214].

We therefore conclude that both the Extrande method and the UDM incur a

propensity evaluation cost per virtual reaction fired, but that the Extrande method,

by continuously adapting the uniformisation rate, can try to minimise the number of

virtual reactions firing. The benefit of the UDM, however, is that it allows one to

use extra variance reduction techniques such as stratification because the theory for

stratification still holds in the case of time-inhomogeneous models. If one can therefore

feasibly generate sample paths using Algorithm 3.6 with a fixed uniformisation rate,

ā, it would be wise to apply stratification with respect to the number of reactions
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firing, M , to achieve a variance reduction at no extra cost. If, however, the propensity

a0 changes noticeably over [0, T ) one might want to use an adaptive uniformisation

rate, ā, or the Extrande method, in which case the stratification method is no longer

valid because the reaction times in the interval [0, T ) are no longer drawn from a

single parameter joint distribution that is the same for each sample path.

3.C Unbiasing the wUDM via randomisation

The standard wUDM estimator, see equation (3.15), is biased due to the truncation

of the infinite sum in equation (3.14). Despite the fact that this bias can be accurately

controlled a priori we present here an alternative variant of the wUDM leading to

an unbiased estimator. This is based on a random truncation of infinite sums, an

idea that seems to have first appeared in related context in [150, 185], but has its

foundations as Russian Roulette in the physics literature. A more rigorous theoretical

framework for this method is provided in [186]. Here we only discuss the case of using

an upper-truncation point of the infinite sum, though we note that a lower-truncation

point can also be incorporated in an analogous manner.

Rather than using the truncated estimator in equation (3.15) we define a new

estimator

Q̂∗(t) =
M∗∑
m=0

W∗ (m, t) Q̂m, (3.27)

where the truncation point, M∗, is now a random variable, i.e. M∗ ∼ p∗ for some

truncation distribution p∗, andW∗(m, t) is a new custom weight function that we will

define later. Note that once the weight functionW∗ and the truncated distribution p∗

are defined, it is straightforward to generate MC estimates of the summary statistic

using this new estimator; we sample a truncation point M∗ from p∗ and subsequently

run the wUDM approach up until M∗ reactions have fired. Rather than using the

update equation (3.15) in step 16 of Algorithm 3.5 we construct the estimator via

equation (3.27).
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By the law of total expectation we find the expectation of this new estimator

E
[
Q̂∗(t)

]
=
∞∑
n=0

p∗nE
[
Q̂∗(t) |M∗ = n

]
(3.28a)

=
∞∑
n=0

p∗n

(
n∑

m=0

W∗ (m, t)Qm

)
(3.28b)

=
∞∑
m=0

( ∞∑
n=m

p∗n

)
W∗ (m, t)Qm. (3.28c)

This shows that the estimate Q̂∗(t) can be made unbiased, i.e. E[Q̂∗(t)] = Q(t), if we

choose the custom weight function W∗ (m, t) = W (m, t) /(
∑∞

n=m p
∗
n). We also note

that the construction above holds for any truncation distribution p∗.

To analyse its efficacy we observe thatW(m, t)→ 0 and
∑∞

n=m p
∗
n → 0 as m→∞.

This does not, however, mean that W∗(m, t) → 0 as m → ∞, which is required7 to

have a finite variance estimator Q̂∗(t). In order to achieve a finite variance estima-

tor one must therefore choose the truncation distribution p∗ to decay slower to zero

as m → ∞ than the weight function W(m, t). For example, if the weight func-

tion W(m, t) = P(m;λt), i.e. a Poisson distribution with parameter λt, we can take

p∗ = P(m;λ∗t) with λ∗ > λ. Note, however, that the expected complexity of this un-

biased approach is E[M∗], which can be (significantly) higher than the biased wUDM

method.

7This assumes that the covariances Cov[Qn, Qm] do not all vanish as m,n → ∞, which for a
general reaction system is the case.
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Chapter 4

Quasi-Monte Carlo methods

In this chapter we discuss the use of low-discrepancy sequences (also known as quasi-

random sequences) as input for SSAs in the context of chemical reaction networks. In

other fields that rely heavily on MC computations, such as computational finance, the

use of QMC techniques is common practice to decrease the statistical error. However,

in the context of the simulation of chemical reaction networks this idea has received

very little attention. Inspired by the only available work in this area [95] we first

explore the implications of the combination of QMC methods with the τ -leap method

in more depth. We show that the benefits of using QMC methods in this case are

perhaps less striking than anticipated based on the success of QMC methods in the

numerical solution of SDEs. We provide a detailed explanation for why this is the

case, which serves as an explanation for the observations made in [95] as well. In

line with [95] we also consider the use of the array-RQMC method, an extension

of the more traditional QMC approach, and its combination with the τ -leap or the

uniformisation method, which we discussed in Chapter 3.

Comment on originality This chapter is (partially) reproduced from the following

publication:

Beentjes, C. H. L. & Baker, R. E. Quasi-Monte Carlo methods applied to tau-
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leaping in stochastic biological systems. Bulletin of Mathematical Biology 81, 2931–

2959 (May 2019).

4.1 Quasi-Monte Carlo methodology

One of the drawbacks of general MC methods is their slow convergence rate, the

root mean squared error (RMSE) is often of the order O(N−1/2) when using N sam-

ples. As discussed in Section 2.4, we can improve upon plain MC methods by using

variance reduction techniques. Related to such techniques are QMC methods, which

are based on the idea of attaining more uniform point distributions than standard

(pseudo-) random numbers, thereby extending for example the Latin hypercube sam-

pling method discussed previously in Section 2.4.1. Originally QMC methods were

developed to approximate multidimensional integrals of the form

I =

∫
[0,1)d

f(u) du, (4.1)

where d is the dimension of the problem. In a standard MC approach we generate

a sequence u(1), . . . ,u(N) of d-dimensional uniform random variates and calculate an

estimate of the integral via

Î =
1

N

N∑
n=1

f(u(n)) ≈
∫

[0,1)d
f(u) du, (4.2)

which in essence is the same as equation (2.17). The convergence of Î → I as N →∞
for MC methods is based on the law of large numbers (LLN), but this is not necessary

for convergence of an approximation to the true integral I. For example, deterministic

quadrature rules such as the midpoint-rule exist and have no relation to the LLN, yet

provide the exact integral in the limit of N →∞. It turns out that, by virtue of the

Koksma-Hlawka inequality, we can link the rate of convergence of Î to I as N →∞
to the uniformity of the points

{
u(n)

}
⊂ [0, 1)d used. Uniformity in this context is
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defined by the discrepancy, or the star-discrepancy D∗N in particular. This measures

the greatest deviation of a point set from a perfect uniform distribution on [0, 1)d,

which is illustrated in Figure 4.1. Taking the supremum over all the boxes B with

one corner at the origin we measure the difference between the expected number of

points in the perfect uniform case and reality.

B

u2

u1

Figure 4.1: Illustration of the discrepancy concept in [0, 1)2. Shown are N = 300
points

{
u(n)

}
scattered at random. If a perfect uniform distribution was attained by

these points the number of points in B would be equal to Vol(B) ·N and this would
hold true for every box B ⊆ [0, 1)2.

More precisely then, the Koksma-Hlawka inequalities link the (star-) discrepancy

D∗N of the point set
{
u(n)

}
and convergence of the approximate integral, Î, see for

example [162, Section 15.4]. It is given in the most common form by considering the

absolute error inequality ∣∣∣Î − I∣∣∣ ≤ V [f ]D∗N , (4.3)

where V [f ] is the total variation of the integrand f in the sense of Hardy and Krause.

This approximation error inequality can be thought of as the equivalent of equa-

tion (2.19) for MC methods. Note that equation (2.18) is an equality and holds in

probability whereas equation (4.3) is a deterministic, worst-case, inequality. Com-

paring the two error bounds we see that V [f ] takes the place of the variance, σ2, as

both quantities depend on the integrand f . Furthermore we see that, rather than
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having an error decay rate of O(N−1/2), we now have a factor D∗N determining the

behaviour as N increases. The total variation V [f ] of the integrand is for all practical

purposes impossible to calculate and harder to estimate than the actual integral I.

Furthermore in practical applications one can encounter functions with infinite V [f ],

which voids the practical use of equation (4.3).

It turns out that it is possible to construct low-discrepancy sequences that will

cover the integration domain more uniformly than random numbers, i.e. their dis-

crepancy decays quicker than for equivalent random sequences, which have D∗N =

O(N−1/2). An example comparison between a (pseudo-) random sequence and a

low-discrepancy sequence is depicted in Figure 4.2, which shows that low-discrepancy

sequences can attain a much better spread over the integration domain [0, 1)2.

u2

u1

v2

v1

Figure 4.2: Comparison between a (pseudo-) random point set (left) and a low-
discrepancy Sobol’ point set (right) in [0, 1)2, both of size N = 29.

For the QMC method we replace the (pseudo-) random sequence {u(n)} by a deter-

ministic sequence of low-discrepancy numbers {v(n)} [129, Chapter 5]. Many different

types of low-discrepancy point sequences exist and their fast generation is a subject of

active research, see [49] and references therein for a recent review. By their determin-

istic construction these sequences can attain convergence orders like O((lnN)dN−1)

for a wide range of integrands f by virtue of equation (4.3). This O((lnN)dN−1)

convergence rate in the limit of N → ∞ will always be better than that which can

be attained with any regular MC method (even if we employ a variance reduction
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technique), but if the dimension, d, is large and N is not very large it is not clear,

based on theoretical results, whether QMC will provide an improvement. There are,

however, various reports in the literature, albeit some without a theoretical justifi-

cation, of QMC methods seemingly outperforming MC methods. Nowadays, QMC

finds its application in many more areas than just integration, such as computational

finance, see for example [129, Chapter 7], and Bayesian inference [67].

Uniformity and dimensionality using Sobol’ sequences

A common low-discrepancy point set of choice is the Sobol’ sequence and we will

use this particular choice throughout this thesis. One of the advantages of this point

set is that it is (quite) widely implemented in mathematical software libraries and

extensible both in dimensions and in length. The latter means that to generate N +1

Sobol’ points we can simply take the first N points and add a single new point to

this set. The extensibility in dimensions means that if we have a Sobol’ point in

[0, 1)d we can create a Sobol’ point in [0, 1)d+1 by adding an extra (carefully chosen)

variable to the point in [0, 1)d. Both of these properties make this particular type

of low-discrepancy point set very suitable for stochastic simulations of a sequential

nature, i.e. for which the number of sample points is not fixed a priori as is often the

case in the context of chemical reaction simulations. Though Sobol’ points can be

extended one point at a time, this is in fact not optimal. Due to their construction

the Sobol’ points are best balanced when the number of points, N , is taken to be a

power of 2. We will see an example of this later in Section 4.2.2.

By construction the Sobol’ sequences have very uniform one-dimensional projec-

tions, similar to Latin hypercube sampling from Section 2.4.1. Though they fill the

unit hypercube more uniformly than MC point sets (including Latin hypercube point

sets), the same projection property does not necessarily hold for higher-dimensional

projections, not even two-dimensional projections. In fact, due to its extensible con-

struction the lower dimensions of the Sobol’ sequence enjoy better equidistribution
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properties compared to the dimensions following. As a result the choice of which di-

mension of the point set is used for which step in the SSA can have a large influence

on the variance reduction that is achieved and in general one should try to use the

lower dimensions of the points for the steps in the SSA that are most important in

terms of the output variance. This means that the performance of QMC methods can

be strongly dependent on the effective dimension of the model problem. The effective

dimension quantifies this notion of importance of the input variables for the overall

output variance, so that problems of low effective dimension are mainly governed by

just a few input variables. QMC methods have been shown to be very well suited to

such problems with low effective dimension, but at the same time often provide little

improvement for problems that have an intrinsic high effective dimension. For more

detail on the theory and construction of Sobol’ sequences and the effective dimension

we refer the reader to [162, Sections 15.7 and 17.2].

4.1.1 Randomised quasi-Monte Carlo

As discussed, a weakness of QMC methods compared to other quadrature rules is

the lack of a measure of error. For MC methods we can use the LLN to estimate the

variance and obtain confidence intervals. However, for QMC methods the points used

follow from a deterministic construction and therefore do not allow the application

of the LLN. The Koksma-Hlawka inequality (4.3) does provide deterministic error

bounds, but for all practical purposes the quantities involved, V [f ] and D∗N , cannot

be calculated or efficiently computed. Furthermore we note that, because the low-

discrepancy numbers are a deterministic set, the QMC estimator is not unbiased.

We can, however, consider a hybrid of MC and QMC methods. This type of

approach introduces randomness into QMC methods in such a way that we keep their

good convergence properties whilst at the same time allowing for error estimation with

the LLN. The resulting methods are also known as randomised quasi-Monte Carlo

(RQMC) methods.
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The common approach in such RQMC methods is to take a low-discrepancy point

set {v(n)} and apply a randomised transformation to get a new set {ṽ(n)}. Good

randomisations (specific for the low-discrepancy sequence used) exist such that this

new set is still a low-discrepancy point set but, at the same time, for all points in this

set ṽ(n) ∼ U(0, 1)d holds. As a result of such a randomisation Î using {ṽ(n)} will be

an unbiased estimator of I. We refer to [129, Section 6.2] and references therein for

more information on such randomisations.

To construct a measure of the statistical error in the estimate Î we create M

different randomised low-discrepancy point sets {ṽ(n,1)}, . . . , {ṽ(n,M)} which each will

yield an unbiased estimator Î(m) of the objective I if we use equation (4.2). Combining

these M randomisations using a standard MC approach gives rise to a new estimator

ÎM,RQMC =
1

M

M∑
m=1

Î(m) =
1

M

M∑
m=1

(
1

N

N∑
n=1

f
(
ṽ(n,m)

))
, (4.4)

which we note again is an unbiased estimator of I. At the same time, we can now

estimate the variance like we can for MC methods, because we effectively have M

independent unbiased estimates of I. First we compute

ŝ2
RQMC =

1

M − 1

M∑
m=1

(
Î(m) − ÎM,RQMC

)2

, (4.5)

which is an unbiased estimate for Var
[
Î(m)

]
. We can then incorporate this into the

MC framework to find an unbiased empirical estimator of Var
[
ÎM,RQMC

]

ŝ2
M,RQMC =

ŝ2
RQMC

M
=

1

M(M − 1)

M∑
m=1

(
Î(m) − ÎM,RQMC

)2

. (4.6)

Note that this procedure is in many ways similar to the procedure to estimate the sam-

ple variance using Latin hypercube sampling as described in Section 2.4. In general

this batched procedure to create unbiased estimators allows one to find an unbiased
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sample variance estimator for any MC method and summary statistic, whether an

explicit estimator for the sample variance of a single batch exists or not.

Due to its construction there are two ways one can reduce the variance of an

RQMC estimator; either by taking more samples, N , per randomisation or by taking

more randomisations, M . It is not always clear what choice one should make in

this regard, but we can make some general observations. We note that increasing N

means that within each randomisation more points of the low-discrepancy set will be

used. This will therefore take advantage of the better spread of low-discrepancy point

sets by lowering Var
[
I(m)

]
, possibly at a rate faster than O(N−1/2). On the other

hand, M only controls the number of randomisations, which ties in with the standard

MC framework. Therefore M has a more limited influence on the statistical error

convergence (O(M−1/2) for the RMSE). However, the number of randomisations, M ,

should be large enough to make the variance estimation via equation (4.6) sufficiently

accurate, which can often already happen for M ≥ 10 [129, Section 6.2]. Note that

to get an RQMC estimator and sample variance we use MN sample points and thus

for a fair comparison an RQMC method should be compared to standard MC with

MN sample points.

Up to this point RQMC has been introduced as a variation on standard QMC

methods by adding MC style randomisations. However, an alternative perspective

of RQMC starts from a MC method and then adds the low-discrepancy points to

make it into a variance reduction method for standard MC methods as we will briefly

describe next.

RQMC as a MC variance reduction technique

This alternative look on RQMC as a variance reduction technique within the standard

MC framework was first noted in [121]. After randomisation of the low-discrepancy

point set the estimator Î(m) becomes an unbiased estimator of the integral I in equa-
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tion (4.1). The variance of the estimator can, by linearity, be written as

V
[
Î(m)

]
=
σ2

N
+

2

N2

∑
1≤i<j≤N

Cov
[
f
(
ṽ(i,m)

)
, f
(
ṽ(j,m)

)]
, (4.7)

which we note is similar to equation (2.40). In standard MC methods the points{
v̂(n,m)

}
used are independent and therefore the covariances are zero. For an RQMC

method, however, this is not the case because of the deterministic construction of

the points used. Note that this remains true despite the randomisation, because

the point set as a whole is still a low-discrepancy point set. As mentioned earlier

in Section 2.4.1, to reduce the variance one wants the contribution of the sum of

covariances to be as negative as possible. For the antithetic method, for example,

this is achieved by a pairwise coupling of samples. For RQMC methods, however, its

construction couples all the N sample paths in the hope to create an overall negative

correlation effect, meaning a potentially larger variance reduction.

4.1.2 Array-RQMC

An interesting alternative RQMC method exists for the special case of simulating

sample paths from DTMCs. Progress for this particular case was made in [119, 120,

126] with the introduction of a variant of RQMC specific for DTMCs, known as

array-RQMC. The array-RQMC method is applicable to Markov chains of the form

Yt+1 = ϕt(Yt,ut), (4.8)

where the subscripts t denote the step in the DTMC, the ϕt are transition functions

and ut ∈ [0, 1)s depict uniform random variables. Suppose we are interested in the

average value (or distribution) of YT , i.e. the state after T steps. Note that it is
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possible to write this problem as the estimation of a standard expectation

E [YT ] =

∫
[0,1)sT

Φ (Y0,U) dU (4.9)

=

∫
[0,1)s
· · ·
∫

[0,1)s
ϕT (ϕT −1 (. . . ϕ1 (Y0,u1) . . . ) ,uT ) du1 . . . duT , (4.10)

where now Φ denotes the overall effect of applying the T sequential transitions ϕt.

Note that this is an sT -dimensional integral and to use a standard MC or RQMC

method would require the use of point sets in [0, 1)sT . Though this does not necessarily

form a problem for the MC method it can severely reduce the variance reduction

achieved by RQMC methods because the (effective) dimensionality of this problem

will likely be of substantial size when we take many time steps, i.e. T � 1.

Instead the array-RQMC method generates N sample paths, Y
(1)
t , . . . ,Y

(N)
t , in

parallel by using arrays of length N filled with low-discrepancy sequences of size

s for each time step. It therefore combines T low-discrepancy point sets of lower

dimension, s, rather than using a single sT -dimensional low-discrepancy point set.

Note that without care this would not result in an improved estimate, because the

trivial combination of, for example, two low-discrepancy point sets of dimension s does

not yield a 2s-dimensional low-discrepancy point set, see Figure 4.3 for an illustration

when s = 1. Firstly, a correct implementation requires T independently randomised

low-discrepancy point sets of dimension s. By independently randomising the low-

discrepancy points at each time step we can ensure that there is no correlation between

the quasi-random numbers used in different time steps and as a result the paths will

be unbiased realisations of the underlying DTMC [119, Proposition 1].

To prevent the scenario of Figure 4.3 one needs a better method to combine these

s-dimensional point sets. For example, we can independently and randomly re-order

the points at each step, akin to Latin hypercube sampling in Section 2.4.1, and this

method is an example of the Latin supercube construction [161]. The array-RQMC

method, however, uses different strategies. One possibility is the use of an importance
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function, h, mapping Ω, the state space of Y, to R. Given this importance function

we then, at each step of the simulation, sort and re-number the N simulations such

that

h
(
Y

(1)
t

)
≤ h

(
Y

(2)
t

)
≤ · · · ≤ h

(
Y

(N)
t

)
. (4.11)

Note that the choice of the specific importance function is arbitrary and yet it can have

a profound influence on the performance of the array-RQMC method, even making

the convergence worse than standard MC. A study of sorting methods, including

alternatives beyond importance functions, can be found in [122].

Finally we note a downside of the array-RQMC method; similarly to the Latin

hypercube sampling discussed in Section 2.4.1 the array-RQMC method is not exten-

sible. That means that if we have a set of N sample paths and we wish to add more

sample paths, for example to further reduce the statistical error, we need to create a

new ensemble of Ñ independent sample paths. In order to ensure that the combined

estimator from both ensembles has a lower sample variance than the estimate from

the first N sample paths we can take Ñ = N . This effectively means we create a

new batch just as we did with the RQMC method. This means the statistical error

rate does not decay as if we increased N , but rather becomes the statistical error

from N samples divided by the number of ensembles that we simulate. This latter

contribution only happens at the MC rate. If we use Sobol’ point sets as well then

we need to take N to be a power of two. These factors mean that the array-RQMC

method is slightly less flexible than the standard RQMC and MC methods.

4.2 RQMC applied to the τ-leap method

RQMC methods were introduced in the previous sections in the context of classical

quadrature problems, but the framework applies equally well to many stochastic

simulation approaches. This is due to the fact that the object of interest often takes

the form of an expectation, which can also be written as an integral. Therefore it can
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be sufficient for stochastic simulations, just as for quadrature problems, to substitute

pseudo-random numbers in a MC simulation method with low-discrepancy numbers

to get an equivalent RQMC method.

A crucial difference, however, is that for many standard methods of generating

low-discrepancy numbers we need to know the dimensionality of the problem a priori.

This is due to the fact that one cannot make a low-discrepancy point set in two

dimensions by simply combining two one-dimensional point sets (note that this does

work for pseudo-random numbers and is frequently used), which can be clearly seen in

Figure 4.3. This difference between the two types of points is caused by the way low-

discrepancy point sets are generated, in a well-defined deterministic manner, which

introduces correlation between the individual points.

u2

u1

Figure 4.3: Illustration of the combination of two one-dimensional point sets into
a two-dimensional set, both for randomised Sobol’ sets (•) and pseudo-random sets
(•). This approach for pseudo-random numbers results in a new two-dimensional
pseudo-random number set, but this is not true for low-discrepancy numbers.

It is therefore not straightforward to combine QMC methods with for instance

Gillespie’s DM, as it is not clear, a priori, how many random numbers will be used in

the simulation of a single path, i.e. the dimension is unknown and possibly infinite.

There do exist ways to deal with possibly infinite integration problems in the context

of QMC using (extensible) lattice rules and sequences, see for example [49, Section

5] for an overview and [121] for a software implementation of such constructions. For
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chemical reactions a workaround for the simulation of CTMCs was presented in [95],

using uniformisation of the CTMC combined with array-RQMC.

In this section, however, we focus instead on the (approximate) τ -leap method,

which in its simplest form (fixed τ) does allow for an a priori determination of the

dimension of the problem, which is equal to the computational complexity given in

equation (2.36b). The low discrepancy numbers are then used in step 5 of Algo-

rithm 2.3 to generate the Poisson random variables Yk by applying an inverse trans-

formation. Note that if this is done using a fast inverse transform, such as in [70], the

process is not slower than direct methods for generating Poisson random variables

in the recent implementations of MATLAB and Python (R2018b and Numpy 1.14.0,

respectively).

Numerical experiments

We now test the effect of the combination of RQMC and the τ -leap method on a set of

example chemical reaction systems. We compare the results using the τ -leap method

to the results from numerically solving the CLE (2.11) using the Euler-Maruyama

discretisation as QMC methods have proven to be very effective for numerical sim-

ulation of SDEs in the past [84]. We note that the two computational methods are

based on different models, the RTCR (2.7) and the CLE (2.10), respectively. As a

result, the bias of the methods will be different in general and we therefore do not

directly compare the summary statistics computed. Instead, we ignore bias and only

measure the convergence rate of statistical errors for both methods. For work on the

bias error incurred from using the τ -leap approach we refer the reader to [4, 9, 181].

All numerical results for RQMC methods used as input the Sobol’ sequences [202],

with a random linear scramble combined with a random digital shift [144] to create

randomised low-discrepancy points.
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4.2.1 Monomolecular reaction networks

First we look at some elementary test systems to be able to closely compare the

CLE-based method and the τ -leap method. The benefit of these systems is that the

first two moments of the sample paths can be calculated analytically for both the

τ -leap method and the Euler-Maruyama discretisation scheme, see Appendix 2.A.

Combining this information with the exact expressions for the moments derived from

the CME means that the bias due to the finite step size τ is exactly known as well.

Linear birth-death process

The first example is a single species linear birth-death system

S1

c−A ∅, (4.12a)

S1

c−A 2S1, (4.12b)

which models auto-catalytic production and degradation of the species S1. For sim-

plicity we take the two reaction rates equal to each other so that we have E [X(t)] = X0

and Var [X(t)] = 2ctX0, i.e. the system will exhibit fluctuations around the steady

state given by the initial state X0. Note that these identities also hold for the Euler-

Maruyama discretisation of the CLE and the τ -leap scheme applied to the RTCR1,

both computational methods are thus unbiased with respect to the CTMC model. The

complexity of the DM in this case is given by C = 2cX0t, and thus when τ−1 < cX0

the complexity of the approximate τ -leap and CLE-based methods is lower than for

the DM.

In Figure 4.4 we show the convergence results of the RMSE at time T = 1.6 for

a system with c = 1 and X0 = 103. Both the Euler-Maruyama discretisation of the

CLE and the τ -leap method use a time step τ = 0.2, i.e. we take eight steps in both

methods. The dimension of the problem is therefore 16 (two reaction channels and

1Under the assumption that no negative states occur while simulating sample paths.
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eight time steps), which is generally thought to be within the realm of possibilities

with (R)QMC methods.

Figure 4.4: RMSE convergence for the mean number of S1 molecules in the linear
birth-death system, (4.12), with c = 1 and X0 = 103 at T = 1.6. The time step was
τ = 0.2 in all simulations. Dashed black lines show the typical reference convergence
rates, O(N−1/2) for MC and O(N−1) for RQMC. To establish the RMSE for the
RQMC method equation (4.5) was used with M = 32 randomisations.

We can clearly see that RQMC applied to both τ -leap and the CLE gives a strong

improvement over the same method with standard pseudo-random numbers. How-

ever, it is also clear that, contrary to the MC method, where both the CLE-based

discretisation and τ -leap method show equal convergence in terms of the RMSE, the

RQMC methods differ in terms of their performance benefit. The SDE-based method

has a convergence rate of roughly O(N−1) for all N . The same behaviour is not

observed, however, for the τ -leap method which starts at an O(N−1) rate, but for

N & 102 seems to switch to the standard MC rate, i.e. O(N−1/2). This might come as

a surprise, because in the regime of high molecule numbers and reaction propensities

the CLE-derived methods are expected to form an excellent approximation to the

RTCR and τ -leap method.

We note that the decrease in convergence rate is not due to sample paths reach-

ing low molecule numbers, which could result in a discrepancy between CLE-based

136



methods and discrete molecule number methods such as the τ -leap method. With

the initial conditions given above such sample paths are very unlikely to happen and

were indeed not observed in the simulations used to produce Figure 4.4. This also

means that a strategy to prevent negative molecule numbers, e.g. [2, 35, 42, 211], was

not needed for this example.

A clear difference between the τ -leap method and CLE-based method stems from

their respective update formulas, (2.15) and (2.10), which are related but not equal.

Therefore the results from the two methods can differ subtly. By increasing the

reaction rate parameters of the system the Poisson updates used for the τ -leap method

are better approximated by normal random variables, which are what is used in CLE-

based methods. However, as a result of the difference in updates, the state space of

the variable X(t) is continuous for the CLE-based method and discontinuous, only

taking integer values, for the RTCR-based τ -leap method. We now investigate what

differences between the τ -leap method and CLE-based method exactly lead to the

two contrasting convergence rate behaviours observed in Figure 4.4.

Firstly we test whether this observed behaviour of switching between convergence

regimes changes when the difference between the τ -leap method and the equivalent

discretisation of the CLE becomes smaller. This is done by running a similar set of

simulations with varying initial conditions, and therefore molecule number regimes.

We set X0 = ε−1, so that as ε→ 0 we expect better agreement between the outputs

of the τ -leap method and the CLE method. Note that as we vary ε the sample path

variance for both methods has the form Var [X(t)] = 2ctε−1 and therefore grows as

ε→ 0. In Figure 4.5 we show the resulting comparison between the two methods, with

the RMSE rescaled by ε−1/2. This is done to normalise the RMSE by the sample path

variance as ε is changed. Note that this rescaling does not influence the convergence

rate behaviour as a function of N .

It is clear from Figure 4.5 that for the Euler-Maruyama discretisation of the con-

tinuous CLE the value of ε does not influence the convergence rate of the RMSE,
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(a) τ -leap method. (b) Euler-Maruyama discretisation of CLE.

Figure 4.5: Comparison between the normalised RMSE convergence rates of the τ -
leap method (a) and an Euler-Maruyama discretisation of the CLE (b) for the mean
number of S1 molecules in system (4.12) with c = 1 at T = 1.6 and varying initial
condition X0 = ε−1. The time step was τ = 0.2 in all simulations. Dashed black
lines show the typical reference convergence rates, O(N−1/2) for MC and O(N−1) for
RQMC. The MC reference line shows the normalised MC sample variance for both

methods, i.e.

√
Var

[
Q̂
]
/E
[
Q̂
]

=
√

2ct/N . To establish the RMSE, equation (4.5)

was used with M = 32 randomisations.

i.e. it remains O(N−1) under changes in ε. The same cannot be said for the τ -leap

method as now ε influences the transition between two different convergence regimes,

fast O(N−1) and slow O(N−1/2) convergence, respectively. We observe that a smaller

ε means that the transition takes place later, i.e. for higher N . Note that varying

ε in the context of this system means changing the average copy number of S1 en-

countered, and with that also the average reaction propensities. As a result, ε toggles

how well the Poisson random variables in the τ -leap method can be approximated

by normal variables, and therefore how good the CLE is as an approximation to the

discrete dynamics. One might therefore think that RQMC performance depends on

the ‘closeness’ of a discrete RTCR system is to its continuous CLE approximation.

We now show that this is not necessarily the case.

We consider an additional rescaling of the reaction rate constant of the form

c = c0ε in combination with the previous rescaling of the initial condition. Note
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that now this rescaling keeps the reaction propensities on average constant and of the

order O(c0τ) during a time step as ε→ 0. As a result the value of ε does not change

whether the Euler-Maruyama discretisation of the CLE forms a good approximation

to the τ -leap method. We perform a test to see what happens to the convergence rate

if we let ε→ 0 in this case. Note that in this case we do not need to rescale the sample

variance as it is already independent of ε. The results are shown in Figure 4.6 and

show similar behaviour compared to the previous example, where c was fixed. It is

therefore not the ‘closeness’ of the RTCR to the CLE which governs the convergence

rate, as this is solely determined by the propensities of the reaction channels. Rather

one could be tempted to conclude that the copy number of S1 molecules rather than

reaction propensities is crucial for this system. In the next sample we will show that

this is also not the case and we will instead provide an alternative explanation at the

end of Section 4.2.2.

(a) τ -leap method. (b) Euler-Maruyama discretisation of CLE.

Figure 4.6: Comparison between the RMSE convergence rates of the τ -leap method
(a) and an Euler-Maruyama discretisation of the CLE (b) for the mean number of
S1 molecules in system (4.12) with c = 10ε at T = 1.6 and varying initial con-
dition X0 = ε−1. The time step was τ = 0.2 in all simulations. Dashed black
lines show the typical reference convergence rates, O(N−1/2) for MC and O(N−1) for
RQMC. The MC reference line shows the MC sample variance for both methods, i.e.√

Var
[
Q̂
]

=
√

2ct/N . To establish the RMSE equation (4.5) was used with M = 32

randomisations.
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Isomerisation system

The previous example showed that in the case of molecule numbers in the system being

not too small the standard RQMC method in combination with the τ -leap method

performed well. In the following example we show that having large molecule numbers

for some species in the system does not guarantee good convergence behaviour of

RQMC in combination with the τ -leap method. We consider the two species system

S1

c1−A S2, (4.13a)

S2

c2−A S1, (4.13b)

and start with X0 = (X1, X2)ᵀ initial molecules. We define N0 = X1 +X2, c = c1 +c2,

r = c1/c and note that this simple system is closed, which means that the sum of the

numbers of S1 and S2 molecules at all times will be equal to N0. This information

can be used to decouple the dynamics of S1 and S2. Note that this system, under the

CTMC model, converges to an equilibrium state of (1− r, r)ᵀN0. In order to ignore a

transient regime in which the system goes to this equilibrium we start the simulations

with N0 = ε−1 and X0 proportional to this equilibrium state, i.e. X0 = ε−1(1− r, r)ᵀ.
We note that with this initial condition for both the τ -leap method and the Euler-

Maruyama discretisation of the CLE we have E [X(t)] = X0 and Var [X(t)] ∝ ε−1,

as in the previous example. This also means that both computational methods are

unbiased for this system.

In Figure 4.7 we show results for a simulation until T = 1.6 with time step τ = 0.2

and parameters c = 1, r = 10−4 and ε = 10−6. This means that S1 has copy numbers

of the order 106, which one might reasonably say is large. In particular, the S1 copy

number is an order of magnitude larger than any of the copy numbers encountered

in the previous linear birth-death processes. We note again that there is a gain in

performance in terms of RMSE if we compare RQMC and the equivalent MC method.

However, we also observe that, despite S1 having large copy numbers, the RMSE for

S1 from the τ -leap method quickly goes to O(N−1/2) convergence.
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Figure 4.7: RMSE convergence for the mean number of S1 molecules in the isomeri-
sation system (4.13) with c = 1 and r = 10−4 at T = 1.6 and initial conditions
X0 = 106(1 − r, r)ᵀ. The time step was τ = 0.2 in all simulations. Dashed black
lines show the typical reference convergence rates, O(N−1/2) for MC and O(N−1) for
RQMC. To establish the RMSE for the RQMC methods equation (4.5) was used with
M = 32 randomisations.

This example therefore shows that high copy numbers for some of the reacting

species are also no guarantee for RQMC method convergence rates faster than the

standard O(N−1/2) rate. This is even the case when we use summary statistics

that involve just those high copy number species (in our example the number of S1

molecules). We must therefore find a different description for the observed conver-

gence behaviour of the RQMC τ -leap method.

4.2.2 Discrete toy model

To explain the observations from the previous examples we consider a problem in

traditional quadrature. We consider the integration of the following d-dimensional

test functions over the domain [0, 1)d:

f(u) =
√

12/d
d∑
i=1

(
ui −

1

2

)
, (4.14a)

f(u) =
√

12d
d∏
i=1

(
ui −

1

2

)
. (4.14b)
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Both functions integrate to zero over the d-dimensional hypercube and have variance

∫
[0,1)d

f 2(u) du−
(∫

[0,1)d
f(u) du

)2

= 1, (4.15)

regardless of d. We note that (4.14a) is an easy test function for (R)QMC methods as

it represents a linear combination of one-dimensional functions (for which (R)QMC

methods perform well). The effective dimension in the superposition sense of these ad-

ditive functions is equal to one [33] and the convergence rate for RQMC2 is O(N−3/2)

regardless of dimension d if we consider N to be a power of two (the base power for

the Sobol’ sequence). The second function (4.14b) was considered previously in [165]

and is a much harder integrand for RQMC and MC methods. It has the property that

RQMC methods for a low number of points have O(N−1/2) RMSE convergence which

turns into O(N−3/2) if sufficiently many points are used (the definition of sufficient,

which depends on d, is found in [165]). RMSE convergence for these test functions

for some dimensions d is depicted in Figure 4.8. This shows that RQMC does indeed

do a very good job at integrating (4.14a) and for N large enough the same holds for

(4.14b). For (4.14a) we see that in terms of RMSE convergence there is no depen-

dency on d. In addition we note that using Sobol’ sequences means that we can get

a better performance if we take N to be a power of 2, which we will do hereupon.

For the chemical test systems previously discussed there was a clear difference

in performance for RQMC methods between the continuous CLE and the discrete

RTCR. In terms of quadrature, the integrand f in the first case is continuous, whereas

in the second case it is discontinuous. Most convergence results for RQMC are based

on the assumption that the integrand is continuous and it has been observed before

that discontinuities can have an adverse effect on the convergence rate, see for example

[23, 94, 155, 156]. We now show that a certain type of discontinuity, closely resembling

2Provable results on the convergence rate for randomised Sobol’ sequences are only available if
Owen nested uniform scrambling is used [163], rather than the randomised matrix scrambling as
used in this work. We refer the reader to [166] for a more in-depth discussion of scrambling methods
for Sobol’ sequences.
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(a) Test function (4.14a). (b) Test function (4.14b).

Figure 4.8: Comparison between the RMSE convergence rates of MC and RQMC
estimates for integrals of equation (4.14). RQMC method (2) has N equal to a
power of 2, whereas RQMC method (1) does not have N equal to a power of 2. To
establish the RMSE for the RQMC methods equation (4.5) was used with M = 512
randomisations and the dashed black lines show the typical reference convergence
rates, O(N−1/2) for MC and O(N−1) and O(N−3/2) for RQMC.

the chemical reaction system case, can replicate the convergence behaviour that we

have observed in the previous section.

We introduce the following transformation of the test functions f , which acts upon

the input of the function f ,

fε(u) = f

(
ε

⌊
u

ε

⌋)
, (4.16)

where ε is a parameter that tunes the level of discontinuity. Note that as ε → 0

the function becomes smoother. In Figure 4.9 we show the effect of varying ε on the

one-dimensional function (4.14a) and the filled contour plot for (4.14b) for ε = 0.07.

Note that by applying transformation (4.16) we create a function which has all its

discontinuities parallel to the axes of the integration domain [0, 1)d. In [94] it was

proven that such axes-parallel discontinuities have a relatively mild effect on the

convergence of RQMC methods.
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Figure 4.9: Result of the discontinuity transformation (4.16). For the one-dimensional
function (4.14a) we plot the graph of fε(u) (left). For the two-dimensional function
(4.14b) we plot the filled contour plot for ε = 0.07 (right), clearly showing the dis-
continuities of fε(u), depicted with dashed lines.

In Figure 4.10 we see the effect that the introduction of discontinuities by (4.16)

has on the RMSE convergence. Where the continuous functions showed O(N−3/2)

convergence (recall Figure 4.8), the discontinuous counterparts have, for large enough

N , a slower O(N−1) convergence rate. The results in Figure 4.10 hold for a wide range

of dimensions d. As expected, results for (4.14a) are not affected by d due the fact

that the function after transformation is still one-dimensional in the superposition

sense. On the other hand for (4.14b) the effect of transformation (4.16) only shows

once enough points have been used to leave the O(N−1/2) initial convergence, and

after that convergence rates seem to drop from O(N−3/2) to O(N−1) as well.

Next we introduce a different transformation that converts continuous functions

into discontinuous ones,

fε(u) = ε

⌊
f(u)

ε

⌋
. (4.17)

Note that, in contrast to (4.16), this transformation acts upon the function output

values. As a result, discontinuities introduced by (4.17) do not necessarily align with

the axes of [0, 1)d, as can be seen in Figure 4.11 in two dimensions.
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(a) Integrand (4.14a), d = 10. (b) Integrand (4.14b), d = 3.

Figure 4.10: Effect of discontinuity transformation (4.16) on the RMSE convergence
for (4.14a) (d = 10) and (4.14b) (d = 3). M = 128 randomisations were used and the
dashed black lines show typical reference convergence rates, O(N−1) and O(N−3/2)
for RQMC and O(N−1/2) for MC.

Results for the RMSE convergence for varying ε are shown in Figure 4.12. We

observe again that for small values of N the convergence rate is O(N−3/2), similar to

the continuous case. However, we see that with transformation (4.17), for N large

enough, the convergence rate becomes O(N−1/2), rather than O(N−1) which was ob-

served for transformation (4.16). This comes back to the fact that the discontinuities

introduced by (4.17) do not align with the axes of the integration domain [0, 1)d. One

can understand the impact of this by considering the way many RQMC point sets

are constructed (in particular digital nets, of which Sobol’ point sets are a special

case). For such sets the points are equidistributed with respect to axes-aligned hy-

perrectangles. If the discontinuities of the integrand do not align with the domain

axes, such as for transformation (4.17), then the RQMC points will not be able to

sample the integrand’s different contributions uniformly. In [94] it was also shown

that discontinuities that do not align with the domain axes are of a more detrimental

type of discontinuity if one wants to use RQMC methods.

The limiting convergence rate is given by the MC rate O(N−1/2). This agrees with

the result that RQMC methods will, in the worst case scenario, behave very much
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(a) Integrand (4.14a). (b) Integrand (4.14b).

Figure 4.11: Result of the discontinuity transformation (4.17). Plots show the filled
contour plot with ε = 0.5 for the integrands (a) (4.14a) and (b) (4.14b), respectively.
The discontinuity lines of fε(u) (dashed) do not align with the axes of [0, 1)2.

like a standard MC method and have a convergence rate which is not more than a

constant times the MC rate [165].

To further explain the convergence behaviour we consider the decomposition of the

discontinuous function into a continuous part, F (u), and discontinuous part, G(u),

of the form

fε(u) = f(u)︸︷︷︸
continuous F (u)

+ (fε(u)− f(u))︸ ︷︷ ︸
discontinuous G(u)

. (4.18)

Note that |G(u)| ≤ ε and as a result the variance of G(u) over the hypercube is

generally O(ε2). We can then decompose the MSE of the estimator of the integral

of fε(u) using an unbiased RQMC rule as the sum of the MSE of the integration of

F (u) and G(u). We note that the MSE for the continuous part, F (u), behaves like

O(N−3), as observed in Figure 4.8. In the case of transformation (4.17) the RQMC

method achieves MC-like error rates for the discontinuous part, G(u). We therefore

have the following decomposition of the MSE

MSE

(
ε

⌊
f (u)

ε

⌋)
= C1N

−3 + C2ε
2N−1. (4.19)
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(a) Integrand (4.14a), d = 10. (b) Integrand (4.14b), d = 3.

Figure 4.12: Effect of discontinuity transformation (4.17) on the RMSE convergence
for (4.14a) (d = 10) and (4.14b) (d = 3). M = 128 randomisations were used and the
dashed black lines show typical reference convergence rates, O(N−1) and O(N−3/2)
for RQMC and O(N−1/2) for MC.

This yields a switch from fastO(N−3) convergence to slowO(N−1) when N = O(ε−1),

i.e. at this point the error made for the discontinuous component of the function

starts to dominate the MSE. The same holds true for the RMSE and this scaling of

the switch point as a function of ε is also observed in Figure 4.12.

In the case of transformation (4.16) the RQMC method does not perform like a

standard MC method and instead achieves O(N−2) convergence for the MSE due to

the mild effect of the discontinuity. Note that the scaling of the variance now does

not come into play, because the convergence is not governed by the LLN. Instead we

observe a rescaling of the switching point N = O(ε−1) as well in Figure 4.10. This

leads to the following decomposition of the MSE

MSE

(
f

(
ε

⌊
u

ε

⌋))
= C1N

−3 + C2εN
−2. (4.20)

This shows that, even in the case of a discontinuous integrand, RQMC methods

can achieve a lower MSE if the integrand can be decomposed in a continuous part

and a discontinuous part with the latter relatively smaller in magnitude. RQMC
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compared to MC performs superiorly on the continuous component of the integrand,

giving fast error decay for a moderate number of points N . In the worst-case scenario

a MC convergence rate is achieved by RQMC on the discontinuous part, which will

dominate the convergence order for large N .

This observation can be linked to observations made in [32]. Caflisch notes that

low-discrepancy point sets differ subtly from pseudo-random point sets in the sense

that for a pseudo-random point set every point is an independent estimate of the

integral. This is not true for a low-discrepancy point set, which has a deterministic

structure. For these point sets the initial points sample the integration domain on a

coarse scale, whereas the later points are used for progressively finer scales. Therefore

initially RQMC will perform well on a function like fε, because on a coarse scale it

is dominated by its continuous part, F (u). If more points are used the fine, discon-

tinuous, structure due to G(u) starts to dominate and this is where the convergence

stalls.

Implications for chemical reaction networks

To link the observations on the toy models to chemical reaction network simulations

we use again the fact that we can write X = f(ψ(u)) with u ∈ [0, 1)d, describing

how we get a sample path X from a group of uniform random variates. For a simple

decay system we show the contour plot for the output of two steps of the τ -leap

method and its continuous counterpart, the Euler-Maruyama discretisation of the

CLE, in Figure 4.13. We can clearly see that the smoothness of the output is the

distinct difference between the two methods. The coarse scale structure of both

methods aligns well and although the discontinuities for the τ -leap method are in some

sense axis-aligned, the hypercubes formed by the discontinuities are not necessarily

aligned or regularly shaped, which was the case for transformation (4.16). This means

that we can expect RQMC methods to only achieve a RMSE of O(N−1/2) for large

N , when the discontinuities dominate. To get a more precise understanding of the
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convergence behaviour of the RQMC τ -leap method we now look at the two effects

of discontinuities in our discrete toy models.

(a) τ -leap method. (b) Euler-Maruyama discretisation of CLE.

(c) τ -leap method. (d) Euler-Maruyama discretisation of CLE.

Figure 4.13: Stochastic simulation output for two time steps (τ = 0.1) of the system,

S1

c−A ∅, with (a,b) X0 = 102 and c = 1 and (c,d) X0 = 104 and c = 10−2. The inputs
u1 and u2 are used to generate Poisson and normal random variables, respectively, in
both simulation methods. The CLE-based method output is a continuous function of
u1 and u2; the τ -leap method output on the other hand is a discontinuous function
of u1 and u2, dashed lines in (a,c) show discontinuities.

The first effect is the actual presence of discontinuities and, importantly, at which

scale these discontinuities start to dominate the statistical error convergence. Many

small discontinuities require more sample points to fully resolve than a few larger

discontinuities and thus have a smaller effect, as illustrated in Figure 4.10. This
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explains the difference between the systems in Figure 4.5, for which a decrease in ε

results in a more stretched out distribution of the chemical species. A larger dispersion

means that the discontinuities manifest themselves on a relatively fine scale compared

to the overall continuous coarse scale and thus are only visible using a larger number

of sample points. At that point the discontinuities start to dominate the statistical

error and thus result in the asymptotic O(N−1/2) convergence rate.

This effect, however, does not explain the observations in Figure 4.6, where a

change in ε does not change the dispersion of the resulting species distribution. The

second effect to consider, therefore, is the alignment of the discontinuities with the

hypercube axes. We note that as ε decreases in Figure 4.6 the change in the reac-

tion propensities after each time step becomes smaller, effectively leading to (near)

independence between the time steps. This same effect is visible when we compare

Figure 4.13(a) and Figure 4.13(c). RQMC performs better on the model in Fig-

ure 4.13(c) as the discontinuities are better aligned the axes of the hypercube.

To conclude, we note that the statistical error in the RQMC method for chemical

reaction networks can seemingly be decomposed as

Var
[
Q̂RQMC

]
= C1N

−2︸ ︷︷ ︸
continuous contribution

+ C2N
−1︸ ︷︷ ︸

discontinuous contribution

, (4.21)

with C1 and C2 constants that are determined by the model and the parameters

used. The relative sizes of C1 and C2 determine the importance of the continuous

and discontinuous parts, respectively. However, in general it is not clear a priori how

the summary statistic of interest can be decomposed into a continuous part and a

discontinuous part, and accordingly C1 and C2 are unknown. Or, in other words,

it is not clear how important coarse scale continuous contributions are in relation

to finer scale discrete ones. Therefore the performance benefit from using RQMC

methods over MC methods can be hard to estimate a priori. We do, however, note

that the implementation of low-discrepancy point sets is often relatively simple and
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does not need to increase the runtime of the simulation procedures (Appendix 4.A).

As a result, RQMC methods have the potential to provide computational savings

over MC methods in the simulation of chemical reaction networks by attaining lower

statistical errors for equal computational complexity and similar computational time.

4.2.3 Non-linear example

As a final example we look at the bistable Schlögl system, as encountered in [39],

which incorporates non-linear interactions

2S1 + S2

c1−A 3S1, (4.22a)

3S1

c2−A 2S1 + S2, (4.22b)

S3

c3−A S1, (4.22c)

S1

c4−A S3, (4.22d)

where we assume that the copy numbers for S2 and S3 are constant and large. The

initial condition for S1 is 250 molecules. Non-dimensional parameters are given by

c1 = 3 · 10−7, c2 = 10−4, c3 = 10−3, c4 = 3.5 and the copy numbers for S2 and S3 are

taken as 105 and 2 · 105, respectively. The system is bistable for these parameters,

with stable states around 100 copy numbers and 550 copy numbers for S1.

We simulate the system up until final time T = 4 with time step τ = 0.25. We take

the approach in [5] to deal with sample paths with zero or fewer molecule numbers

at a given time, i.e. we apply max(Xj, 0) after each time step to ensure sample paths

do not become negative. First we consider the mean number of S1 molecules, though

more meaningful summary statistics can be constructed for bistable systems.

In Figure 4.14 we show results comparing the τ -leap method and Euler-Maruyama

discretisation of the CLE using both pseudo-random points and low-discrepancy

points. We see that, although the RQMC method does not attain a much better

convergence rate than the standard MC rate of O(N−1/2), the RQMC method is su-
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Figure 4.14: RMSE convergence for the mean number of S1 molecules in (4.22) at time
T = 4.0. The time step was τ = 0.25 in all simulations. To establish the RMSE for the
RQMC methods equation (4.5) was used with M = 32 randomisations. Dashed black
lines show the typical reference convergence rates, O(N−1/2) for MC and O(N−1) for
RQMC.

perior to the standard MC method. Numerical experiments (not shown) suggest that

a similar situation as in Figure 4.14 holds for at least the first few raw moments of

S1 copy numbers.

We also observe that, even though the CLE is continuous, the convergence rate

for its Euler-Maruyama discretisation is equal to that of the τ -leap method. This

indicates that for this specific problem it might not be the discrete nature of the

S1 dynamics that causes the observed O(N−1/2) convergence rate. The behaviour

is likely due to the fact that the system has four reaction channels and 16 time

steps, leading to a dimensionality of 64 for this specific problem. Such a number of

dimensions can be challenging for näıve QMC methods as applied here. One might

benefit from applying a change of variables which transforms the effective dimension

of the problem, and therefore improves the RQMC convergence. Techniques such

as the Brownian bridge and construction via principal component analysis (PCA)

are available for SDEs that can help in making RQMC methods effective even for

high-dimensional problems [84, Chapter 5].
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We briefly explore the use of these two methods, and of the alternative repre-

sentation of the CLE as given in equation (2.12), as a means to reduce the effective

dimension for the Schlögl system. We compare a coarse and a fine time-discretisation

to see how the dimensionality reduction techniques perform when the (original) prob-

lem dimension changes. The PCA construction of the Wiener processes driving the

CLE is done via a fast discrete sine transform [130], whereas we use the classical

Brownian bridge construction [156]. A computational implementation of the alter-

native representation of the CLE can be achieved via a Cholesky or singular value

decomposition of the relevant (species) covariance matrices, CCᵀ in equation (2.12).

However, in the case of the Schlögl system the covariance matrix CCᵀ is in fact

scalar and no decomposition is therefore required in practice. The results of the

various combinations of these techniques is shown in Figure 4.15.

We can see that using the different methods to construct the Brownian motion

driving the CLE sample paths can improve the decay rate of the statistical error for the

CLE, both for small and large time steps. In addition, we see that using the alternative

representation (denoted by CLE∗ in Figure 4.15) which results in a lower-dimensional

SDE (computational complexity C = T/τ for the alternative representation versus

C = 4T/τ for the standard representation), also yields improved convergence for this

problem. The combination of the two methods, i.e. the alternative representation with

either the Brownian bridge construction or PCA construction, performs best, though

the convergence rate is at most O(N−3/4) rather than O(N−1) which we observed

for examples in Section 4.2.1. Generally speaking the alternative representation of

the CLE has lower computational complexity if the number of species is smaller than

the number of reactions, but will involve extra computational overhead due to the

extra operations needed, such as the computation of a Cholesky or singular value

decomposition. It is therefore dependent on the specific problem and implementation

which method should be preferred in practice.

In conclusion, problems with larger (effective) dimension see less benefit from
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MC CLE (-)
MC CLE$ (-)

RQMC CLE (-)
RQMC CLE (BB)
RQMC CLE (PCA)
RQMC CLE$ (-)
RQMC CLE$ (BB)
RQMC CLE$ (PCA)

(a) τ = 0.25 (24 time steps). (b) τ = 0.015625 (28 time steps).

Figure 4.15: RMSE convergence for the mean number of S1 molecules in (4.22) at
time T = 4.0. To establish the RMSE for the RQMC methods equation (4.5) was
used with M = 128 randomisations. Dashed black lines show the typical reference
convergence rates. We use standard RQMC in combination with the regular CLE
(2.11) or the alternative representation CLE∗ (2.12). Wiener processes driving the
SDE are constructed using either the standard sequential sampling (-), via a Brownian
bridge construction (BB) or via a PCA construction (PCA).

using standard RQMC methods. For the CLE model of chemical reactions we can

leverage (effective) dimension reduction techniques to improve the convergence rate

of such RQMC methods. Equivalent transformations for chemical reaction dynamics

following the RTCR (2.7) are, however, not known. An interesting recent development

is the Poisson bridge method that we will discus in more detail in Chapter 5. In many

respects this method parallels the Brownian bridge method for SDEs and is therefore

a good candidate transformation to reduce the effective dimension. We leave this

direction for future research.
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4.3 Array-RQMC for chemical reactions

The previous section purely considered standard RQMC applied to the τ -leap method

and the Euler-Maruyama discretisation of the CLE. However, it is known that the

performance benefit of standard RQMC methods can suffer badly as the dimensional-

ity of the problem is increased, as was observed for the Schlögl system in Section 4.2.3.

In the context of chemical reaction network models, and the τ -leap method in par-

ticular, the dimensionality is equal to the computational complexity and this will

generally be large for many problems of interest.

One possible remedy for this problem in certain scenarios is to use the array-

RQMC method [119]. As discussed in Section 4.1.2 we can use this method to simulate

DTMCs. Even though the CME describes a CTMC we note that the τ -leap approach

yields a DTMC and we therefore explore the combination of the τ -leap method and

array-RQMC in Section 4.3.1. In addition, the array-RQMC method has already

been applied to Gillespie’s DM in combination with uniformisation [95] and this

combination will be studied further in Section 4.3.3.

Note that in order for the array-RQMC method to work we need a sorting method

for the sample paths at each stage of the DTMC. In this section we use a simple strat-

egy, namely a component-wise sorting method, which implicitly defines an importance

function. This means we sort the sample paths based on the value of S1 first. Paths

with equal values for S1 are then further sorted based on S2 etc. This approach was

also taken in [95] where it was noted that the performance of this method can vary

when changing the sorting order.

4.3.1 Array-RQMC and the τ-leap method

By using the array-RQMC method, rather than standard RQMC, in combination

with the τ -leap method we reduce the dimensionality of the QMC point set needed

for simulations from KT/τ to K, where we recall that K is the number of reaction
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channels. In many realistic scenarios T/τ � 1 and therefore using array-RQMC

instead of standard RQMC can drastically reduce the dimension of the QMC point

sets used. As the quality of QMC point sets is generally better for smaller dimensions

[162, Section 15.8] this can potentially significantly improve the variance reduction

that we achieve. Algorithm 4.1 depicts the combination of array-RQMC and the

τ -leap method to generate an ensemble of N sample paths.

Algorithm 4.1 Array-RQMC τ -leap method.
This simulates an ensemble of N sample paths.

Input: Initial data X0

Input: Stoichiometric matrix ζ
Input: Propensity functions ak(X)
Input: Time step τ
Input: Final time T
Input: Importance function h(X)

1: X(n) ← X0 for n = 1, . . . , N . Initialise ensemble of sample paths.
2: t ← 0
3: while t < T do
4: Sort and renumber the sample paths based on their importance

function value, s.t. h(X(1)) ≤ · · · ≤ h(X(N))
5: Sample ṽ(n) low-discrepancy points in [0, 1)K for n = 1, . . . , N
6: for n = 1, . . . , N do
7: ak ← ak(X

(n)) . Calculate reaction propensities.
8: Generate Y1, . . . , YK Poisson random variables via inverse

transform sampling using ṽ(n), s.t. Yk ∼ P (akτ)

9: X(n) ← X(n) +
∑K

k=1 Ykζk . Update state vector.
10: end for
11: t ← t+ τ . Update time.
12: end while

Monomolecular reaction networks

First we revisit the examples from Section 4.2.1, where we now use the τ -leap method

both with standard MC, RQMC and the array-RQMC method depicted in Algo-

rithm 4.1. The results are shown in Figure 4.16 and show that the array-RQMC

method is superior compared to the more direct combination of RQMC methods and

the τ -leap approach, which we previously considered in Section 4.2.
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(a) RMSE convergence for the mean num-
ber of S1 molecules in the linear birth-death
system, (4.12), with c = 1 and initial condi-
tion X0 = 103 at T = 1.6.

(b) RMSE convergence for the mean num-
ber of S1 molecules in the isomerisation sys-
tem (4.13) with c = 1, r = 10−4 and initial
condition X0 = 106(1− r, r)ᵀ at T = 1.6.

Figure 4.16: Benefit from using array-RQMC over standard RQMC (compare with
Figures 4.4 and 4.7). The time step was τ = 0.2 in all simulations. Dashed black lines
show the typical reference convergence rates, O(N−1/2) for MC, O(N−3/4) for array-
RQMC and O(N−1) for RQMC. To establish the RMSE for the RQMC methods
equation (4.5) was used with M = 32 randomisations.

In particular, we note that for a moderate number of sample paths, N , the differ-

ences between the two methods are small and both methods initially converge at an

O(N−1) rate. Whilst for both methods this convergence rate starts to drop when we

consider more sample paths, N , the array-RQMC method clearly excels for large num-

ber of sample paths. In the regime of many sample paths, N , the RQMC convergence

is hampered by the discontinuities due to the discrete state space of chemical species

and therefore behaves like a standard (reduced variance) MC method, O(N−1/2), as

discussed in the previous section. The array-RQMC method, however, is better suited

to deal with such discontinuities and attains a O(N−3/4) convergence rate. This latter

convergence rate is equal to the best current proven result for array-RQMC, see for

example [119, Proposition 6] which holds only for a one-dimensional DTMC, though

much better results for smooth problems have also been observed in practice [122].

As in Section 4.2.1 we also look at the effect of the discreteness of the state space of

chemical species on the array-RQMC convergence. In a similar setup as Section 4.2.1
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we tune the relative importance of the continuous and discontinuous components

of the output and the results are shown in Figure 4.17. We can see that for these

systems, similar to equation (4.21) for the standard RQMC method, we can write

Var
[
Q̂array-RQMC

]
= C̃1N

−2︸ ︷︷ ︸
continuous contribution

+ C̃2N
−3/2︸ ︷︷ ︸

discontinuous contribution

, (4.23)

where C̃1 and C̃2 depend on the specific model and parameters. Comparing equa-

tions (4.21) and (4.23) we conclude that the standard RQMC method achieves similar

results for the continuous contribution, but the array-RQMC method does a better

job at reducing the statistical error for the discontinuous contribution.

(a) Normalised RMSE convergence for the
mean number of S1 molecules in the linear
birth-death system, (4.12), with c = 1 and
X0 = ε−1 at T = 1.6.

(b) RMSE convergence for the mean num-
ber of S1 molecules in the linear birth-death
system, (4.12), with c = 10ε and X0 = ε−1

at T = 1.6.

Figure 4.17: Benefits from using array-RQMC over standard RQMC (compare with
Figures 4.5 and 4.6). The time step was τ = 0.2 in all simulations. Dashed black lines
show the typical reference convergence rates, O(N−1/2) for MC, O(N−3/4) for array-
RQMC and O(N−1) for RQMC. To establish the RMSE for the RQMC methods
equation (4.5) was used with M = 32 randomisations.
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Schlögl system

Finally we revisit the non-linear example of the Schlögl system from Section 4.2.3.

When estimating the mean number of S1 molecules in the system using the τ -leap

method we observe in Figure 4.18(a) again that the array-RQMC method yields a

substantial improvement over both the standard RQMC and MC approaches. Part of

the reason for the superior performance of the array-RQMC method over the standard

RQMC method is the dimensionality of the point sets used in each method, four and

64, respectively. The dimensionality of the Schlog̈l system is small for the array-

RQMC method, resulting in fast decay of the statistical error, but moderate for the

standard RQMC method.

(a) RMSE convergence for the mean num-
ber of S1 molecules in the Schlögl system,
(4.22), at T = 4.0. Parameters described in
Section 4.2.3.

(b) MISE convergence for the EDF of S1

molecules in the Schlögl system, (4.22), at
T = 4.0. Parameters described in Sec-
tion 4.2.3.

Figure 4.18: Benefits from using array-RQMC over standard RQMC and MC method-
ologies (compare with Figure 4.14). The time step was τ = 0.25 in all simulations.
Dashed black lines show the typical reference convergence rates. To establish the
RMSE and MISE for the RQMC methods equation (4.5) was used with M = 32
randomisations.

So far the observations have only been for raw moment summary statistics and we

now consider what happens if instead we try to estimate the distribution of sample

paths, either using the EDF or a histogram.
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Distribution estimation

For the bistable Schlögl system it is more meaningful to look at the distribution of S1

molecules than the mean copy number. Using Section 2.3.1 we construct the EDF for

the output of the τ -leap method using standard MC, RQMC and the array-RQMC

methods. If we solely consider the statistical error in the resulting EDFs we see in

Figure 4.18(b) that there is no difference between the three methods. This could come

as a surprise based on the results in Figure 4.18(a) which show that the array-RQMC

method clearly outperforms the other two methods when looking at the mean of the

distribution.

For comparison we also consider the problem of estimating the distribution of

S1 molecules in the monomolecular examples from Section 4.2.1 and the resulting

decay of the statistical error is depicted in Figure 4.19. We see that for these two

systems, at least for a large number of sample paths, N , the array-RQMC method

outperforms the other two methods, though the benefit from using array-RQMC (or

RQMC) seems to be smaller than when trying to estimate the mean. This signifies

that observations on efficiency of a method based on a mean copy number summary

statistic do not necessarily carry over directly when considering a different summary

statistic, such as the probability distribution.

We can understand these observations by considering the width, in the sense of

the (effective) support, of the actual distributions we are trying to estimate. The

distribution for S1 molecules in the Schlögl distribution is wider than its equivalent

in the linear birth-death system, which in turn is wider than the distribution for S1

molecules in the isomerisation system. Loosely speaking to get an accurate EDF we

need at least a few observations for each likely value in the distribution. As a result

we can only start to see the benefits from using the RQMC or array-RQMC method

when we have a number of sample paths, N , which is at least an order of magnitude

larger than the width of the distribution we are trying to estimate. If we use fewer

points than this, the statistical error will be dominated by the effect of not being
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(a) MISE convergence for EDF of S1

molecules in the linear birth-death system,
(4.12), with c = 1 and X0 = 103 at T = 1.6.

(b) MISE convergence for EDF of S1

molecules in the isomerisation system (4.13)
with parameters c = 1, r = 10−4 and initial
condition X0 = 106(1− r, r)ᵀ at T = 1.6.

Figure 4.19: Benefits from using array-RQMC over standard RQMC and MC method-
ologies. The time step was τ = 0.2 in all simulations. Dashed black lines show the
typical reference convergence rates. To establish the MISE for the RQMC methods
equation (4.5) was used with M = 32 randomisations.

able to generate a fully representative collection of samples. This is true for all three

methods and their convergence rate will therefore not differ for small N , i.e. their

MISEs converge at the standard MC rate of O(N−1).

To illustrate this point further we consider the problem of estimating the distribu-

tion of S1 via an (equal bin width) histogram instead of the EDF. By increasing the

width of the histogram bins, ∆, we note that the number of bins, whose height we aim

to estimate, becomes smaller. This means that to generate a representative sample,

i.e. proportional to the histogram bin heights, requires fewer sample paths. Therefore

we can get an accurate estimate of the histogram bin heights using fewer samples, N .

The EDF is recovered when we take ∆ = 1 and we therefore expect to see the benefit

from using array-RQMC earlier if we take ∆ > 1. This is indeed the case as we

can see for the Schlögl system in Figure 4.20. Note that the decay rate of the MISE

for large numbers of sample paths, N , using the array-RQMC method is slower than

O(N−3/2), in contrast to the raw moment summary statistic case discussed previously.
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(a) Histogram with fixed bin width, ∆, us-
ing N = 222 samples for the array-RQMC
method in combination with the τ -leap
method.

(b) MISE convergence for histograms with
fixed bin width, ∆.

Figure 4.20: Histogram for the number of S1 molecules in the Schlögl system, (4.22),
and the accompanying statistical error convergence when combining array-RQMC
with the τ -leap method. System parameters are as described in Section 4.2.3 and
T = 4.0. The time step was τ = 0.25 in all simulations. Dashed black lines show the
typical reference convergence rates. To establish the MISE equation (4.5) was used
with M = 32 randomisations.

4.3.2 Array-RQMC and CLE discretisation

If we instead consider the use of the Euler-Maruyama discretisation of the CLE and

its combination with the array-RQMC method we might expect further improvements

due to the fact that the state space is now continuous. The algorithmic depiction of

this approach follows simply by replacing step 8 in Algorithm 4.1 with the generation

of Y1, . . . , YK normal random variables so that Yk ∼ N (akτ, akτ). When the summary

statistic is the mean number of S1 molecules we indeed see in Figure 4.21 that the

array-RQMC method in this case can attain O(N−1) RMSE decay, which is on par

with the standard RQMC method for simple systems such as the monomolecular

systems from Section 4.2.1.

In addition we see that for the Schlögl system the array-RQMC method is superior

compared to standard RQMC methods applied to the CLE, both in the original
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(a) RMSE convergence for the mean num-
ber of S1 molecules in the linear birth-death
system, (4.12), with c = 1 and X0 = 103 at
T = 1.6.

(b) RMSE convergence for the mean num-
ber of S1 molecules in the Schlögl system,
(4.22), at T = 4.0. Parameters described in
Section 4.2.3.

Figure 4.21: Benefits from using array-RQMC over standard RQMC and MC method-
ologies when using the Euler-Maruyama discretisation of the CLE to generate sample
paths. The method RQMC CLE∗ (PCA) uses the alternative representation of the
CLE given in equation (2.12) with the PCA construction for the Wiener processes
driving the SDE (see Section 4.2.3 for more details). The time step was τ = 0.2 in
all simulations. Dashed black lines show the typical reference convergence rates. To
establish the RMSE for the RQMC methods equation (4.5) was used with M = 64
randomisations.

formulation, given in equation (2.11), and the lower dimensional equivalent, given

in equation (2.12). Even when using the PCA construction of the Wiener process

driving the CLE, which we found to have the smallest error of the methods considered

in Section 4.2.3, we find a O(N−3/4) decay rate, which is slower than what we observe

for array-RQMC. We can attribute this to the fact that the dimensionality of the

low-discrepancy point sets used for the array-RQMC method is lower (d = 4 in this

case) compared to the standard RQMC method (d = 80 and d = 20 in this case

for the CLE and CLE∗, respectively). Note that the array-RQMC can also be used

in conjunction with the alternative representation of the CLE in equation (2.12) to

further reduce the dimensionality, though we do not explore this avenue further here.
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Density estimation

Based on the discussion for the mean summary statistic one might be tempted to con-

sider the standard RQMC methods equally as effective as the array-RQMC method

when the dimensionality of the low-discrepancy point set used is small. This, how-

ever, is not true if we consider the estimation of the density of the sample paths using

histograms of fixed width, ∆. Note that in this case ∆ = 1 does not correspond to

the EDF due to the fact that the state space for the CLE sample paths is continuous.

As we can see in Figure 4.22 there is a clear difference between the MISE decay

rate for the array-RQMC and standard RQMC methods. The former attains a decay

rate that is faster than O(N−1) for large enough number of sample paths, N . This

is not true for the standard RQMC method applied to the original CLE, despite

the fact that when considering the mean summary statistic both methods have an

equal statistical error decay. Using the alternative formulation of the CLE (2.12) in

combination with a PCA construction of the driving Wiener process also improves

the convergence of the standard RQMC method when estimating densities, but is still

inferior compared to array-RQMC. We also note that for all methods the MISE decay

rate is slower than O(N−2), which is the MSE decay rate when estimating the mean,

and this is likely to be caused by the discontinuous nature of the histogram summary

statistic. This means that also when using the Euler-Maruyama discretisation of the

CLE to generate sample paths, now from a continuous state space, there is a benefit

in using the array-RQMC method over the standard RQMC method as described in

Section 4.2.

4.3.3 Array-RQMC and uniformisation

One of the two QMC papers in the context of chemical reactions [95] uses uniformi-

sation to convert the CTMC that describes the sample paths for Gillespie’s DM into

a DTMC in order to be able to use the array-RQMC method. It was observed in [95]
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(a) Standard RQMC CLE. (b) Standard RQMC CLE∗ (PCA).

(c) Array-RQMC CLE.

Figure 4.22: Statistical error convergence of histograms with fixed bin width, ∆, for
the number of S1 molecules at T = 1.6 in the linear birth-death system, (4.12), when
using the Euler-Maruyama discretisation of the CLE to generate sample paths. The
method RQMC CLE∗ (PCA) uses the alternative representation of the CLE given in
equation (2.12) with the PCA construction for the Wiener processes driving the SDE
(see Section 4.2.3 for more details). The parameter c = 1, initial condition X0 = 103

and the time step τ = 0.2 in all simulations. Dashed black lines show the typical
reference convergence rates. To establish the MISE equation (4.5) was used with
M = 64 randomisations.

that a large variance reduction could be achieved using this approach, even without

the addition of array-RQMC, i.e. by combining uniformisation with standard MC.

This resulting method is, in essence, the wUDM introduced in Section 3.4 and in

Section 3.4.2 we indeed found that it outperforms the DM in certain scenarios.

Here we revisit these methods and the examples provided in [95] to i) comment on

their validity and ii) with the combined results from Chapter 3 and Chapter 4 provide
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an explanation for the observed convergence rates. In [95] the typical application was

the approximation of a probability distribution function (PDF) by use of an EDF, but

we will also consider the problem of moment estimation and histogram construction.

Just as in [95] we will compare three methods: i) standard MC with Gillespie’s

DM; ii) weighted uniformisation (see Section 3.4 for the wUDM); and iii) weighted

uniformisation combined with array-RQMC (see Algorithm 4.2).

Following [95] we introduce an extra algorithm parameter, η ∈ [0, 1], for the

array-RQMC method which tunes how many steps in the wUDM are generated with

low-discrepancy sequences3. Due to the overhead from i) sorting and re-numbering

states based on an importance function and ii) the generation of low-discrepancy

points, decreasing η means the run-time of the array-RQMC variant of the wUDM

will increase. In all examples that follow we use the algorithm parameters εL = εR =

10−10/2. Unless stated otherwise we also use the algorithm parameter η = 0.9 and

we sort the states with a component-wise sorting method using the natural order

S1, S2, . . . .

Isomerisation

First we revisit a canonical example we encountered previously in Sections 3.3.2

and 3.4.2 when studying uniformisation techniques, namely the isomerisation sys-

tem, (3.6). Note that due to the one-dimensional nature of this system the sorting

and ordering of the states, needed for the array-RQMC method, is unambiguous. In

Section 3.4.2 we already showed that the standard MC implementation of the wUDM

can be more efficient than the standard DM. The benefit, however, was relatively

small when the summary statistic of interest was the average copy number of S1

molecules. In Figure 4.23 we see that this is indeed the case if we only consider the

MC implementation of the wUDM. However, superior results are achieved when we

combine array-RQMC and the wUDM.

3In [95] it seems η & 0.94 is chosen, though no justification for this choice is given.
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Algorithm 4.2 Array-RQMC weighted uniformised direct method (wUDM).
This simulates an ensemble of N sample paths.

Input: Initial data X0

Input: Stoichiometric matrix ζ
Input: Propensity functions ak(X)
Input: Final time T
Input: Uniformisation rate ā
Input: Importance function h(X)
Input: Algorithm parameters εL, εR and η.

1: Compute largest ML s.t.
∑

m≤ML
P(m, āT ) < εL.

2: Compute smallest MR s.t. 1−∑m≤MR
P(m, āT ) < εR.

3: X(n) ← X0 for n = 1, . . . , N . Initialise ensemble of sample paths.
4: m ← 0
5: while m < MR do
6: if m ≥ ηML then
7: Sort and renumber the sample paths based on their importance

function value, s.t. h(X(1)) ≤ · · · ≤ h(X(N))
8: Sample ṽ(n) low-discrepancy points in [0, 1) for n = 1, . . . , N
9: else

10: Sample ṽ(n) pseudo-random points in [0, 1) for n = 1, . . . , N
11: end if
12: for n = 1, . . . , N do
13: ak ← ak(X

(n)) . Calculate real reaction propensities.
14: aK+1 ← ā−∑K

k=1 ak . Calculate virtual reaction propensity.
15: Find p such that

∑p−1
k=1 ak < āṽ(n) ≤∑p

k=1 ak . Choose next reaction to
fire.

16: if p ∈ {1, . . . , K} then . Only need to fire real reactions.
17: X(n) ← X(n) + ζp . Update state vector.
18: end if
19: end for
20: if m ≥ML then
21: Compute summary statistic Q̂m after m reactions using

X(1), . . . ,X(N) and add to pooled estimator via equation (3.15).
22: end if
23: m ← m+ 1 . Update reaction count.
24: end while

Interestingly we see by comparing Figures 4.23(a) and 4.23(b) that increasing the

total number of molecules in the system decreases the benefits from using the wUDM

array-RQMC version with η = 0.9. We attribute this observation to the fact that if

we increase the total number of molecules we also have to increase the uniformisation

rate. As a result more steps in the wUDM are executed with pseudo-random points,
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(a) X0 = (0, 30)ᵀ. (b) X0 = (0, 300)ᵀ.

Figure 4.23: Comparison of the wUDM and the standard DM for the isomerisation
system, (3.6), with parameters c1 = 0.3 and c2 = 0.1. We consider both the array-
RQMC implementation and the standard MC implementation of the wUDM with
uniformisation rates (a) ā = 9 and (b) ā = 90. Summary statistic is the average
copy number of S1 molecules at final time T = 20. Dashed black lines show the
typical reference convergence rates. To establish the MSE equation (4.5) was used
with M = 64 randomisations.

rather than low-discrepancy points (see steps 6-11 in Algorithm 4.2). This therefore

yields a component of the error that converges at the standard MC error rate, O(N−1).

Intuitively the dominant contribution to statistical error of the wUDM stems from

when the number of reactions, m, in Algorithm 4.2 satisfies ML ≤ m ≤MR, which is

always handled with low-discrepancy points. However, as can be seen in Figure 4.23,

the statistical error in the state after ML reactions, the first state that is added to

the filtered estimator in step 21, can be non-negligible, especially if ML takes large

values and η ≈ 1. We note, however, that when ā = 9 and ā = 90 the computational

complexity4 C[Q̂wUDM] ≈ 1.5·C[Q̂DM] and C[Q̂wUDM] ≈ 1.2·C[Q̂DM], respectively. This

means that in both scenarios the array-RQMC version of the wUDM, regardless of

the choice of η ∈ [0, 1], is still more efficient than the standard DM.

If we change the objective to the estimation of the distribution of S1 molecules

we see in Figure 4.24 that the wUDM yields a larger improvement over the standard

4The computational complexity of the DM is estimated via stochastic simulation as described
in Example 2.4 whenever no analytic expression is available. The computational complexity of the
wUDM is given by MR in Algorithm 4.2 and can be determined using ā, T and the value of εR.
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DM, confirming our earlier observations in Section 3.4.2. We also see that errors for

the array-RQMC version of the wUDM decay at a higher rate than the MC methods

considered and therefore conclude that for this problem the array-RQMC method is,

by far, the most efficient method. The effect of the choice of the algorithm parameter

η on the MISE is visible as well, albeit less pronounced than in the previous case of

estimating the mean copy number.

(a) X0 = (0, 30)ᵀ. (b) X0 = (0, 300)ᵀ.

Figure 4.24: Comparison of the wUDM and the standard DM for the isomerisation
system, (3.6), with parameters c1 = 0.3 and c2 = 0.1. We consider both the array-
RQMC implementation and the standard MC implementation of the wUDM with
uniformisation rates (a) ā = 9 and (b) ā = 90. Summary statistic is the distribution
of S1 molecules at final time T = 20. Dashed black lines show the typical reference
convergence rates. To establish the MISE equation (4.5) was used with M = 64
randomisations.

Schlögl system

Next we revisit the bistable Schlögl system from Section 4.2.3. This system may be

less well-suited to an exact SSA approach due to the many reactions taking place

in the system within a unit of time and the τ -leap method, considered in previous

sections, is therefore an attractive alternative if one is willing to use a biased SSA.

For comparison, however, we consider here the unbiased estimation using two exact

SSAs, the DM and wUDM, respectively. Note that, like the isomerisation system,

the state space of the Schlögl system is one-dimensional and therefore sorting of the
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states for an array-RQMC method is unambiguous. Taking the same parameters as

in Section 4.2.3 we estimate that an (empirical) uniformisation rate ā = 2.1 · 104

is sufficient. Using this uniformisation rate, ā, we furthermore estimate that the

computational complexity of the wUDM is C[Q̂wUDM] ≈ 3.2 · C[Q̂DM].

First we consider the estimation of the average copy number of S1 molecules and

the MSE decay as a function of the number of sample paths, N , used is depicted in

Figure 4.25(a). It is clear that the wUDM is little better than the standard DM, even

if we look at the array-RQMC variant with η = 0.9. For N = 218 sample paths we find

that the MSE is only roughly 1.2 times smaller using the wUDM than when we use

the DM, implying that the latter method is more efficient. Only if we use the wUDM

with array-RQMC and η = 0, i.e. use low-discrepancy points for each reaction in the

system, we see a clear benefit in terms of the MSE. Note, however, that this latter

approach does have a larger run time due to the (significantly) increased number of

times the states have to be sorted (step 7 in Algorithm 4.2).

(a) MSE when summary statistic is the av-
erage copy number of S1 molecules.

(b) MISE when summary statistic is the dis-
tribution of S1 molecules.

Figure 4.25: Comparison of the wUDM and the standard DM for the Schlögl system,
(4.22), with parameters and initial condition as in Section 4.2.3. We consider both the
array-RQMC implementation and the standard MC implementation of the wUDM
with uniformisation rate ā = 2.1 · 104. Summary statistics are (a) the average copy
number of S1 molecules at T = 4 and (b) the distribution of S1 molecules at final
time T = 4. Dashed black lines show the typical reference convergence rates. To
establish the MSE and MISE equation (4.5) was used with M = 64 randomisations.
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The situation is different when we consider the problem of estimating the distri-

bution of S1 molecules (which is a more relevant summary statistic for the Schlögl

system) as can be seen in Figure 4.25(b). We can clearly see that in this scenario

the wUDM forms a strong improvement over the DM, even if we do not use the

array-RQMC method. Using the standard wUDM we observe a nine-fold decrease in

the MISE. If we use the array-RQMC variant of the wUDM with sufficient number of

samples this can grow even further, e.g. using N = 216 samples and η = 0.9 we observe

a 68-fold improvement of the MISE compared to the standard DM. This superiority

of the array-RQMC version of the wUDM is also visible to the eye in Figure 4.26,

where we compare the actual empirical distributions from both methods.

Figure 4.26: Empirical distribution for the number of S1 molecules at T = 4.0 in
the Schlögl system, (4.22), with parameters and initial condition as in Section 4.2.3.
Distributions are constructed with N = 216 samples using the standard DM and
array-RQMC wUDM (η = 0.9).

Based on the results in Section 4.3.1 one might be tempted to think that the array-

RQMC method could provide even bigger performance gains if we attempt to estimate

the distribution of S1 molecules using histograms with fixed width ∆. This, however,

is not necessarily true if we use the wUDM to construct such histograms as can be

seen in Figure 4.27. The performance gain using the wUDM actually decreases if we
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increase the bin width, ∆, of the histograms. We can understand this by noting that

if we increase the histogram bin width, ∆, a histogram summary statistic becomes

less influenced by high-frequency noise due to the firing of individual reactions. The

wUDM, on the other hand, will perform better on systems with summary statistics

that are subjected to high-frequency noise, because the wUDM acts as a low-pass

filter. The largest benefits using the wUDM can therefore be seen when estimating

the distribution using the actual EDF, rather than a histogram.

(a) wUDM (MC). (b) wUDM (array-RQMC).

Figure 4.27: Error convergence of histograms with fixed bin width, ∆, for the number
of S1 molecules at T = 4.0 in the Schlögl system, (4.22), with parameters and initial
condition as in Section 4.2.3. Histograms are constructed using the wUDM with
uniformisation rate ā = 2.1 · 104. Dashed black lines show the typical reference
convergence rates. To establish the MISE equation (4.5) was used with M = 64
randomisations.

Coupled flows

The final two examples are directly taken from [95]. We revisit these examples because

the results reported in [95] cannot all be correct; for example, using the 1/N upper-

bound for the MISE (see Example 2.3) one can see that Figures 1 and 3 in [95] must

contain errors.

The first system, denoted as coupled flows, comprises four species, S1, S2, S3 and
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S4, subject to the following nine reactions

∅
a1(X)

−−−A S1, ∅
a2(X)

−−−A S2, S1 + S2

a3(X)

−−−A ∅,

S1

a4(X)

−−−A ∅, S2

a5(X)

−−−A ∅, ∅
a6(X)

−−−A S3, (4.24)

∅
a7(X)

−−−A S4, S3

a8(X)

−−−A ∅, S4

a9(X)

−−−A ∅.

The reaction propensities (not all mass action kinetics) are given in Appendix 4.B to-

gether with the model parameters. We start the system with initially zero molecules,

i.e. X0 = (0, 0, 0, 0)ᵀ.

It was noted in [95] that this system can then be uniformised with uniformisation

rate ā = 10. We report the results, both for the case of estimating the average

copy number of S1 molecules and the joint distribution for S1 and S2 molecules, in

Figure 4.28. It is again clear from Figure 4.28(a) that when estimating the average

copy numbers the wUDM does not yield an advantage over the standard DM, even

when combined with array-RQMC. The same observation holds if we attempt to

estimate the average copy number of any of the other three species in the system.

We note that, though correct, the proposed uniformisation rate overestimates the

number of reactions that fire on the interval t ∈ [0, 100], in which case a uniformisation

rate ā = 4 appears to be sufficient. We find that the computational complexity

is C[Q̂wUDM] ≈ 11 · C[Q̂DM] when ā = 10, again reflecting that the uniformisation

rate is chosen too high if we are primarily interested in the system at T = 100.

This means that if we take ā = 10, only for large number of sample paths does

the wUDM with array-RQMC become more efficient than the standard DM if the

objective is the joint distribution of S1 and S2 molecules. Without array-RQMC the

wUDM is even less efficient than the DM. If we, however, repeat the simulation with a

lower uniformisation rate, ā = 4, we find the performance of the wUDM significantly

improves, both due to a lower complexity and a larger variance reduction, as can

be seen in Table 4.1. Whereas with ā = 10 the MC version of the wUDM is not
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(a) MSE when summary statistic is the av-
erage copy number of S1 molecules.

(b) MISE when summary statistic is the
joint distribution of S1 and S2 molecules.

Figure 4.28: Comparison of the wUDM and the standard DM for the coupled flows
system, (4.24), with parameters and initial condition as in Section 4.2.3. We consider
both the array-RQMC implementation and the standard MC implementation of the
wUDM with uniformisation rate ā = 10. Summary statistics are (a) the average
copy number of S1 molecules at T = 100 and (b) the joint distribution of S1 and
S2 molecules at final time T = 100. Dashed black lines show the typical reference
convergence rates. To establish the MSE and MISE equation (4.5) was used with
M = 64 randomisations.

more efficient than the DM, choosing a more suitable uniformisation rate makes the

wUDM more efficient than the DM. This is in line with our earlier observations in

Section 3.4.2. Using the array-RQMC wUDM version with N = 220 samples yields

roughly a seven-fold or twelve-fold efficiency improvement over the standard DM using

η = 0.9 or η = 0, respectively. Note that our results disagree (quantitatively) with

those reported in [95, Table II].

From the combined results in this example and the two previous examples we see

that the choice of η ∈ [0, 1] has a more pronounced influence when the summary

statistic of interest is a (raw) moment, i.e. scenarios in which the wUDM does not

necessarily excel. For the case of estimating distributions, for which the wUDM is

more suitable due to its low-pass filter property, we see that changing η has less effect

and we therefore use η = 0.9 from this point on whenever we estimate a distribution.

Finally we consider what happens if we run the simulations up to T = 1000. In

this case we do need a uniformisation rate ā = 10, which yields a comparatively good
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Number of samples, N

212 214 216 218 220

wUDM (MC)
ā = 10 3.9 3.9 3.8 3.8 3.9

ā = 4 5.5 5.5 5.4 5.3 5.6

wUDM (array-RQMC)
ā = 10 4.8 6.4 8.4 12 19

η = 0.9 ā = 4 8.6 11 15 23 33

wUDM (array-RQMC)
ā = 10 5.0 7.5 9.8 16 29

η = 0 ā = 4 8.8 12 18 32 61

Table 4.1: Variance reduction factor (in terms of the MISE) of the wUDM relative
to the standard DM when estimating the joint distribution of S1 and S2 molecules at
final time T = 100.

computational complexity for the wUDM, C[Q̂wUDM] ≈ 2.5 · C[Q̂DM]. As observed

in [95] the state space of the species is larger when T = 1000 than when T = 100

and therefore estimating the species distributions accurately needs a large number of

sample paths. As we can see in Figure 4.29 the benefit from using array-RQMC only

shows when we use more than 104 sample paths. Because the state space for this sys-

tem is four-dimensional we consider two different sorting orders, the canonical order

[S1, S2, S3, S4] versus the custom order [S3, S4, S1, S2], for the array-RQMC method

and look at its effect on the convergence behaviour for two different summary statis-

tics. We note that if we consider the joint distribution of S1 and S2 molecules the

canonical sorting order performs best (using N = 218 samples the MISE is roughly

1.5 times smaller compared to the custom order), whereas if we consider the joint

distribution of S1 and S4 molecules the situation is exactly reversed. This shows that

the choice of importance function or sorting order in the array-RQMC variant of the

wUDM, used in step 7 of Algorithm 4.2, influences the method’s performance.

In Figure 4.30 we explore a range of summary statistics for the system at time

T = 1000. We see that the benefit from using the wUDM (both variants of the

method) depends on the marginal distribution that we are attempting to estimate.
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(a) MISE when summary statistic is the
joint distribution of S1 and S2 molecules.

(b) MISE when summary statistic is the
joint distribution of S1 and S4 molecules.

Figure 4.29: Comparison of the wUDM and the standard DM for the coupled flows
system, (4.24), with parameters given in Appendix 4.B and zero molecules initially.
We consider both the array-RQMC implementation and the standard MC implemen-
tation of the wUDM with uniformisation rate ā = 10. The custom sort method
changes the sorting order for the states to [S3, S4, S1, S2]. Summary statistics are
calculated at final time T = 1000. Dashed black lines show the typical reference
convergence rates. To establish the MSE and MISE equation (4.5) was used with
M = 64 randomisations.

The efficiency of the array-RQMC wUDM relative to the DM is larger than 20 for

the S1, S2 joint distribution, whereas it is less than one for the S3, S4 joint distri-

bution. The benefit is also smaller when estimating the one-dimensional marginal

distributions (not shown). We can explain these observations by again considering

the low-pass filter property of the wUDM; the reactions changing the species S3 and

S4 counts fire less frequently compared to the reactions changing the S1 and S2 counts,

implying that the summary statistics involving species S1 and/or S2 are subject to

more high-frequency noise. The wUDM filters such high-frequency noise effectively,

leading to a large variance reduction if S1 and/or S2 are involved in the summary

statistic.
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Figure 4.30: Marginal distributions and error convergence for the coupled flows sys-
tem, (4.24), at time T = 1000 using parameters in Appendix 4.B. The diagonal tiles
show the one-dimensional marginal distributions and the lower triangular tiles the bi-
variate marginal distributions (isolines). All distributions are calculated by averaging
M = 64 independent runs of the array-RQMC wUDM with N = 218 samples. The
upper triangular tiles show the error convergence for the bivariate marginal distribu-
tions. Legend and colour coding for the methods in the upper triangular tiles is the
same as in Figure 4.29. To establish the MISE equation (4.5) was used with M = 64
randomisations.
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MAPK-cascade with feedback

The final example is the MAPK-cascade system, previously studied in Section 3.3.2.

Following [95] we uniformise the system with uniformisation rate ā = 15, which, per-

haps surprisingly, leads to a computational complexity of C[Q̂wUDM] ≈ 0.95 · C[Q̂DM],

implying that the wUDM is roughly on par with the standard DM. Though not stated

explicitly in either [95] or [109], we assume here an initial condition with each kinase

in its inactive form, i.e. X0 = (100, 0, 300, 0, 0, 300, 0, 0)ᵀ. We found the results that

follow next insensitive to small perturbations in these initial conditions.

Our primary interest is the behaviour of S8 (MAPK-PP) and we compute its

bivariate marginal distribution with the other seven species. We study two different

sorting strategies for the array-RQMC variant of the wUDM, the canonical sorting

order [S1, . . . , S8] and the custom order [S8, S5, S2], meaning that we only sort based

on three out of eight species. The latter is chosen as an attempt to capture the

cascading structure in the network whilst prioritising our species of interest, S8.

In Figure 4.31 we show the resulting error decay for two different bivariate marginal

distributions. For the joint distribution of S6 and S8 all wUDM methods have a sim-

ilar error decay, though we see that if we estimate the joint distribution of S5 and

S8 the array-RQMC wUDM with the custom sorting strategy outperforms the other

methods. Furthermore, in Figure 4.32 we see that the array-RQMC method rarely

gives more than a factor of two actual improvement over the standard MC implemen-

tation of the wUDM for this system when using (up to) N = 220 sample paths. Some

notable exceptions are the estimation of the joint distribution of S5 and S8 or S3 and

S1/S2, for which we see that the array-RQMC method can be two orders of magni-

tude more efficient than the standard DM. In addition Figure 4.32 shows again how

the sorting step in the array-RQMC method can influence the overall benefit from

using array-RQMC, and in particular how this benefit for a given sorting method can

strongly depend on the summary statistic of interest. We draw the same conclusions

when η = 0 (not shown here).
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(a) MISE when summary statistic is the
joint distribution of S6 and S8 molecules.

(b) MISE when summary statistic is the
joint distribution of S5 and S8 molecules.

Figure 4.31: Comparison of the wUDM and the standard DM for the MAPK-cascade
system, see Figure 3.6, with parameters given in Appendix 4.B. We consider both the
array-RQMC implementation and the standard MC implementation of the wUDM
with uniformisation rate ā = 15. The custom sort method uses the sorting or-
der [S8, S5, S2] and the standard array-RQMC method the canonical sorting order
[S1, . . . , S8]. Summary statistics are calculated at final time T = 200. Dashed black
lines show the typical reference convergence rates. To establish the MSE and MISE
equation (4.5) was used with M = 64 randomisations.

(a) wUDM (MC). (b) wUDM (array-RQMC) (1). (c) wUDM (array-RQMC) (2).

Figure 4.32: Variance reduction factor (in terms of the MISE) of the wUDM relative
to the DM when estimating marginal joint distributions in the MAPK-cascade system
at final time T = 200 using N = 220 sample paths. Array-RQMC method (1) uses the
canonical sorting order [S1, . . . , S8], array-RQMC method (2) uses the custom sorting
order [S8, S5, S2].
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The improvement from using the wUDM combined with array-RQMC can also be

clearly seen in Figure 4.33, which shows a comparison between the results from the

DM and the wUDM, both using an equal number of sample paths, N = 218. Note

also that Figures 4.33(c) and 4.33(d), showing the joint distribution of S6 (MAPK)

and S8 (MAPK-PP), do not agree with the distributions shown in [95, Figure 4].

(a) DM. (b) wUDM with array-RQMC and
custom sort.

(c) DM. (d) wUDM with array-RQMC and
custom sort.

Figure 4.33: Marginal distributions (isolines) computed using N = 218 sample paths
for the MAPK-cascade system, see Figure 3.6, with parameters given in Appendix 4.B.
The custom sort method re-orders the states based on [S8, S5, S2] (in that order).
Summary statistics are calculated at final time T = 200.
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4.4 Discussion

It is known that the use of low-discrepancy numbers instead of pseudo-random num-

bers can greatly improve the convergence rate for problems involving traditional

quadrature and SDEs. In this chapter we explored the application of RQMC methods

in the framework of simulation of stochastic chemical reaction systems.

Standard RQMC methodology

In particular, we first looked at the combination of low-discrepancy numbers with the

τ -leap method. For simplicity, the fixed step τ -leap method was considered so as to

allow for a simple implementation of low-discrepancy points without negative effects

on the runtime. We note that the question of whether this is a good procedure has

been addressed in the literature before [2, 35, 36, 39]. This chapter, however, does

not focus on the question of whether the τ -leap method forms a good approximation

to the CTMC dynamics governed by the CME, which is the motivation therein for

the discussion about time step selection. Rather, we focus on the question of how

quickly statistical errors in desired summary statistics decay as a function of the

number of sample paths simulated. We answer this question in the simplest possible

case, namely using fixed time step τ -leap, though we expect our conclusions below

to be general enough to hold for a large class of simulation procedures for stochastic

biological systems.

Theory proves that in some cases the convergence rate for an RQMC method is

not worse than for the equivalent MC method (up to a constant [165]). Evidence

presented here shows that in case of chemical reaction networks standard RQMC is

superior to plain MC, as demonstrated by numerical experiments in Section 4.2. As

a result, if one chooses the fixed time step τ -leap approach to simulate a chemical

reaction network, the use of RQMC methods gives better convergence behaviour

when compared to the traditional MC implementation at no extra computational
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complexity and negligible extra run-time cost.

However, the benefits from using low-discrepancy numbers are smaller than antic-

ipated based on results seen in the simulation of SDEs. In particular, if one chooses

instead to model chemical reaction systems using SDEs in the form of the CLE, one

can see a greater advantage in the use of low-discrepancy numbers. This effect is

caused by at least two factors.

Firstly, the inherently discrete nature of stochastic simulations of chemical reac-

tion networks hinders RQMC convergence. It has been reported in the literature that

discontinuous integrands experience less benefit from RQMC methods over standard

MC methods [23, 94, 155, 156]. In Section 4.2 we showed through the use of a simpli-

fied test system that the behaviour observed in simulating chemical reactions can be

replicated by introducing certain types of discontinuity in classical quadrature prob-

lems. The simple test systems in Section 4.2 allow for a detailed understanding of the

RMSE convergence rate observed when applying RQMC. It is, however, not always

possible to choose the biological model or its parameters such that the effect of dis-

continuities will be small. It would therefore be advantageous to have techniques that

leave the desired summary statistic intact, but diminish the effect of discontinuities

on the RMSE convergence. Smoothing techniques have previously been considered to

mitigate the effects of discontinuities in other contexts [32, 63, 156] and could perhaps

be of use for problems in the context of this thesis.

Secondly, it is known that the performance of (R)QMC methods can strongly

depend on the dimension of the problem. As illustrated in Section 4.2.3, a higher

dimension can lead to a much smaller performance benefit, regardless of the smooth-

ness of the underlying problem. Methods to reduce the effective dimension of the

problem by a change of variables have proven to be effective in other fields and it is

an open question as to whether such transformations can be found for the simulation

of biological systems.

We also point out that the original article introducing QMC methods in 1951 by
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Richtmyer [187] considered a discrete linear birth process. He observed a smaller

performance gain than expected and this might have impeded the further exploration

of QMC methods in stochastic simulation for a few decades. Richtmyer’s results

can now be understood to be caused by the unfortunate choice of his chosen model

problem, which is discontinuous in nature. In addition it was recently argued that

the quality of the low-discrepancy point sets used by Richtmyer was low compared to

modern standard construction methods [162, Chapter 15].

Array-RQMC methodology

Another related method which has proven to be fruitful in the simulation of DTMCs of

potentially large dimension is array-RQMC, described in Section 4.1.2. In Section 4.3

we explored its use in the context of simulating chemical reaction network models.

It was found that combining the array-RQMC method with approximate SSAs, such

as the τ -leap method, can provide a significant improvement over both standard MC

and RQMC variants, especially when many time steps are taken. This was true for

two very different type of summary statistics, namely the mean species count and

the species distribution. For the latter summary statistic, however, generally a larger

number of sample paths, N , was needed for the benefit from using array-RQMC

to become apparent due the more complex nature of the summary statistic. The

array-RQMC method is less hindered by the discreteness and dimensionality of the

problem considered than standard RQMC and therefore is likely to be more suited

to the simulation of chemical reaction network models.

The array-RQMC method is also the cornerstone of the only other known QMC

work in the area of stochastic biological systems [95]. In Section 4.3.3 we revisited

this method and the results in [95]. We showed that, while the results in [95] appear

to be quantitatively incorrect, there can be a benefit from combining uniformisation,

in the form of the wUDM, and array-RQMC. In particular, it was observed through

various examples that the wUDM with array-RQMC performs well only when the
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summary statistic of interest is suited to the standard wUDM and sufficient sample

paths can be used. We found the wUDM to be effective, for example, when estimating

distributions of species that fluctuate on the fastest timescale in the system. If the

object of interest involves species that fluctuate on slower timescales the wUDM

becomes less effective and the combination of multiscale methods, such as the nested

SSA [55, 56], with the wUDM could be a successful strategy.

Our overall results indicate that array-RQMC methods, in combination with a

variety of widely used SSAs, work very well in the context of simulating chemical

reaction networks. A remaining challenge we identified is how the performance of

such array-RQMC methods depends on the importance function used. In order to

automate the construction of effective array-RQMC methods in the context of chem-

ical reaction networks more research like that in [122] will be needed to determine an

effective strategy for choosing importance functions for models with multidimensional

state spaces.
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Chapter appendix

4.A Computational effort to generate quasi-random numbers

Whilst the efficiency gains from using RQMC methods over standard MC methods

are clear in terms of computational complexity one should question whether the time

taken to generate scrambled low-discrepancy sequences for an RQMC method is much

greater than the time needed for pseudo-random numbers to be generated as this

could void any observed efficiency gains. We therefore perform a small test to time

the generation of the various random numbers. We time how long it takes to generate

a point set of length N in d dimensions (averaged over 50 trials). Timing experiments

were performed using MATLAB R2018b on an Ubuntu desktop PC with a 3.40 GHz

Intel Core i7-2600K CPU and 16 GB of random access memory. We test the stan-

dard pseudo-random number generator (which uses the Mersenne Twister algorithm)

versus Sobol’ points with linear matrix scrambling and a random digital shift. The

results are depicted in Figure 4.34 and show that only for relatively small point sets

is the generation of pseudo-random numbers distinctly faster than the Sobol’ points

(on the order of milliseconds), presumably due to a larger overhead for the Sobol’

points. For point sets of lengths not uncommon in simulations (105 or more points)

the difference becomes negligible. Therefore the completion time for an algorithm

which has replaced pseudo-random numbers with low-discrepancy numbers will not

differ noticeably. These findings agree with practical timing results for simulations of

various financial applications in [129].

4.B Model parameters

Here we provide the reaction propensities and parameters for the two models taken

from [95]. Numerical results on these systems can be found in Sections 3.3.2 and 4.3.3.
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(a) d = 1. (b) d = 5.

(c) d = 10. (d) d = 50.

Figure 4.34: Comparison between the time taken to generate N pseudo-random points
and an equal number of scrambled Sobol’ points in [0, 1)d.

Coupled flows

For the coupled flows system, equation (4.24), we have the following reaction propen-

sities

a1 (X) =
kaX3

1 +X1/Ki

, a4 (X) = µX1, a7 (X) =
keB

1 +X2/Kr

,

a2 (X) =
kbX4

1 +X2/Ki

, a5 (X) = µX2, a8 (X) = µX3,

a3 (X) = k2X1X2, a6 (X) =
keA

1 +X1/Kr

, a9 (X) = µX4,

where the parameters can be found in Table 4.2. Unless stated otherwise we use the

initial condition X0 = (0, 0, 0, 0)ᵀ.
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parameter ka kb k2 Ki µ keA keB Kr

value 0.3 0.3 0.001 60 0.002 0.02 0.02 30

Table 4.2: Parameters for the coupled flows system, taken from [95].

MAPK-cascade with feedback

The interaction network for the MAPK-cascade can be found in Figure 3.6. The

reaction propensities and model parameters are taken from [109]. The following

reaction propensities, which are of the Hill function type, correspond to the numbered

reactions in Figure 3.6 and [109],

a1 (X) = V1
X1

(1 + (X8/KI)
n) · (K1 +X1)

, a6 (X) = V6
X4

K6 +X4

,

a2 (X) = V2
X2

K2 +X2

, a7 (X) = k7X5
X6

K7 +X6

,

a3 (X) = k3X2
X3

K3 +X3

, a8 (X) = k8X5
X7

K8 +X7

,

a4 (X) = k4X2
X4

K4 +X4

, a9 (X) = V9
X8

K9 +X8

,

a5 (X) = V5
X5

K5 +X5

, a10 (X) = V10
X7

K10 +X7

,

and the parameters are given in Table 4.3. Unless stated otherwise we use the initial

condition X0 = (100, 0, 300, 0, 0, 300, 0, 0)ᵀ.

parameter V1 V2 k3 k4 V5 V6 k7 k8 V9 V10

value 2.5 0.25 0.025 0.025 0.75 0.75 0.025 0.025 0.5 0.5

parameter n KI K1 K2 K3 K4 K5 K6 K7 K8 K9 K10

value 1 9 10 8 15 15 15 15 15 15 15 15

Table 4.3: Parameters for the MAPK-cascade system, taken from [109, Table 2].

187



Chapter 5

Poisson bridge methods

In this chapter we discuss variance reduction techniques tailored to the simulation

of unit-rate Poisson processes. In particular we investigate various Poisson bridge

constructions, which can be thought of as discrete analogues of the well-known Brow-

nian bridge construction [84, Section 3.1]. This construction forms a popular starting

point for variance reduction methods for SDEs, perhaps most notably since the in-

fluential 1996 Moskowitz and Caflisch paper [156] showed how the Brownian bridge

construction in combination with a low-discrepancy point set can lead to an incred-

ible performance benefit. The core ideas for the Poisson bridge methods developed

in this chapter date back to a report published in that same year [62] which, on the

contrary, appears to have attracted very little attention. Though an expansion of

this original report was included in an extensive and more widely used monograph

[63], no adaptation of Poisson bridge methods in the context of chemical reaction

networks existed until very recently when some ideas were rediscovered and backed

up by theory in [141].

Here, we unify concepts found in [141] and [62] and, by expanding on these ideas,

we show, in practice and proof, how we can achieve orders of magnitude improvement

over standard MC approaches when constructing unit-rate Poisson processes. At the

same time we provide practical guidance as to how to implement and tune Poisson
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bridge methods to achieve, in some sense, (near) optimal performance. Though the

resulting methods are interesting in their own right, their main role in the context

of chemical reaction networks is in conjunction with exact SSAs, such as the NRM

[68] and MNRM [1]. We therefore also consider Poisson bridge methods when used

to generate sample paths of several example chemical reaction networks.

5.1 Standard sampling of Poisson processes

Throughout this chapter we consider the problem of generating a unit-rate Poisson

process, Y (τ). Perhaps the most commonly used method to do so relies on the

observation that the increments of a Poisson process are independent and that the

interarrival epochs are exponentially distributed with unit-rate, i.e. Exp(1). Repeated

sampling and summing of unit-rate exponential random variables therefore yields a

space, i.e. memory, and time efficient method to sequentially generate both the arrival

epochs and value of the Poisson process Y (τ), i.e. the number of arrival epochs at τ ,

as illustrated in Figure 5.1.

0

0

1 0 + Exp(1)

1

0.19

2 0.19 + Exp(1)

2

1.28

3 1.28 + Exp(1)

3

2.00

4 2.00 + Exp(1)

4

2.24internal time τ

# arrival epochs

Figure 5.1: Sampling of a Poisson process using the characteristics of the interarrival
epochs. Solid dots (•) indicate the arrival epochs of the Poisson process. Note
that, by abuse of notation, Exp(λ) represents random variables from the exponential
distribution.

A widely used alternative to the above is the exponential spacings method [48,

Chapter V], which generates a Poisson process, Y (τ), over a fixed time interval, say

[0, τs). For this approach we first sample the number of arrival epochs of Y (τ) in [0, τs),

N(τs) ∼ P(τs), and then generate the actual arrival epochs as N(τs) uniforms on the

interval [0, τs). This method is efficient in terms of time, but its näıve implementation
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is not necessarily space efficient as it requires one to store all the arrival epochs

over [0, τs) in memory. However, as shown in [48, Section V.3.1], we can efficiently

generate n ordered uniform random variables sequentially in O(n) time and O(1)

space, thus making this approach as efficient as the previously described method based

on exponential random variables. Note that, by independence of the increments of a

Poisson process, we can use repeated application of the exponential spacings method

to generate a Poisson process on [0, τs), [τs, 2τs), etc., as is illustrated in Figure 5.2.

0

0

τs

5

2τs

7

1 0 + P(τs) 2 5 + P(τs)

internal time τ

# arrival epochs

(a) Sample the total number of arrivals over the intervals [0, τs) and [τs, 2τs).

0

0

τs

5

2τs

7

internal time τ

# arrival epochs

(b) Sample the arrival epochs conditioned on the Poisson skeleton.

Figure 5.2: Sampling of a Poisson process on [0, 2τs) via the exponential spacings
method with step size τs. Solid dots (•) indicate the arrival epochs of the Poisson
process. (a) shows the construction of a Poisson skeleton and (b) depicts the filling
in of the Poisson skeleton using ordered uniforms. Note that, by abuse of notation,
P(λ) represents random variables from the Poisson distribution.

We can view the exponential spacings method as a two-stage method, where first

we generate the values of the Poisson process Y (τ) on a pre-defined time grid and

then fill in the arrival epochs conditioned on the information from the first step. This

naturally leads to the following definition of a Poisson skeleton.

Definition 1 (Poisson skeleton). A Poisson skeleton for a collection of N Pois-

son processes
{
Y (1)(τ), . . . , Y (N)(τ)

}
is a collection

{
τi, Y

(1)(τ−i ), . . . , Y (N)(τ−i )
}R
i=1

for some R ∈ N>0, where Y (s−) = limτ↑s Y (τ). The Poisson skeleton given by{
τi, Y

(1)(τ−i ), . . . , Y (N)(τ−i )
}R
i=1

is unbiased if E
[
Y (n)(τ−i )

]
= τi holds for all i =

1, . . . , R and n = 1, . . . N .
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In the case of a single Poisson process, Y (τ), a Poisson skeleton is simply a collec-

tion of time points and the value that the Poisson process Y (τ) takes at those points.

The output of the first stage of the exponential spacings method is thus an (unbiased)

Poisson skeleton. The second stage of the exponential spacings method then fills in

the arrival epochs conditioned on this Poisson skeleton.

Now that we have separated the exponential spacings method in two independent

stages we consider two alternative methods to construct unbiased Poisson skeletons,

which can replace the first stage of the exponential spacings method.

5.2 Midpoint-based Poisson bridge

The basic idea for the midpoint-based Poisson bridge, first introduced in [62], is

to increase the time resolution of a Poisson skeleton generated by the exponential

spacings method via conditional subsampling. For simplicity of our explanation we

assume that we have a Poisson skeleton {τs, Y (τ−s )}. We then know that at the

midpoint of the interval [0, τs) the Poisson process value is binomially distributed, i.e.

Y (τ−s /2) ∼ B(Y (τ−s ), 1/2). Sampling from this binomial distribution then creates a

new Poisson skeleton at the times {τs/2, τs}, and if the original Poisson skeleton was

unbiased then the new Poisson skeleton is also unbiased if we use an unbiased sample

from the binomial distribution. Of course, we can then apply the same technique

to this newly created Poisson skeleton; repeating this subdivision and conditional

subsampling at the midpoint(s) procedure L times we construct a Poisson skeleton

on τ1, . . . , τ2L ∈ [0, τs), where the times are given by τl = lτs/2
L for l = 1, . . . , 2L. This

procedure represents a single step, of size τs, of the midpoint-based Poisson bridge

with L levels. Just as for the exponential spacings method we can repeatedly use the

midpoint-based Poisson bridge construction on [0, τs), [τs, 2τs), etc., and this leads to

the full midpoint-based Poisson bridge with L levels and step size τs. An illustration

of a single step of the midpoint-based Poisson bridge with L = 2 levels is shown in

Figure 5.3.
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The name of the Poisson bridge method stems from its link to the Brownian

bridge construction of a Wiener process, which builds a Brownian motion path by

successively adding detail on finer time scales.

0

0

τs

14

1 0 + P(τs)

internal time τ

# arrival epochs

(a) Sample the total number of arrivals over the interval [0, τs).

0

0

τs
2

6

τs

14

2 0 + B(14, 1/2)

internal time τ

# arrival epochs

(b) Sample the total number of arrivals over the interval [0, τs/2) conditioned on the number
of arrivals at τ = τs.

0

0

τs
2

6

τs
4

4

3τs
4

9

τs

14

3 0 + B(6, 1/2) 3 6 + B(8, 1/2)

internal time τ

# arrival epochs

(c) Sample the total number of arrivals over the intervals [0, τs/4) and [τs/2, 3τs/4) condi-
tioned on the number of arrivals at τ = τs and τs/2.

0

0

τs
2

6

τs
4

4

3τs
4

9

τs

14

internal time τ

# arrival epochs

(d) Sample the arrival epochs conditioned on the Poisson skeleton.

Figure 5.3: Sampling of a Poisson process on [0, τs) via the midpoint-based Poisson
bridge construction with L = 2 levels. Solid dots (•) indicate the arrival epochs of
the Poisson process. (a-c) show the construction of a Poisson skeleton and (d) depicts
the filling in of the Poisson skeleton using ordered uniforms. Note that, by abuse of
notation, P(λ) and B(N, p) represent random variables from the Poisson and binomial
distributions, respectively.
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5.2.1 Implementation details

For an algorithmic description of a single step of the midpoint-based Poisson bridge

construction of the Poisson skeleton and the subsequent filling in using exponential

spacings we refer the reader to Appendix 5.B, which is based on [63, Section 15.3].

Multiple steps of the Poisson bridge can be sampled independently by the indepen-

dent increment property of a Poisson process. Alternatively, [141, Algorithm 2] also

describes the midpoint-based Poisson bridge method, but we note that the filling in

of the Poisson skeleton should not be done by simulating n uniform random numbers

and sorting them as is proposed in [141]. Instead we can efficiently generate n uniform

order statistics in O(n) time using the one-pass method in [63, Section 15.6]1, which

is a numerically stable version of the exponential spacings method [48, Section V.3.1].

In order to use variance reduction methods such as QMC or antithetic sampling

in combination with the midpoint-based Poisson bridge the Poisson and binomial

random variates need to be generated via inverse transform sampling. For the Poisson

random variables we use the fast inverse Poisson CDF from [70]. For the binomial

random variables to be sampled from an inverse CDF we need to solve u = I1/2(N −
k, 1 + k), where Ix(a, b) is the regularised incomplete beta function, for k when u ∈
[0, 1], and this is a relatively costly operation. For small N this can be done efficiently

using look-up tables, but for large N such an approach is inefficient. Instead, to invert

the incomplete beta function, we use an adaptation of ideas in [70] that yield a fast

approximation to the inverse of the incomplete gamma function.

5.3 Median-based Poisson bridge

The original median-based Poisson bridge method, also first proposed in [62], is in

some sense the dual to the midpoint-based Poisson bridge method. Rather than

focussing on sampling the number of arrival epochs for a given internal time, τ , of

1We note that the original subroutine as described on p. 346 of [63] contains a typo, the fifth line
should read S ← S + (q − i+ 1)−1 log Vi.
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the Poisson process, Y (τ), in order to create a Poisson skeleton, this Poisson bridge

method samples the internal time for a given number of arrival epochs to build a

Poisson skeleton. To start we describe a single step of the median-based Poisson

bridge construction, where now the step size is a number of arrival epochs, Ns, rather

than a fixed internal time. Given that the Poisson process is unit-rate and the fact

that the interarrival epochs are i.i.d. according to a unit-rate exponential distribution,

we see that the time of the Ns-th arrival is Erlang distributed with parameters Ns and

unity, or equivalently Gamma(Ns, 1). This means we can directly sample the Ns-th

arrival epoch, τNs , from the gamma distribution, which yields a Poisson skeleton

{τNs , Ns − 1}. Note in particular that Y (τ−Ns
) = Ns − 1 holds by observing that the

Ns-th arrival epoch is exactly equal to τNs . Rather than refining the Poisson skeleton

by subdivision and conditional subsampling in the internal Poisson process time, we

instead focus on sampling the arrival epoch of the dNs/2e-th arrival2 conditional on

the Ns-th arrival epoch, i.e. we perform subdivision and subsampling in the number

of arrival epochs. This can be achieved by noting that the Ns−1 arrival epochs in an

interval [0, τNs) are distributed like the order statistics of Ns−1 i.i.d. uniform random

variables on [0, τNs). Thus, the dNs/2e-th order statistic of such a collection of uniform

random variates is a scaled beta random variable3, which allows us to directly sample

from the beta distribution and apply a scaling to find τdNs/2e. This then creates a new,

finer, Poisson skeleton. Note that, contrary to the midpoint-based Poisson bridge, the

Poisson skeleton resulting from this procedure has the property that an arrival occurs

at each time point in the Poisson skeleton. By recursive subdivision and conditional

subsampling according to this dual procedure we arrive at the median-based Poisson

bridge, where, again, the number of levels, L, defines how many times we perform the

subdivision and subsampling procedure. An illustration of a single step of the L = 2

median-based Poisson bridge is shown in Figure 5.4.

2Alternatively, we can use the bNs/2c-th arrival, which yields a similar median-based Poisson
bridge construction, and in practice we found no difference in performance between them.

3In particular, given that exactly β arrival epochs fall in [0, τ), the α-th arrival epoch is of the
form τ · Beta(α, β + 1− α).
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1 0 + Gamma(Ns, 1)

(a) Sample the arrival epoch of the Ns-th event, here we use Ns = 7 for illustration purposes.
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2 0 + 7.9 · Beta(4, 3)
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(b) Sample the arrival epoch of the dNs/2e-th event, i.e. the median of the interval spanned
by the Ns arrival epochs, conditional on the arrival epoch of the Ns-th event.
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3 0 + 3.5 · Beta(2, 2)
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3 3.5 + 4.4 · Beta(2, 1)
3.5

4

7.9

7

(c) Sample the arrival epochs of the median of each current interval (if non-empty) condi-
tional on the arrival epochs of the already sampled events.
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(d) Sample the remaining arrival epochs conditioned on the Poisson skeleton.

Figure 5.4: Sampling of a Poisson process with a total of Ns (here Ns = 7) number of
events via the median-based Poisson bridge construction with L = 2 levels. Solid dots
(•) indicate the arrival epochs of the Poisson process. (a-c) show the construction of
a Poisson skeleton and (d) depicts the filling in of the Poisson skeleton using ordered
uniforms. Note that, by abuse of notation, Gamma(α, β) and Beta(α, β) represent
random variables from gamma and beta distributions, respectively.

We note that the dual relation between the two Poisson bridges can also be seen in

the fact that the gamma and beta random variables are, in some sense, the continuous

analogues to the Poisson and binomial random variables.

Contrary to the midpoint-based Poisson bridge, where we can increase the number
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of levels, L, indefinitely in theory, the number of levels in the median-based Poisson

bridge is necessarily bounded by dlog2Nse. In addition we observe that the median-

based Poisson bridge construction samples arrival epochs both in the second and in

the first stage, i.e. in the construction of the Poisson skeleton, whereas the midpoint-

based Poisson bridge method only generates arrival epochs in the second stage by

filling in the Poisson skeleton. This means that the computational complexity, which

we defined as the number of random variables used, of the median-based Poisson

bridge method is technically lower than that of the midpoint-based Poisson bridge

method. Finally, we mention that the length of the Poisson process Y (τ), in terms of

the internal time, τ , in the case of the median-based Poisson bridge construction is

a random variable itself. In terms of the number of reactions, however, the length is

fixed and given by the number of steps times the step size Ns. The opposite holds for

the midpoint-based Poisson bridge, again highlighting the dual relationship between

the two methods, cf. the R-leap and the τ -leap methods.

5.3.1 Implementation details

To implement a single-step of the median-based Poisson bridge we can almost directly

follow [63, Section 15.2]. Note, however, that [63, Section 15.2] describes a (hybrid)

median-based Poisson bridge of fixed internal time length, i.e. for a given internal

time τ one first samples Y (τ) ∼ P(τ) as we did in the midpoint-based Poisson bridge

method. Thereafter we can use the median-based procedure described in this section

to construct a Poisson skeleton and fill this in via the exponential spacing method.

We can, however, replace this initial step by fixing Ns and sampling the arrival epoch

τNs , as described above, from a gamma distribution. A complete description of this

procedure can be found in Appendix 5.B.

In order to use variance reduction methods the gamma and beta random variates

need to be generated via inverse transform sampling. For the beta random variates

this means that we have to invert the regularised incomplete beta function, i.e. solve
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u = Ix(a, b) for x when u ∈ [0, 1], and this is a relatively costly operation. However,

as noted in [63, Section 3.3], the beta random variables used in the median-based

Poisson bridge are always distributed according to Beta(α, α) or Beta(α, α − 1) and

we can therefore use a fast inversion method that is tailored to the symmetrical

beta distribution, such as [123]. For the case Beta(α, α − 1) we postulate that the

identities relating Ix(α, α) and Ix(α, α − 1) in combination with a method for the

symmetrical beta distribution can provide fast inversion too. For the gamma random

variates we can, for example, use the efficient numerical inversion of the incomplete

gamma function ratios [69] to sample via inverse transform sampling. Finally, after

generating the Poisson skeleton we fill in the remaining reaction times using uniform

order statistics, which we generate in exactly the same way as described in Section 5.2.

5.4 Antithetic construction of Poisson bridges

In many practical scenarios we are tasked with generating a population of N unit-rate

Poisson processes Y (1)(τ), . . . , Y (N)(τ), for example to be used in a MC simulation.

If we use the previously described Poisson bridge methods to construct these Poisson

processes in the standard MC way, i.e. every Poisson skeleton is independently gen-

erated and filled in using standard MC sampling, there is no benefit relative to the

standard approaches described in Section 5.1. We can, however, leverage the structure

in the Poisson bridge methods via a correlation-based variance reduction technique

(see Section 2.4.1) to reduce the overall population variance of Y (1)(τ), . . . , Y (N)(τ),

whilst at the same time leaving each individual Poisson process Y (n)(τ) unbiased.

Crucially we will use variance reduction techniques solely in the first stage of the

exponential spacings method, i.e. we only employ a variance reduction technique in

the generation of the Poisson skeleton, not in the second stage where we fill in the

arrival epochs conditional on the Poisson skeleton.

Though the Poisson bridge methods were originally proposed in [62] as a means

to generate Poisson processes via QMC sampling, we consider here a simpler variant,
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namely antithetic sampling. Note that in the context of antithetic sampling the

midpoint-based Poisson bridge was recently rediscovered in [141]. Compared to the

QMC version in [62] the antithetic version is, arguably, easier to implement and

analyse, whilst at the same time being embarrassingly parallel.

For simplicity assume that we need to sample a population of two Poisson pro-

cesses, Y (1)(τ) and Y (2)(τ), for τ ∈ [0, τf ), where from now on we will use τf to denote

the final internal time of interest of a Poisson process. If we use the midpoint-based

Poisson bridge with step size τs and L levels we note that to generate the Poisson

skeleton for one of the Poisson processes we need s = dτf/τse · 2L uniform random

variables. We can thus sample u(1) ∼ U(0, 1)s and u(2) ∼ U(0, 1)s independently

and use inverse transform sampling to construct a Poisson skeleton for Y (1)(τ) and

Y (2)(τ). However, rather than generating the second Poisson process by sampling

u(2) independent of u(1), for the antithetic Poisson bridge we let u(2) = 1 − u(1), i.e.

the antithetic version of u(1). Note that if we use this u(2) to generate Y (2)(τ), then

Y (1)(τ) and Y (2)(τ) will not be independent, but they will both be unbiased Poisson

processes since u(1) and u(2) are still (marginally) uniformly distributed in [0, 1)s. In

fact, it is the hope that, since u(1) and u(2) are negatively correlated, Y (1)(τ) and

Y (2)(τ) will now also be negatively correlated, which, as shown in Section 2.4.1, can

reduce the variance of an estimator that combines Y (1)(τ) and Y (2)(τ). A similar

argument applies when we use the median-based Poisson bridge construction for two

Poisson processes, but instead now we fix the total number of arrivals over these two

Poisson processes to be Nf and take step size Ns and L levels in the Poisson bridge.

In Figure 5.5 we show example realisations of two Poisson processes using both

types of Poisson bridge constructions and compare results using standard, indepen-

dent MC sampling with antithetic MC sampling. It is immediately clear from compar-

ing Figures 5.5(a) and 5.5(b) that the two Poisson bridges when used with standard

MC sampling yield independent and uncorrelated Poisson processes. On the other

hand, when the Poisson bridge constructions are combined with antithetic sampling
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they do indeed produce negatively correlated Poisson processes. However, we also see

that the two different Poisson bridge constructions do so in subtly different ways.

(a) Midpoint-based Poisson bridge construc-
tion with τf = 40, τs = 2 and L = 0.

(b) Median-based Poisson bridge construc-
tion with Nf = 40, Ns = 2 and L = 0.

Figure 5.5: Illustration of the Poisson bridge constructions when sampling two Poisson
processes with antithetic sampling, Y

(1)
A (τ) and Y

(2)
A (τ), versus two independently

sampled Poisson processes, Ỹ (1)(τ) and Ỹ (2)(τ).

The midpoint-based Poisson bridge controls the internal time, τ , of the Poisson

processes and thus injects negative correlation at specific internal time points, which

importantly are equal for both antithetic Poisson processes. The method thereby

aims to have the average of the two antithetic Poisson processes at a given internal

time, τ , be close to the true mean of a Poisson process, E [Y (τ)] = τ . Note that this

corresponds to taking the average along a vertical slice in Figure 5.5(a).

The median-based Poisson bridge, on the other hand, exerts its control via the

number of arrival epochs, N , of the Poisson processes and instead injects negative cor-

relation at points where the Poisson processes have a fixed number of arrival epochs,

which, again, importantly are equal for both antithetic Processes. Note, however,

that this does not mean that the internal times, τ , at which the median-based Pois-

son bridge attempts to inject negative correlation between the two antithetic Poisson
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processes, is equal for both these two Poisson processes. Instead, this method aims to

accurately give the arrival epoch τN of the N -th arrival when averaging between the

two antithetic paths, which now corresponds to averaging across a horizontal slice in

Figure 5.5(b). Note that the true expected N -th arrival epoch for a unit-rate Poisson

process is given by E [τN ] = N . As a by-product we might expect that the average

of the two antithetic Poisson processes at a given internal time, τ , will be close to

the true mean, as was achieved for the midpoint-based Poisson bridge, but this is

by no means guaranteed because we control for a different component of the Poisson

process. The same holds of course for the estimation of the N -th arrival epoch in

the midpoint-based Poisson process, which we might expect to be more accurate as

a by-product of negative correlation induced at fixed time points.

Two natural questions arise now: i) How should we choose the Poisson bridge

parameters, τs and L, and Ns and L, for the midpoint-based and median-based con-

structions, respectively, so as to achieve optimal performance? ii) Which of the two

Poisson bridge constructions, if any, is to be preferred in practice?

Our analysis of the first question will focus on the midpoint-based Poisson bridge

method, but an analysis along similar lines can be used to derive similar results for

the median-based Poisson bridge construction.

5.4.1 Midpoint bridge parameters

To answer the first question for the midpoint-based Poisson bridge construction we

have to formalise the exact problem setup and specify how we measure performance of

the different Poisson process constructions. Here we consider the accurate estimation

of (the value of) a Poisson process Y (τ) over a (finite) time-interval of interest [0, τf ).

Note that we can do so by generating Y (1)(τ) and Y (2)(τ) on [0, τf ) and subsequently

look at the mean-estimator

Ŷ (τ) =
1

2

(
Y (1)(τ) + Y (2)(τ)

)
, (5.1)
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which is of course equation (2.17) for the mean summary statistic of two sample

paths. We quantify the error of this mean estimator Ŷ (τ) in equation (5.1) via the

MSE. To provide a fair comparison between different sampling methods for Poisson

processes we assume that all methods generate unbiased Poisson processes, Y (1)(τ)

and Y (2)(τ). In addition we normalise the MSE to the number of samples used to

calculate the mean estimator, which, under the assumptions made, is given by

2 ·MSE(τ) = Var
[
Y (1)(τ)

]
+ Cov

[
Y (1)(τ), Y (2)(τ)

]
= τ + Cov

[
Y (1)(τ), Y (2)(τ)

]
.

(5.2)

This normalised MSE is invariant to the addition of more pairs of sample Poisson

processes to construct Ŷ (τ) if we use standard MC or antithetic MC sampling and

represents the population MSE of the respective methods. Note that for standard,

independent, MC sampling we find that the normalised MSE is τ and thus grows

linearly with the internal time of the Poisson process because Y (1)(τ) and Y (2)(τ) are

independent. Using antithetic sampling, however, we saw that a negative correlation

could be induced between Y (1)(τ) and Y (2)(τ) which by equation (5.2) can be seen to

reduce the normalised MSE.

If we were solely interested in accurately estimating the value of Y (τ ∗) at some

fixed τ ∗ ∈ [0, τf ) the best strategy is to simply sample Y (τ ∗) ∼ P(τ ∗) via antithetic

sampling and forgo the sampling of the whole Poisson process on [0, τf ). However, this

is not a very realistic scenario; more often than not we want to capture the Poisson

process over the whole time interval of interest, [0, τf ). To this end we consider the

IMSE, which accounts for the statistical error throughout the whole time interval.

Again we normalise the IMSE to the number of sample paths to find

2 · IMSE(τf ) = 2

∫ τf

0

Var

[
1

2

(
Y (1)(τ) + Y (2)(τ)

)]
dτ. (5.3)

Division of the IMSE by τf gives an average MSE over the interval [0, τf ) and thus

minimising the (normalised) IMSE can be seen as finding method parameters that
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achieve the lowest average statistical error across the whole time interval of interest.

Note that for standard MC sampling we find that the normalised IMSE is given by

τ 2
f /2, i.e. it grows quadratically with the internal time of the Poisson process.

As noted in [141] we must strike a balance in the choice of L and τs (or Ns for the

median-based Poisson bridge) in order to achieve good performance, both in terms

of the IMSE and in terms of the computational complexity. Good parameter choices

should thus follow from solving a constrained optimisation problem and though some

limited theory presented in [141] hints that there might be a range of suitable param-

eters for which antithetic sampling is very efficient, the results are not sufficient as a

guide to estimating optimal parameter choices. To tackle this problem we therefore

present here two strategies, optimal in terms of the normalised IMSE, that (approxi-

mately) solve the relevant optimisation problems and are also very easy to implement.

For a detailed discussion and derivation of the results that follow we refer the reader

to Appendix 5.A.

Strategy 1: optimal step size for a fixed number of levels

The first strategy covers the scenario in which we a priori fix the number of levels,

L, used by the midpoint-based Poisson bridge. To generate two antithetic Poisson

processes using the midpoint-based Poisson bridge construction with minimal IMSE

we should in this case take a step size

τ ∗s =
√

2L ·
√

3γ · √τf , (5.4)

where we have introduced the constant γ = 7/36 (see Appendix 5.A). Note that

for equation (5.4) to hold we need τ ∗s < τf and thus 2L < τf . This optimal step

size is derived by minimising the IMSE without regard for computational complexity,

which obviously increases if we increase L. Nonetheless, we found equation (5.4) to

be effective at predicting a (near) optimal step size, even when taking computational
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complexity into account, if 2L < τf/4.

To show the benefit of using the antithetic midpoint-based Poisson bridge con-

struction we note that in the limit of τf → ∞ with L fixed we can, to first order,

ignore any computational overhead from the Poisson bridge construction, which yields

the following results (see Appendix 5.A)

IMSE(τf ; τ
∗
s ) =

1√
2L
· γ

3
· τ 3/2
f +O(τf ), (5.5a)

VRF(τf ) =
√

2L ·
√

3

4γ
· √τf +O(1), (5.5b)

where the VRF is defined relative to the standard, independent, MC sampling of a

Poisson process. This means that, especially for large time intervals of interest [0, τf ),

the combination of antithetic sampling and a Poisson bridge construction can provide

large improvements over the conventional sampling approaches in Section 5.1.

Though equation (5.5) indicates that increasing the number of levels, L, subject to

the previously mentioned restrictions, improves the relative efficiency of the antithetic

Poisson bridge method, we note that if we want to take L such that 2L = O(τf ) it is

often preferable to employ Strategy 2, which combines both computational complexity

and statistical error.

Strategy 2: optimal number of levels for exactly one step

The previous strategy provides optimal parameters if we are constrained by the num-

ber of levels, L, that we can use in the midpoint-based Poisson bridge. However,

as already briefly alluded to, increasing L can improve the efficiency and so we now

present the optimal strategy if both the number of levels, L, and the step size, τs,

can be chosen freely. In this scenario we have to take into account both the (nor-

malised) IMSE and the computational complexity, and combining both contributions
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the optimal parameter combination is given by

τ ∗s = τf , (5.6a)

L∗ =

⌊
0.94

log 0.9τf
log 2

⌋
. (5.6b)

Note that employing this strategy we take exactly one step of the midpoint-based

Poisson bridge, but use many levels so that τ ∗s /2
L = O(1), i.e. we construct a Poisson

skeleton on an O(1) spaced time grid. Using this optimal strategy we find that

IMSE(τf ; τ
∗
s ) ≈ τf

4

(
1 +

log τf
3

)
, (5.7)

which means that we effectively created a method that samples a Poisson processes

with an IMSE that grows linearly in the length of the Poisson process, rather than

quadratically as is custom for the standard methods. In other words, the average

MSE only grows logarithmically in the length of the Poisson process and is O(1) for

any reasonable value of τf one is likely to encounter. Unless stated otherwise we will

therefore use this strategy to construct the optimal antithetic midpoint-based Poisson

bridge.

5.4.2 Comparison of different Poisson bridges

Though the analysis of the MSE as a function of internal time, τ , in Appendix 5.A

does not hold for the median-based Poisson bridge we can still compare the two

methods via simulation. To provide a fair comparison between the midpoint-based

and median-based Poisson bridge we consider both the MSE of the value of a Poisson

process, Y (τ), and the MSE of the N -th arrival epoch, τN , of a Poisson process in

Figure 5.6.

Though both methods have, in some sense, equivalent parameters we see that,

depending on the quantity of interest, it is clear to see which method performs the
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(a) MSE of the value of a Poisson process,
Y (τ), as a function of the internal time, τ .

(b) MSE of the N -th arrival epoch, τN , of a
Poisson process as a function of the number
of arrival epochs, N .

Figure 5.6: Comparison of statistical error between the median-based and midpoint-
based Poisson bridge constructions, either using standard MC or via antithetic MC
sampling. Both methods use L = 2 levels and the median-based Poisson bridge
construction has step size Ns = 20, whereas the midpoint-based Poisson bridge con-
struction uses step size τs = 20. Data computed by averaging over 220 samples.

best. As expected, when we are interested in having an accurate estimate of the value

of a Poisson process for a given internal time, τ , the midpoint-based Poisson bridge

method should be preferred. It can be seen in Figure 5.6(a) that this method indeed

does introduce negative correlations at specific, regular, time points and therefore

reduces the overall MSE across the whole time interval of interest4. The median-

based Poisson bridge, however, produces two antithetic sample paths which, in terms

of the internal time, do not have negative correlation introduced at synchronised time

points and thus the MSE as a function of the internal time, τ , is significantly larger

than that of the midpoint-based Poisson bridge. For comparison we note that the

(normalised) IMSE over [0, 100) is (approximately) given by 5000, 142 and 567 for

4The oscillatory behaviour of the MSE is due to the fact that regular MC sampling is used
conditioned on a Poisson skeleton, which has lower variance when we use a variance reduction
technique such as antithetic sampling. The MSE therefore increases in between the constrained
points of the Poisson skeleton.
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the standard MC construction, antithetic midpoint-based Poisson bridge construction

and the antithetic median-based Poisson bridge construction, respectively.

If we focus on estimation of the arrival epochs in Figure 5.6(b) we see that the

reverse holds, and the median-based Poisson bridge is to be preferred. Importantly,

we note that both methods outperform the standard MC sampling methods in all

scenarios. For reference, the IMSE (which is now a sum over N rather than an integral

over τ) for the number of arrival epochs between zero and 100, is given by 5050,

549 and 215 for the standard MC construction, antithetic midpoint-based Poisson

bridge construction and the antithetic median-based Poisson bridge construction,

respectively.

Antithetic hybrid Poisson bridges

As the median-based Poisson bridge construction seems to suffer from a lack of tempo-

ral synchronisation we can instead use fixed time steps of size τs, in a similar manner

to the midpoint-based Poisson bridge, whilst at the same time still use the median-

based subdivision and subsampling procedure. This method, which we denote as the

hybrid-median Poisson bridge, was the original format of the median-based Poisson

bridge in [62]. Similarly, we can use fixed steps in the number of arrivals, Ns, in a

manner akin to the median-based Poisson bridge, but subsequently use the midpoint-

based subdivision and subsampling procedure, yielding the hybrid-midpoint Poisson

bridge construction. The hope is that by combining both methods we can see im-

proved performance. However, we see in Figure 5.7 that this is not the case. In fact,

the lack of synchronisation in both hybrid methods remains, and increases the MSE,

especially when L increases.

We therefore recommend the use of the (standard) midpoint-based Poisson bridge

in the most common scenario in which we are interested in having an accurate esti-

mate of Y (τ) for a given time, or time interval. If for a specific application one is

interested in having an accurate estimate of the arrival epochs, given a specified num-

ber of arrivals, then the median-based Poisson bridge is the better method. However,
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(a) MSE of the Poisson process value, Y (τ),
as a function of the internal time, τ .

(b) MSE of the N -th arrival epoch, τN , of a
Poisson process as a function of the number
of arrival epochs, N .

Figure 5.7: Comparison of statistical error between the median-based and midpoint-
based Poisson bridge constructions and hybrid variants, all using antithetic MC sam-
pling. All methods use L = 5 levels and the median-based and hybrid-midpoint
Poisson bridge constructions have step size Ns = 50, whereas the midpoint-based and
hybrid-median Poisson bridge constructions use step size τs = 50. Data computed by
averaging over 220 samples.

because in the context of chemical reaction network simulations it is more important

to accurately capture the value of a Poisson process over a time interval we will from

now on solely consider the midpoint-based Poisson bridge.

5.4.3 Chemical reaction network examples

In this section we consider the use of Poisson processes constructed via antithetic

Poisson bridge methods in the context of chemical reactions. More specifically, we use

the MNRM [1], see Algorithm 2.2, in combination with antithetic Poisson processes

and we denote this combined method as the antithetic MNRM from now on. Though

this concept appeared recently in [141] we note that that work is mainly a proof-of-

concept and provides little guidance as to how one should implement the antithetic

MNRM. Here we address this issue and provide some ideas on how we can relate
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the variance reduction on the level of the input Poisson processes to the observed

performance benefit when used in chemical reaction network simulations.

As we have done so far we consider both the MSE at fixed (physical system) times

t and the IMSE over an interval [0, T ) of a mean copy number estimator to quantify

the statistical error of the antithetic MNRM and its efficiency relative to the standard

MNRM. To calculate the IMSE in practice we sample the MSE at 200 equispaced

time points in [0, T ) and use the trapezoidal rule to compute the IMSE. Extensions to

other functionals of the sample paths, e.g. species distributions or exit time statistics,

are left for future work.

Poisson bridges for chemical reaction networks

The first hurdle to overcome when we want to effectively use the (antithetic) Poisson

bridge construction in combination with the MNRM is the discrepancy between the

physical system time, t, and the internal times, τk, of the Poisson processes Yk(τk),

where we recall k = 1, . . . , K for a system with K reaction channels. Via the RTCR

in equation (2.7) we see how the two quantities relate to each other, but it is a priori

impossible to determine τk,f , i.e. the final internal times of the Poisson processes for

each reaction channel, given that the physical time t ∈ [0, T ), unless the reaction is

zero-th order. In fact, for any reaction channel not obeying zero-th order mass action

kinetics the final internal time for the relevant Poisson process is itself a random

variable. This poses a problem because we have seen in the previous sections that

the choice of optimal parameters for the Poisson bridge methods is intricately related

to the time domain [0, τf ) over which we want to accurately generate the Poisson

processes. Moreover, we note that various reaction channels can have very different

final internal times for a single given physical final time T , this is for example very

clear in systems with fast and slow reaction channels.

To circumvent the issue of not knowing τk,f a priori Maginnis et al. [141] use a

fixed time step, τs, and number of levels, L, valid for all reaction channels. They use
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these parameters repeatedly in the midpoint-based Poisson bridge method until the

simulation has reached final physical time T . To establish a sensible choice of step

size, τs, and number of levels, L, they run multiple MC simulations for a range of

parameters to empirically identify a good combination of τs and L. In light of the

previous two issues, namely that an efficient step size and number of levels depend

strongly on τk,f , and the possibility of multiple scales, in terms of the final internal

times τk,f , for the different reaction channels, this method is not only impractical, as

there is no cheap way to determine such a fixed step size and number of levels, but it

is also sub-optimal in terms of efficiency.

The first improvement we suggest is to allow Lk and τk,s to be different for each

reaction channel. Effectively this means that we treat the Poisson processes relating

to each reaction channel independently and simply ask how we can generate each

individual process optimally given that we want to know the value of the Poisson

process Yk(τk) for τk ∈ [0, τk,f ). Note that the choice of parameters, Lk and τk,s, is

then done via either of the two strategies in the previous section, which guarantees

that we generate two antithetic Poisson processes that have minimal average MSE

across the time interval of interest. Though this does not necessarily guarantee the

best possible overall strategy, as we will see in the examples that follow, it is a practical

choice that is easy to implement and in a worst case scenario has at most twice the

computational complexity of the standard MNRM.

This choice, however, does leave us with the issue of determining τk,f for each

reaction channel. As mentioned earlier, for most types of reaction kinetics we now

have a random-horizon problem, where the final internal time, τk,f , is a random

variable, with an a priori intractable distribution. The obvious and practical solution

to this problem is found in [63], which recommends to take the 0.95-quantile of the

empirical distribution for the τk,f from a small set of pilot runs, say in the range of

102 to 103 samples. In the next example we show, however, that in the context of

chemical reaction networks this is not necessarily the best strategy from an efficiency

209



point of view. As a second improvement we therefore suggest to use the median of the

empirical distribution of the pilot runs, as we found that using the median, or the 0.5-

quantile, was more efficient in terms of computational complexity and almost always

equally efficient in terms of the VRF achieved. As a side note, to implement a version

of the antithetic median-based Poisson bridge we recommend a similar procedure,

but now using the pilot runs to generate the empirical distribution for Nk,f , i.e. the

number of times reaction channel k fires over the physical time domain of interest

t ∈ [0, T ). An alternative strategy, which we do not explore here further, is the use of

cheaper, approximate model frameworks, such as the RRE or the CLE, to perform the

pilot runs to estimate Nk,f via an extended reaction system as defined, for example,

in Example 2.4.

We can now summarise our actual implementation of the antithetic MNRM in

practice. First we run a small set of pilot simulations using the standard MNRM in

which we keep track of the internal times of each of the Poisson processes, Yk(τk).

From the empirical distribution of the final internal times, τ̂k,f , we use the median

to select a suitable step size, τk,s, and number of levels, Lk, via equation (5.6). We

then use antithetic sampling for each reaction channel individually over the respec-

tive intervals [0, τ̂k,f ) and supply these Poisson processes as input to the (antithetic)

MNRM. Note that using this method means there will be sample paths of the MNRM

which need to access the value of Yk(τk) for τk > τ̂k,f . In this case we simply use the

standard MC procedure from Section 5.1 to sample the arrival epochs for τk > τ̂k,f

on-the-fly. Note that this procedure still results in unbiased Poisson processes and

therefore an overall unbiased estimator of the chemical species sample paths. Though

this completion of the Poisson processes using standard MC sampling will increase

the MSE of both the Poisson processes and the chemical species sample paths, we

have chosen τ̂k,f in such a way that these corrections not only occur in just some of

the sample paths, but also only for a few reactions. We thus found this “topping

up” of the Poisson processes to have little influence on the overall performance and
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efficiency in practice.

Linear monomolecular system

To start we consider the simple monomolecular reaction system we first encountered in

Section 2.4 which comprises a single species, S1, undergoing three different reactions

∅ c0−A S1, S1

c1−A 2S1, S1

c2−A ∅. (5.8)

Note that though the three reaction channels are represented by independent Pois-

son processes they interact in a non-additive way via the RTCR, see equation (2.7),

when used to construct sample paths for S1. Due to this interaction it is a priori not

clear whether the use of antithetic Poisson processes will in fact provide a benefit,

and if so, how much gain in efficiency we will observe.

To investigate the efficacy of the antithetic MNRM we start with the problem

of selecting the length, or final internal time, τk,f , of the unit-rate Poisson processes

that we need to generate when used in a chemical reaction system. As discussed

earlier the only available suggestion in the literature for such random-horizon Poisson

processes is to perform a pilot run and compute the 0.95-quantile from the observed

internal times of the Poisson processes. We note, however, that in doing so we might

be simulating Poisson processes of lengths larger than strictly necessary to observe

a performance benefit. In particular, we note that the complexity of the standard

MNRM is equal to the total of the mean internal final times of the Poisson processes,

which can be much less than the sum of the 0.95-quantiles. We therefore generalise

the suggestion in [63, Chapter 3] and consider q-quantiles for q ∈ [0, 1] from the pilot

run to select the internal times, τk,f , and the results are shown in Figure 5.8.

Unsurprisingly we see that if we take q small the efficiency improvements are

small. This can be understood by observing that in those cases the antithetic Poisson

processes generated over [0, τ̂k,f ) are not long enough to cover the whole physical time

211



(a) c0 = 4, c1 = 0.08 and c2 = 0.08. (b) c0 = 0.4, c1 = 0.7 and c2 = 0.6.

Figure 5.8: Effect of changing the final internal time, τk,f , used to construct the
midpoint-based Poisson bridge for each of the Poisson processes, Yk(τ), representing
a reaction channel. We consider taking the largest q-quantile of the empirical dis-
tribution of τk,f from pilot runs and look at the efficiency of the antithetic MNRM
relative to the standard MNRM when we vary q. We use Strategy 2 from Section 5.4.1
to select the number of levels, L, and time step, τs, independently for each reaction
channel Poisson process. Model studied is the linear system (5.8) in a volume V = 1
with initial condition X0 = 10 and final time T = 20.

domain [0, T ) and therefore a significant proportion of the time domain of interest

will be simulated using standard MC, which increases the variance. Interestingly we

see in Figure 5.8(a) that at time T/2 the MSE seems insensitive to the value of q.

This follows from the fact that for any q we select the correct τ1,f for the first reaction

channel in the system (5.8) because it is a zero-th order reaction, i.e. the length of this

Poisson process is always equal to τ1,f = c0V T . Furthermore, we note that for small

time with the parameters in Figure 5.8(a) the dynamics of the system are dominated

by this first reaction channel, and therefore are virtually unaffected by the choice of

q. However, for later times, e.g. time T = 20 in Figure 5.8(a), or different model

parameters, e.g. Figure 5.8(b), we see that the effect of the other two (first-order)

reaction channels is more prominent. Perhaps more surprising is the sharp decrease

in efficiency when q becomes close to unity, for both sets of model parameters. This

is due to the fact that any extra gain from generating the antithetic Poisson processes

for larger internal times is outweighed by the extra computational complexity that
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is incurred in doing so. Similar studies of the effect of q on other example systems

show comparable results and we therefore conclude that taking q = 0.95 is, in fact,

a bad idea from a complexity point of view. Instead we propose to use q = 0.5,

i.e. the median of the pilot runs, as a feasible, stable, and at the same time easy to

implement, strategy to balance variance reduction and computational complexity.

Now that we have established a good procedure for choosing the internal times,

τk,f , for the Poisson processes representing each of the reaction channels we will verify

the validity of the optimal parameter choices proposed in Section 5.4.1. First we fix

the number of levels to a constant across all the reaction channels, i.e. Lk ≡ L, and

consider the use of Strategy 1, equation (5.4), to select the optimal step size. The

resulting IMSE over the interval [0, T ) is shown in Figure 5.9(a) and we see that

indeed the IMSE is minimised when τk,s is given by equation (5.4). Furthermore,

when we consider the efficiency of antithetic MNRM relative to the standard MNRM

we observe that the antithetic method is roughly eight times more efficient when we

use Strategy 1 to select the step size.

Next we consider the second strategy from Section 5.4.1, which takes the step

size τk,s = τk,f for each reaction channel, but optimises the number of levels using

equation (5.6). In Figure 5.10 we show that, whilst L∗ using equation (5.6) does not

yield the absolute best relative efficiency, it is very close to the true optimal.

This discrepancy arises due to the fact that L∗ is chosen so as to minimise the

variation of individual reaction channels but, due to the interaction of the reaction

channels via the random time-change in the RTCR, this is not the sole contribution to

the IMSE of the overall chemical reaction sample paths. We can quantify the effects

of these interactions by considering the analysis of variance (ANOVA)-decomposition

of the problem [201], given in alternative form by

Var [Xi(t)] =
K∑
k=1

Var [E [Xi(t) | Yk(τ)]] + VHOI, (5.9)
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(a) IMSE at time T . (b) Efficiency relative to the standard MC
method.

Figure 5.9: Study of the efficiency of the antithetic midpoint-based Poisson bridge
method when using Strategy 1 in Section 5.4.1 to select the method parameters. We
let τs = δτ ∗s , where τ ∗s is given in equation (5.4), for each reaction channel, while
fixing the number of midpoint levels L. Model studied is the linear system (5.8) in a
volume V = 1 with c0 = 4, c1 = 0.08 and c2 = 0.08, initial condition X0 = 10 and
final time T = 20. Each data point corresponds to 106 simulations and we use a pilot
run with 103 simulations to determine the final internal times, τk,f , for the unit-rate
Poisson processes via the medians of the pilot run distribution.

where VHOI is the sum of all higher order interaction partial variance terms in the or-

thogonal ANOVA-decomposition. Some authors refer to the ANOVA-decomposition

as the Sobol’-Hoeffding-decomposition of the variance and for more information we

refer the reader to [162, Appendix A]. Now we note that the antithetic MNRM pri-

marily attempts to reduce the total variance Var [Xi(t)] by reducing the first order

effects due to the individual reaction channels, i.e. it lowers Var [E [Xi(t) | Yk(τ)]].

However, there is no guarantee that the interaction terms, contained in VHOI, are

reduced by this antithetic sampling method. We therefore also see that if we could

establish a method, such as QMC sampling, that decreases the variance due to the

first order effects further than the antithetic sampling method without dealing with

the higher order interactions, there will be a point where the higher-order interaction

terms will start to dominate Var [Xi(t)] and thus the benefits of such a method rel-

ative to the antithetic sampling approach will be limited. In the example studied in
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(a) IMSE at time T . (b) Efficiency (based on IMSE at time T )
relative to the standard MC method.

Figure 5.10: Study of the efficiency of the antithetic midpoint-based Poisson bridge
method when using Strategy 2 in Section 5.4.1 to select the method parameters. We
let τk,s = τk,f for each reaction channel, but vary the number of midpoint levels L.
Theoretical optimal L∗ is given by equation (5.6). Model studied is the linear system
(5.8) in a volume V = 1 with c0 = 4, c1 = 0.08 and c2 = 0.08, initial condition
X0 = 10 and final time T = 20. Each data point corresponds to 106 simulations
and we use a pilot run with 103 simulations to determine the final internal times,
τk,f for the unit-rate Poisson processes via the medians of the pilot run distribution.
Note that for this system we have τk,f ≈ 80 for each reaction channel, and thus
L∗k ≡ L∗ = 5.

Figure 5.10 we thus see that when L ≥ 4 the first order variance contribution due to

the individual reaction channels has been reduced to the extent that the contribution

from mixing effects starts to become relatively sizeable. Further increasing the num-

ber of levels, L, then comes at a higher computational cost, whilst reducing the IMSE

only a small amount. In this case we find that a slightly smaller number of levels

gives a slightly higher IMSE, but at a relatively smaller computational complexity in

this particular case.

Via the ANOVA-decomposition we can also immediately conclude that the an-

tithetic MNRM will be most efficient for systems that are (nearly) additive in their

contributions from each of the reaction channels. Though this property is hard to pre-

dict a priori for a given chemical reaction network, the next two examples will show

that for more complicated chemical reaction networks the ANOVA-decomposition
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can be indicative of the effectiveness of the antithetic MNRM, but that it is not

able to completely predict the performance benefits. These examples are taken from

[124], where the authors specifically study the ANOVA-decomposition when using

mean-estimators in the context of chemical reaction networks.

Michaelis-Menten system

First we consider the Michaelis-Menten system, given by four species interacting via

to the following three reactions

S1 + S2

c1−A S3, S3

c2−A S1 + S2, S3

c3−A S4 + S2. (5.10)

Following [124] we look at the evolution of the species for t ∈ [0, 60]. We start with

the initial condition X0 = (300, 120, 0, 0)ᵀ and also fix c1 = 0.0017 and c3 = 0.125

while we take c2 equal to either 10−3 or 25 ·10−3. The results comparing the standard

and antithetic versions of the MNRM are shown in Table 5.1.

c2 = 25 · 10−3 c2 = 10−3

S1 S2 S4 S1 S2 S4

VRF

Lk = L∗k 5.0 2.9 9.2 5.3 3.1 8.7

Lk = L∗k − 2 4.7 2.7 9.0 5.2 3.1 8.5

Lk ≡ 5 4.9 2.8 8.9 5.2 3.1 8.5

relative efficiency

Lk = L∗k 3.5 2.0 6.6 3.7 2.2 6.1

Lk = L∗k − 2 4.3 2.5 8.1 4.7 2.8 7.6

Lk ≡ 5 4.3 2.5 7.9 4.5 2.6 7.3

Table 5.1: Performance metrics for the antithetic MNRM relative to the standard
MNRM. We use Strategy 2 from Section 5.4.1 to tune the Poisson bridge construction
and compare the use of L∗ and max(0, L∗ − 2) according to equation (5.6) with the
best possible simple strategy that picks a single number of levels Lk, identical for
each reaction channel. We consider the Michaelis-Menten system (5.10) with initial
condition and parameters as described in the text. The results are calculated using
106 samples. Under these conditions we have (L∗1, L

∗
2, L

∗
3) = (7, 5, 7) and (L∗1, L

∗
2, L

∗
3) =

(7, 1, 7) for c2 = 25 · 10−3 and c2 = 10−3, respectively.
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We see that, though the parameters given by Strategy 2, equation (5.6), are

optimal in the sense that they provide the largest VRF, in terms of efficiency it

can be better to consider fewer levels, L, in the midpoint-based Poisson bridge. In

particular we see that the best possible strategy is taking Lk = L∗k − 2, i.e. still

optimise the parameters for each reaction channel individually, but use two fewer

levels than Strategy 2 prescribes.

To link the performance of the antithetic MNRM to the ANOVA-decomposition

we consider the difference between the variance of the standard and antithetic versions

of the MNRM in Figure 5.11. If we compare this with [124, Figure 12] we see that

the variance reduction achieved by the antithetic MNRM accurately matches with

the sum of the first-order variance contributions in the ANOVA-decomposition. We

therefore reiterate our earlier conclusion that the antithetic MNRM is effective at

integrating out the first-order contributions from reaction channels to the variance,

but not necessarily any higher-order interactions. The ANOVA-decomposition can

also explain the difference in performance when looking at the different species in the

Michaelis-Menten system as [124, Figure 12] shows that the variance of S4 is nearly

completely additive in the three reaction channels, whereas there is a significant

variance contribution due to interactions for S2.

To elucidate an even more impressive performance of the antithetic MNRM we

note that under certain conditions we can use the quasi-steady state approximation

(QSSA) to find a reduced model with only a single reaction channel

S1

a1(X)

−−−A S4, (5.11)

where the reaction propensity is now given by the Michaelis-Menten propensity func-

tion

a1(X) =
c3X2X1

X1 + c2+c3
c1

. (5.12)

Note that in this model S2 and S3 are assumed to remain constant. Due to the
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(a) S2 (b) S4

Figure 5.11: MSE for the Michaelis-Menten system, (5.10), with c2 = 10−3 and other
parameters and initial conditions as described in the text. We compare the results
from using the standard MNRM, Q̂, against the equivalent results when we use the
antithetic MNRM, Q̂A. The results were calculated using 106 samples and the number
of levels for the Poisson bridge for each channel is given by Lk = max(0, L∗k − 2)
according to equation (5.6).

reduction of the chemical reaction network we note that no higher order interaction

terms between different reaction channels exist and thus we expect that the antithetic

MNRM should be very efficient if we want to estimate the average copy number of

S1 or S4 in (5.11). This is verified in Figure 5.12, where we see that we can achieve

an almost 50-fold improvement in the efficiency when using the antithetic MNRM.

Based on the relative efficiency results of a unit-rate Poisson process (see Ap-

pendix 5.A) we would expect to see roughly a 75-fold improvement for L∗ = 8, but

we see in Figure 5.12 that this is not achieved in practice. Because for this example

there is only a single reaction channel we cannot attribute this discrepancy to any

higher order interaction terms. Instead we note that the result for the unit-rate Pois-

son processes is derived under a deterministic and fixed final internal time τf . For a

chemical reaction network, however, we have a random final internal time for the Pois-

son process and this is the reason that we lose part of the predicted efficiency gains.

In particular, we see that L∗ given by equation (5.6), again, is an over-prediction of

the true optimal number of levels, L.

218



(a) IMSE at time T . (b) Efficiency (based on IMSE at time T )
relative to the standard MC method.

Figure 5.12: Study of the antithetic midpoint-based Poisson bridge method using
Strategy 2 in Section 5.4.1 to select the method parameters. Theoretical optimal L∗

is given by equation (5.6). Model studied is the QSSA version of the Michaelis-Menten
system, (5.11), with parameters and initial conditions described in the text and final
time T = 60. Each data point corresponds to 106 simulations and we use a pilot run
with 103 simulations to determine the final internal time τ1,f for the unit-rate Poisson
process via the median of the pilot run distribution. Note that for this system we
have τ1,f ≈ 210 and thus L∗ = 7.

Schlögl system

Finally we consider the bistable Schlögl system, which we already encountered in

Section 4.2.3

2S1 + S2

c1−A 3S1, 3S1

c2−A 2S1 + S2, S3

c3−A S1, S1

c4−A S3. (5.13)

We assume that S2 and S3 are present in abundance, and therefore are modelled to

have constant population over time, and take X0 = (250, 105, 2 · 105)ᵀ as the initial

condition. With parameters c1 = 3 · 10−7, c2 = 10−4, c3 = 10−3 and c4 = 3.5 this

system then gives rise to bistable behaviour. We see in Figure 5.13 that if we consider

the system over t ∈ [0, 8] we find that under optimal conditions the antithetic MNRM

is more than 10 times as efficient relative to the standard MNRM. Note that this is

surprising based on the ANOVA-decomposition of this problem. The decomposition,
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depicted in [124, Figure 7], attributes only roughly half of the variance to first-order

effects and would thus predict merely a two-fold efficiency improvement from using

the antithetic MNRM.

(a) IMSE at time T . (b) Efficiency (based on IMSE at time T )
relative to the standard MC method.

Figure 5.13: Study of the antithetic midpoint-based Poisson bridge method using
Strategy 2 in Section 5.4.1 to select the method parameters. Theoretical optimal
L∗ is given by equation (5.6). Model studied is the Schlögl system, (5.13), with
parameters and initial conditions described in the text and final time T = 8. Each
data point corresponds to 105 simulations and we use a pilot run with 102 simulations
to determine the final internal time τk,f for each of the unit-rate Poisson process via
the medians of the pilot run distribution. Note that for this system we found using
equation (5.6) that (L∗1, L

∗
2, L

∗
3, L

∗
4) = (11, 9, 9, 11).

As a possible explanation for this larger-than-expected performance benefit we

consider what the sample paths of S1 look like when using the antithetic MNRM

in Figure 5.14. Interestingly we see that the antithetic MNRM via the negatively

correlated sample paths is very effective in sampling from both modes of the bistable

distribution. This means that, on average, the mean of two antithetic sample paths

will be much closer to the true mean than when using two independent sample paths.

This final example therefore again shows that the antithetic MNRM can provide

large efficiency improvements and, in particular, that under certain conditions such as

bistability the improvement over the standard MNRM can be larger than indicated by

solely looking at the first order variance components of the ANOVA-decomposition.
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Figure 5.14: Sample paths from the antithetic MNRM for the Schlögl system, (5.13),
with parameters and initial conditions as described in the text. Antithetic sample
path pairs share the same color, but differ in line style (solid and dotted).

5.5 Discussion

In this chapter we investigated the generalisation of the Brownian bridge construction

to the Poisson bridge, its natural counterpart for Poisson processes. As an important

contribution we showed in Section 5.4.1 and Appendix 5.A that it is possible to a priori

derive the optimal parameters for the midpoint-based variant of the Poisson bridge so

as to minimise, over a time interval of interest, the average MSE of the mean of two

coupled antithetic Poisson processes constructed using the Poisson bridge method.

Using these new results we found that we can effectively use the Poisson bridge

construction in combination with the MNRM. Importantly, we proposed an antithetic

MNRM that requires minimal parameter tweaking from the end-user to achieve (near)

optimal efficiency improvements, which were shown to be an order of magnitude for

a range of examples. In determining the optimal parameter values for the Poisson

bridge construction we observed a slight gap between what is the optimal method to

construct an isolated unit-rate Poisson process and a unit-rate Poisson process used

in a chemical reaction network, which we contribute to the following two factors.
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Firstly, by considering the ANOVA-decomposition of chemical reaction problems,

we see that in a system with multiple reaction channels the interaction between the

reaction channels add to the total variance, but the antithetic sampling method is

not tailored to reduce this contribution as it generates the Poisson processes for each

reaction channel independently. The reduction of the variance due to higher-order

interactions, possibly via QMC sampling of the joint Poisson processes, is therefore

an important next step towards further improving the MNRM.

Secondly, we note that when optimising the Poisson-bridge construction we as-

sumed that the length, τf , of the Poisson processes that we need to generate is fixed

and deterministic. In the context of chemical reaction networks, however, the length

of the Poisson processes is often a random variable. In particular, we saw in the

QSSA reduction of the Michaelis-Menten system that this was the sole cause for a

discrepancy between the predicted and observed optimal parameters. In most other

systems, however, we postulate that the effect this random length of the Poisson

process has on the limiting variance of the sample paths for the chemical species is

negligible compared to the higher order interaction terms between different reaction

channels.

Despite the fact that the examples used in this chapter to illustrate the efficacy

of the antithetic MNRM are all time-homogeneous reaction networks we note that

the proposed method is equally applicable to any system for which the standard

MNRM is a suitable SSA. For example, the MNRM is particularly suited for time-

inhomogeneous reaction networks or models which incorporate delays and Poisson

bridge methods can be used seamlessly to improve the performance of the MNRM in

those circumstances as well.

We note that for performance critical systems one might want to profile the cost of

the Poisson bridge in more detail and in particular the sampling of binomial, Poisson,

beta and gamma random variables via inverse transform sampling. Though using the

fast methods discussed in Sections 5.2 and 5.3 means that there is little overhead on
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top of the standard uniform random variable sampling, we predict that small run-

time improvements could be made when taking this system-dependent information

explicitly into account. In such a scenario slightly fewer levels, or larger step sizes,

than indicated by the standard theory presented in this chapter might be preferred,

though any recommendation will depend on the system hardware and specific software

implementation.

As a possible extension based on the results in this chapter we note that the vari-

ance reduction methods for Poisson skeletons can also be used to improve the τ -leap

method, i.e. we can generate Poisson increments (see step 6 of Algorithm 2.3) con-

ditional on Poisson skeletons sampled using a variance reduction method. However,

the optimisation of the Poisson bridge method parameters provided in this chapter

does not directly apply due to the discrete time stepping in the τ -leap method.

Additionally, we mainly focussed on the midpoint-based Poisson bridge construc-

tion, because it seems the most natural method for problems in the context of chemical

reaction networks. We did therefore not focus on the optimisation of the median-based

Poisson bridge, but by adapting the results in Appendix 5.A to reflect the variation

in the arrival epochs conditional on the Poisson process value we are confident that

optimal parameters for the median-based Poisson bridge can be derived in a similar

manner. In particular, we note that [63] suggests that, when combined with QMC

methods, the median-based construction should be preferred due to the fact that beta

and gamma random variables are continuous and therefore more amenable to the use

of low-discrepancy points than the discrete binomial and Poisson random variables

in the midpoint-based construction. On a more general note, it would be interesting

to see if limitations in the effectiveness of QMC methods in the context of chemical

reaction networks that we previously observed in Chapter 4 also hold when using

the Poisson bridge construction in combination with the MNRM. Furthermore, the

discussion and examples in this chapter focussed on estimation of the mean summary

statistic and the extent to which the antithetic MNRM works for different summary
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statistics, e.g. distributions, is thus also an interesting question. We leave the explo-

ration of these ideas for future work.

Finally, we reiterate that we have created a (general) framework for developing

efficient midpoint-based Poisson bridge constructions for unit-rate Poisson processes.

We used this to optimally combine the Poisson bridge construction with antithetic

sampling and showed that this combination can also be used to significantly improve

the efficiency of the MNRM. However, the use of the antithetic Poisson bridge con-

struction is not just limited to chemical reaction network simulations. We note that,

amongst others, jump-diffusion models and continuous-time branching process mod-

els often model the jump and branching times to be given by a Poisson process. If

one is to simulate such models, the use of the antithetic Poisson bridge construction

will help to reduce the overall estimator variance.
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Chapter appendix

5.A Midpoint-based Poisson bridge parameter optimisation

details

In [141] the authors derive explicit expressions for the statistical error and complexity

of the antithetic endpoint method, but these expressions do not lend themselves to

tractable analysis. In this appendix we therefore present an approximation scheme

that overcomes this hurdle and thus allows us to derive optimal parameters for the

midpoint-based Poisson bridge construction. The main focus of this appendix is on

the use of antithetic sampling, but the results derived here are general and can also

be amended to different sampling strategies, as we show at the end of the appendix.

Endpoint method optimisation

Approximation of the Maginnis-Γ function

We start by considering the Maginnis-Γ function, as defined in [141, Equation (6)],

and given by

Γ(τ) = τ 2 −
∫ 1

0

F−1
τ (u)F−1

τ (1− u) du, (5.14)

where F−1
τ is the formal inverse of the CDF of the Poisson distribution with pa-

rameter τ . Its main use is in describing the covariance between two antithetically

sampled Poisson random variables, X1 and X2, with the same parameter τ , namely

Cov [X1, X2] = −Γ(τ).

It is possible to bound the Maginnis-Γ function by min(τ, τ 2) as shown in [141],

but no analytical formula exists, necessitating the numerical computation of Γ(τ) via

standard quadrature methods. This procedure, however, is problematic for large τ

as the integral argument quickly oscillates, in particular near the boundaries of the

interval [0, 1]. As noted in [141] for τ < log 2 we can use the exact result Γ(τ) = τ 2
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and for τ � 1 it appears that Γ(τ) tends to τ − γ for a constant γ, given by

γ = lim
τ→∞

τ − Γ(τ) =
7

36
≈ 0.194. (5.15)

To derive this result we use a normal asymptotic approximation to the Poisson dis-

tribution, see for example [72, Section 2], but with a continuity correction, i.e.

F−1
τ (u) = −1

2
+ τ +

√
τ +

(
1

3
+
w2

6

)
+ τ−1/2

(
− w

36
− w3

72

)
+ τ−1

(
− 8

405
+

7w2

810
+
w4

270

)
+O(τ−3/2),

(5.16)

where w = Φ−1(u) and Φ is the standard normal CDF. Note that we only need

F−1
τ (u)F−1

τ (1−u) to be correct up to order O(1) to derive γ, so the expansion (5.16)

is in fact accurate enough to yield the exact answer. Using equation (5.16) we find

that ∫ 1

0

F−1
τ (u)F−1

τ (1− u) du = τ 2 − τ +
7

36
+O(τ−1), (5.17)

and thus as τ →∞ we have equation (5.15).

This observation in the limit of large τ might come as a surprise if we consider the

normal approximation to the Poisson distribution, which is generally considered to

improve as the parameter τ increases, and effectiveness of antithetic sampling when

used to generate normal random variables. Small deviations away from the normal

approximation, even for large Poisson parameter, τ , mean that the variance of an

antithetic pair of Poisson random variables does not decay to zero as the parameter

τ grows large.

Combining this knowledge of the asymptotic behaviour of the Maginnis-Γ function

with its behaviour for small τ we propose a simple approximation to the complicated
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and oscillating Γ(τ) function via

Γ̃(τ) =


τ 2, τ ≤ 3 +

√
2

6
,

τ − γ, τ >
3 +
√

2

6
.

(5.18)

We note that Γ̃ is smooth everywhere apart from τ = (3 +
√

2)/6, where Γ̃ is merely

continuous. Though this approximation might seem crude at first sight, its validity

can be clearly seen in Figure 5.15. In particular, the larger the parameter τ , the

better the approximation and for all practical purposes we will see that using Γ̃, even

for relatively small τ , gives very satisfying results.

Approximation and minimisation of the IMSE

As proposed in [141] a reasonable statistical error metric to compare different methods

that generate unit-rate Poisson processes is the IMSE of a mean estimator. In par-

ticular, after we generate Y (1)(t), . . . , Y (N)(t), possibly correlated, Poisson processes

we consider the IMSE normalised to the number of sample paths given by

N · IMSE(τf ) = N

∫ τf

0

Var

[
1

N

N∑
n=1

Y (n)(t)

]
dt. (5.19)

Note that for antithetic sampling it is sufficient to consider N = 2, i.e. we introduce

a correlation between a pair of samples, and when we use standard MC sampling we

can use N = 1. Note that in the latter case we simply have IMSE(τf ) = τ 2
f /2, i.e. the

accumulated statistical error grows quadratically in the length of the Poisson process

when we use the standard MC method to generate unit-rate Poisson processes. From

now on we will assume that the normalised version of the statistical error is used

whenever we refer to the IMSE unless explicitly stated otherwise.

The exact IMSE at a final time τf when using the endpoint antithetic method

with step size τs is given by [141, Lemma 3]. However, whilst that formula yields
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(a) Comparison between the Maginnis-Γ
function and the approximation Γ̃ given by
equation (5.18), cf. [141, Figure 4].

(b) Relative error between the Maginnis-
Γ function, computed via MATLAB’s
integral method (adapative global quadra-
ture), and the approximation Γ̃ given by
equation (5.18).

(c) Scaled MSE of the average of two Pois-
son random variables with parameter τ via
either standard MC or antithetic sampling
(dots). For comparison we also show the
analytic expressions (solid lines). Note the
numerical instability in the calculation of
the Maginnis-Γ function via MATLAB’s
integral for large τ .

Figure 5.15: Illustration of the approximation of the Maginnis-Γ function by Γ̃ in
equation (5.18).

an analytic formula, it is non-smooth and it relies on the exact computation of the

Maginnis-Γ function, which, as discussed previously, is particularly challenging for

large step size, τs. In [141] the authors acknowledge that their exact expression is

difficult to analyse and therefore provide asymptotic approximations, assuming either
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τs � τf or τs > τf . These approximations, however, are of limited value as the step

size that minimises the IMSE clearly does not belong to either asymptotic regime.

To derive a more uniformly valid and tractable approximation we therefore first

approximate the IMSE using our Γ̃ approximation (5.18) to the Maginnis-Γ function.

In addition we note that the IMSE is composed of a contribution of the integral

over t ∈ [0, bτf/τscτs) and a remainder contribution due to the integral over t ∈
[bτf/τscτs, τf ). The latter contribution becomes negligible when τf grows large and

we therefore ignore it. Combining these two assumptions with the approximation

bτf/τsc ≈ τf/τs we arrive at a (mainly) smooth and simplified approximation to the

IMSE

˜IMSE(τf ; τs) =


τ 2
f

2

(
τs − Γ̃(τs)

τs

)
− τf

6

((
τs − Γ̃(τs)

)
− τs

)
, τs ≤ τf ,

τ 2
f

2
− Γ̃(τs)

3τ 2
s

τ 3
f , τs > τf .

(5.20)

Both approximations to the IMSE, i.e. using equation (5.20) or via [141, Lemma 3]

with equation (5.18), are uniformly valid and can be seen to accurately describe the

true IMSE in Figure 5.16. In particular, it can be seen that, as expected, the approx-

imation quality improves when τf increases and both approximations are capable of

accurately capturing the step size that (approximately) minimises the IMSE.

We can now use our approximation to the IMSE to derive the optimal step size,

τ ∗s , that minimises the IMSE. We note that in general τ ∗s < τf which means that we

can easily differentiate equation (5.20) with respect to τs and set the derivative to

zero, which results in

τ ∗s =
√

3γ · √τf ≈ 0.76
√
τf , (5.21a)

IMSE(τf ; τ
∗
s ) =

√
γ

3
· τ 3/2
f +O(τf ) ≈ 0.25τ

3/2
f +O(τf ). (5.21b)

Note that this means that, compared to the standard method of generating unit-rate
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(a) τf = 10. (b) τf = 100.

Figure 5.16: Approximation of the IMSE at final time τf when using the antithetic
endpoint method with different step sizes, τs. Exact IMSE is calculated via [141,
Lemma 3], using a numerical quadrature to compute the Maginnis-Γ function. Ap-
proximation (1) uses [141, Lemma 3], but replaces the Maginnis-Γ function by the ap-
proximation in equation (5.18). Approximation (2) is computed via equation (5.20).
The black reference line shows the IMSE when using standard MC to generate a
unit-rate Poisson process.

Poisson processes which has IMSE equal to τ 2
f /2, the endpoint antithetic method has

a VRF that is asymptotically given by

VRF(τf ) =

√
3

4γ
· √τf +O(1) ≈ 2.0

√
τf +O(1). (5.22)

We verify the analysis in this section in Figure 5.17, where we compare the asymp-

totic optimal step size, τ ∗s , from equation (5.21) and resulting VRF, equation (5.22),

with the results using a step size that is found numerically to minimise the true IMSE,

explicitly given in [141, Lemma 3]. Though we see in Figure 5.17 that for small final

time, τf , the step size, τ ∗s , that minimises the true IMSE can be a factor two larger

than the approximate optimal step size in equation (5.21), we see that the resulting

VRF of both step sizes is almost indistinguishable, and we therefore conclude that

equation (5.21) is a very effective, yet practical, choice for the step size.
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(a) Optimal step size, τ∗s , as a function of τf
for the antithetic endpoint method.

(b) VRF as a function of τf for the antithetic
endpoint method.

Figure 5.17: Comparison between the step size, τ ∗s , found by numerically optimising
the true IMSE for the antithetic endpoint method ([141, Lemma 3]) and its asymptotic
approximation in equation (5.21) (a), and the true resulting VRF for both step sizes
(b). The VRF is relative to the standard MC Poisson process construction.

Midpoint method optimisation

The results so far give an optimal step size, τ ∗s , if we restrict ourselves to the antithetic

endpoint method. However, as we will show now, it is often advantageous to further

subdivide our leaps of size τs using L midpoint divisions, thus effectively creating

a Poisson skeleton with spacing τs/2
L. To determine the optimal L∗ and τ ∗s we

will require some theoretical results, extending the theoretical foundations for the

antithetic endpoint method from [141].

Proposition 1. Suppose we have a collection {Y (1)(t), . . . , Y (N)(t)} of N unit-rate

Poisson processes, sampled independently using standard MC conditional on an un-

biased Poisson skeleton (not necessarily generated independently by standard MC) at

times t1, . . . , tR such that 0 = t0 < t1 < t2 < · · · < tR. The scaled MSE of the
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corresponding mean estimator is then piecewise quadratic and given by

MSE(t) = N · Var

[
1

N

N∑
n=1

Y (n)(t)

]

= (tr+1 − tr)
(

t− tr
tr+1 − tr

)(
tr+1 − t
tr+1 − tr

)
+ MSE(tr) +

(
t− tr

tr+1 − tr

)2 (
MSE(tr+1)−MSE(tr)

)
+ 2

(
t− tr

tr+1 − tr

)(
tr+1 − t
tr+1 − tr

)(
1

N

∑
n,m

Cov
[
Y (n)(tr), Y

(m)(tr+1)− Y (m)(tr)
])

,

(5.23)

for t ∈ [tr, tr+1].

Proof. Without loss of generality we take t ∈ [tr, tr+1] for some 1 ≤ r < R. Next we

use the fact that if we condition the Poisson processes on the start of the interval, i.e.

on Y (1)(tr), . . . , Y
(N)(tr), and the end of the interval, i.e. on Y (1)(tr+1), . . . , Y (N)(tr+1),

the increments of the Poisson processes are binomially distributed for t ∈ [tr, tr+1], i.e.

Y (n)(t)−Y (n)(tr) ∼ B(N
(n)
r , p), where p = (t− tr)/(tr+1− tr) and N

(n)
r = Y (n)(tr+1)−

Y (n)(tr).

Then note that in general we can decompose the MSE for t ∈ [tr, tr+1] as

MSE(t) = N · Var

[
1

N

N∑
n=1

Y (n)(t)

]
=

1

N

∑
n,m

Cov
[
Y (n)(t), Y (m)(t)

]
,

and in particular this holds for t = tr and t = tr+1 as well. Next we use the law of

total covariance to express each covariance term in the double sum over all n,m as

Cov
[
Y (n)(t), Y (m)(t)

]
= E

[
Cov

[
Y (n)(t), Y (m)(t) | Fr

]]
+ Cov

[
E
[
Y (n)(t) | Fr

]
,E
[
Y (m)(t) | Fr

]]
,

where Fr = σ{Y (1)(tr), . . . , Y
(N)(tr), Y

(1)(tr+1), . . . , Y (N)(tr+1)} is the sigma algebra

generated by the random variables comprising the Poisson skeleton at times tr and
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tr+1. Using the independence of the Poisson processes conditional on the skeleton we

see immediately that

Cov
[
Y (n)(t), Y (m)(t) | Fr

]
=


0, n 6= m,

N
(n)
r p(1− p), n = m.

In addition, since the Poisson skeleton is unbiased by assumption, we know that

E
[
N

(n)
r

]
= tr+1 − tr and thus

E
[
Cov

[
Y (n)(t), Y (m)(t) | Fr

]]
=


0, n 6= m,

(tr+1 − tr)
(

t−tr
tr+1−tr

)(
tr+1−t
tr+1−tr

)
, n = m.

Using the fact that the Poisson process conditional on its endpoints is given by the

value of the Poisson skeleton at tr plus a binomial contribution we find

E
[
Y (n)(t) | Fr

]
= pY (n)(tr+1) + (1− p)Y (n)(tr).

This, in turn, implies that the covariance of the conditional expectation can be fac-

tored as

Cov
[
E
[
Y (n)(t) | Fr

]
,E
[
Y (m)(t) | Fr

]]
= (1− p)2Cov

[
Y (n)(tr), Y

(m)(tr)
]

+ p2Cov
[
Y (n)(tr+1), Y (m)(tr+1)

]
+ p Cov

[
Y (n)(tr), Y

(m)(tr+1)
]

+ p Cov
[
Y (n)(tr+1), Y (m)(tr)

]
.

Finally, summing over all n,m of both contributions to the total covariance then

yields equation (5.23).

Interestingly the proof above also highlights the sources of the different terms in
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the MSE of the Poisson process, equation (5.23). The first contribution is intrinsic

noise in the Poisson process when conditioned on a Poisson skeleton. Importantly,

this part is independent of the specific construction used to generate the Poisson

skeleton. The use of, for example, an (antithetic) midpoint-based method to construct

the Poisson skeleton therefore does not influence this part of the MSE. The second

contribution to the MSE is due to the variation in the Poisson skeleton, and this is

where the specific construction method of the Poisson skeleton becomes important.

By using a variance reduction technique in the midpoint-based method to construct

the Poisson skeleton we thus reduce this second contribution to the MSE.

We also note that, in the particular case where the increments of the Poisson

skeleton are generated independent of previous increments, the term in the last line

of equation (5.23) vanishes. In the case of using standard, independent, MC sampling

for the increments of the Poisson skeleton, we have MSE(tr) = tr and thus MSE(t) = t

for all t, as we would expect. If, however, we use the antithetic endpoint method

with step size τs to generate the Poisson skeleton at times tr = rτs we find that

MSE(rτs) = r(τs−Γ(τs)) ≤ rτs and we therefore recover [141, Theorem 2]. Note that

this also proves that the antithetic endpoint method indeed does yield a variance

reduction for all t, regardless of the step size.

Approximation and minimisation of the IMSE

Using Proposition 1 it immediately follows that the IMSE can be found by simply

integrating the piecewise quadratic defined by equation (5.23), which yields Corol-

lary 1.

Corollary 1. Suppose we have a collection {Y (1)(t), . . . , Y (N)(t)} of N unit-rate Pois-

son processes, sampled independently using standard MC conditional on an unbiased

Poisson skeleton (not necessarily generated independently by standard MC) at times

t1, . . . , tR such that 0 = t0 < t1 < t2 < · · · < tR. The scaled IMSE over [0, tR] of the
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corresponding mean estimator is given by

IMSE(tR) =

∫ tR

0

MSE(t) dt

=
1

6

R−1∑
r=0

(tr+1 − tr)2

+
1

3

R−1∑
r=0

(tr+1 − tr)
(

MSE(tr+1) + 2MSE(tr)
)

+
1

3

R−1∑
r=0

(tr+1 − tr)
(

1

N

∑
n,m

Cov
[
Y (n)(tr), Y

(m)(tr+1)− Y (m)(tr)
])

.

(5.24)

Note that, in particular, we recover [141, Lemma 3] when we assume that the

Poisson skeleton has been generated by the antithetic endpoint method and τf = Rτs

so that tr = rτs. The IMSE for the standard MC construction of a Poisson process,

t2R/2, is recovered using, as before, MSE(tr) = tr.

We will analyse the midpoint-based Poisson bridge now in two steps. First we

consider the IMSE of the midpoint-based Poisson bridge over a single step τs in

Corollary 2 below.

Corollary 2. Suppose we have a collection {Y (1)(t), . . . , Y (N)(t)} of N unit-rate Pois-

son processes, sampled independently using standard MC conditional on an unbiased

Poisson skeleton generated by a single step of the midpoint-based method, with full

step size τs and L levels. The scaled IMSE over [0, τs] of the corresponding mean

estimator is given by

IMSE(τs) =

∫ τs

0

MSE(t) dt

=
τ 2
s

6 · 2L︸ ︷︷ ︸
contribution from intrinsic Poisson noise conditional on an unbiased Poisson skeleton

+
τs
3
· ψ̄L(τs),︸ ︷︷ ︸

contribution from Poisson skeleton noise in a single midpoint step of size τs

(5.25)
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where we have defined the auxiliary functions

ψ̄L(τ) =

 1

2L

2L−1∑
l=0

ψl

( τ
2L

) ,

ψl(τ) = MSE((l + 1)τ) + 2MSE(lτ)

+

(
1

N

∑
n,m

Cov
[
Y (n)(lτ), Y (m)((l + 1)τ)− Y (m)(lτ)

])
.

(5.26)

The proof of Corollary 2 simply uses Corollary 1 with the observation that for

a Poisson skeleton generated by the midpoint-based method with step size τs and L

levels we have tr = rτs/2
L.

Note that the use of multiple midpoint levels, L, introduces an extra function

ψ̄L(τs), which captures the noise induced by the Poisson skeleton averaged over the

time points in it. In particular we note that ψ̄0(τs) = MSE(τs) = τs−Γ(τs) when using

antithetic sampling and thus ψ̄0(τs) tends to the constant γ when τs →∞. Although

the explicit expression for ψ̄L(τs) is in general intractable, Figure 5.18 strongly sug-

gests that when using the antithetic midpoint-based method it tends to a constant,

which linearly depends on the number of levels L, as τs →∞.

Furthermore we note that Figure 5.18(a) suggests that if we keep τ fixed and

increase L it appears that ψ̄L is bounded, i.e. there is a limit for the Poisson skeleton

noise contribution when τ is fixed. This is confirmed in Figure 5.19(a), where we

see that the ψ̄L function does not increase further if we increase L beyond roughly

log 4τ/ log 2. In other words, if we subdivide the midpoint step of size τs into sub

steps of size τs/2
L < 1/4 then increasing the number of levels L even further has no

effect on the noise in the Poisson skeleton.

Finally we consider the small step size limit for the ψ̄L function. We ignore the

covariance terms in equation (5.26) and approximate the MSE by the antithetic end-

point result for small step sizes, i.e. MSE(τ) = τ−τ 2. This allows us to explicitly find

ψ̄L using equation (5.26) in terms of τ and L. We then find (empirically) that by com-
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(a) ψ̄L(τ) as a function of τ . (b) Limiting behaviour of ψ̄L(τ) for large τ .

Figure 5.18: Behaviour of the ψ̄L function for finite step size τ (a) and in the limit of
τ →∞ (b). To estimate the value of ψ̄L(τ) in (a) we used 128 · 104 samples per time
point. To estimate the limiting value of ψ̄L (blue circles in (b)) we average ψ̄L(τ) using
32 · 103 samples for each of 20 logarithmically spaced time points in τ ∈ [106, 108].

bining the behaviour in the two asymptotic regimes of step size we can approximate

ψ̄L(τ) using

ψ̄L(τ) ≈


τ

(
3

2
− 1

2L+1

)
− τ 2

(
1− 1

21+L
+

1

21+2L

)
, τ < 0.78,

0.23 + 0.20 ·min

(
log 4τ

log 2
, L

)
, 0.78 < τ,

(5.27)

where we chose the switching point between the two regimes, τ ≈ 0.78, such that

the approximation is continuous in the limit of L→∞. Note, however, that for any

finite L the approximation in equation (5.27) is discontinuous at the switching point.

The performance of the approximation can be judged in Figure 5.19, and, as we

saw before in the case of the Maginnis-Γ function, the approximation is of good quality

for all τ . However, unlike equation (5.18), this approximation is phenomenological

in nature and we see no direct way to prove its validity analytically in the way we

did for the approximation to the Maginnis-Γ function earlier. It is purely intended

as a tool to practically optimise and predict the performance of the midpoint-based

method.
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(a) ψ̄L(τ) as a function of L for fixed τ . (b) Comparison between ψ̄L(τ) and the ap-
proximation given by equation (5.27).

Figure 5.19: Behaviour of the ψ̄L function for fixed step size τ when varying L (a)
and a comparison of ψ̄L (dots) with the approximation (solid lines) in equation (5.27)
(b). To estimate the value of ψ̄L(τ) in both plots we used 128 · 104 samples per time
point.

Now that we have an understanding of the different components of the IMSE

from a single step of the midpoint-based Poisson bridge method we generalise this

approach in Corollary 3 to include multiple steps of the same method.

Corollary 3. Suppose we have a collection {Y (1)(t), . . . , Y (N)(t)} of N unit-rate Pois-

son processes, sampled independently using standard MC conditional on an unbiased

Poisson skeleton generated by the midpoint-based method, with full step size τs and L

levels. The scaled IMSE over [0, τf ], where τf = Rτs with R ∈ N, i.e. a multiple of

τs, of the corresponding mean estimator is given by

IMSE(τf ) =

∫ τf

0

MSE(t) dt

=
τfτs

6 · 2L︸ ︷︷ ︸
contribution from intrinsic Poisson noise conditional on an unbiased Poisson skeleton

+
τf
3
· ψ̄L(τs)︸ ︷︷ ︸

contribution from Poisson skeleton noise in a single midpoint step of size τs

+
τ 2
f

2
· MSE(τs)

τs
− τf

2
MSE(τs),︸ ︷︷ ︸

contribution from accumulation of noise in the Poisson skeleton after each full step of size τs

(5.28)
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where the auxiliary function ψ̄L(τ) is defined in equation (5.26).

To prove Corollary 3 we simply use Corollary 2 and the fact that the full midpoint

steps are independent of each other. Note that the general case where Rτs < τf <

(R + 1)τs yields an IMSE given by equation (5.28) plus a small correction which is

O(τs). The combination of equations (5.27) and (5.28) turns out to be a very good

approximation to the true IMSE for a wide range of step sizes, τs, as can be seen

in Figure 5.20. Note that the only point where the approximation breaks down is

in the regime for which τs � τf , which is a practically irrelevant regime in terms of

performance benefit over the standard MC construction method.

(a) τf = 100. (b) τf = 1000.

Figure 5.20: Approximation of the IMSE at final time τf when using the antithetic
midpoint-based method for a varying number of midpoint levels, L, as a function of
different step sizes, τs. Exact IMSE is estimated using 128 · 104 samples per data
point. Approximation (solid coloured lines) uses equations (5.27) and (5.28). The
solid black reference line shows the IMSE when using standard MC to generate a
unit-rate Poisson process. The dotted black reference line indicates τf .

Equations (5.27) and (5.28) allow us to determine the optimal step size τ ∗s which

minimises the IMSE in the case of a general antithetic midpoint-based Poisson bridge

where we fix the number of levels to L. As noted before for the endpoint (antithetic)

method, we see from equation (5.28) that a good choice for the step size, τs, in the

midpoint-based Poisson bridge construction will have to be a balanced choice; a small

step size, τs, decreases the first term in equation (5.28), but increases the last term
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in equation (5.28). Using the observation that for large enough τs both MSE(τs) and

ψ̄L(τs) tend to constants we find, under the assumption that τs < τf and for large

enough τf , that the optimal step size and corresponding IMSE are given by

τ ∗s =
√

2L ·
√

3γ · √τf , (5.29a)

IMSE(τf ; τ
∗
s ) =

1√
2L
·
√
γ

3
· τ 3/2
f +O(τf ). (5.29b)

Equation (5.29) seems to suggest that increasing L indefinitely will keep decreasing

the IMSE. However, because the above conditions were derived under the assumption

that τs < τf , we see that L ≤ blog τf/ log 2c must hold for equation (5.29) to be valid.

The VRF from using the antithetic midpoint-based method relative to the standard

MC construction is finally given by

VRF(τf ) =
√

2L ·
√

3

4γ
· √τf +O(1). (5.30)

Complexity consideration

Thus far we have ignored the computational complexity of the midpoint-based method

which from an efficiency point of view is technically incorrect as smaller steps and

more levels L will incur a larger overall complexity overhead. The computational

complexity of the midpoint-method using L levels is given in [141, Section 2.4] and

can be written as

Cmidpoint(τf ; τs) = 2L ·max

(⌈
τf
τs

⌉
, 1

)
+ max

(⌈
τf
τs

⌉
τs, τf

)
. (5.31)

Again this expression is slightly complicated by the fact that it is non-smooth and

we therefore note that a reasonable smooth approximation is given by

C̃midpoint(τf ; τs) = 2L ·max

(
τf
τs
, 1

)
+ τf . (5.32)
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Note that when we fix L and increase τf the complexity of the midpoint-based

method is Cmidpoint(τf ; τ
∗
s ) = τf +O(τ

1/2
f ), where τ ∗s is given in equation (5.29). Thus,

to first order, the complexity of the midpoint-based construction of a Poisson process

is equal to the complexity of the standard MC construction in the limit of large τf if

we fix the number of midpoint levels, L.

We can now instead also choose to directly minimise the IMSE normalised to

the complexity, as is customary when considering the efficiency of a method (see

Section 2.3.2). If we consider Cmidpoint(τf ; τs) · IMSE(τf ; τs), or an approximation of

this quantity, for example via equations (5.20) and (5.32), we find that the optimal

step size, τ ∗s , is marginally larger than
√

2L3γτf . By taking slightly larger step sizes

we make a trade-off between an increase in IMSE and a reduction in complexity. In

practice, however, the analytical formula for τ ∗s in the complexity-normalised case is

much more complicated and the difference with equation (5.29) is very small. For

ease of implementation we therefore simply recommend to use equation (5.29) to

determine the appropriate step size τs when one wishes to use the midpoint-based

method with a fixed number of levels, L.

The discussion up to now has focussed on the scenario in which we fix the number

of midpoint levels, L, and ask what the optimal step size τs should be. The reverse

question, however, is equally interesting, i.e. given that we fix the step size, τs, what

should be number of midpoint levels, L, so that we get the most efficient method?

Though we will not consider this angle in as much detail, we note that for general L

the complexity of the midpoint-based method is minimised when we take τs = τf , i.e.

in the case where we consider a single full step. In fact, though we will not prove this,

the only alternative, from a complexity point of view, to the strategy which picks the

optimal step size for a fixed τs, is a strategy which picks the optimal number of levels,

L, when we fix τs = τf . Intuitively this strategy first minimises the complexity by

selecting τs = τf and then subsequently the IMSE by choosing the correct number of

levels, L. Note that taking τs = τf simplifies the IMSE significantly and we get the
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exact result

IMSE(τf ; τf ) =
τ 2
f

6 · 2L +
τf
3
· ψ̄L(τf ), (5.33)

where we recall that we can approximate ψ̄L(τf ) accurately using equation (5.27). If

we now solely consider the IMSE we would select a number of levels that is excessively

large. Therefore we combine the IMSE in equation (5.33) with the exact complexity,

C = τf + 2L, and directly optimise their product. The intuitive solution is to take

τf ≈ 2L so that all the terms in both the IMSE and complexity are O(τf ). It turns

out that this strategy, i.e.

L∗ =

⌊
log τf
log 2

⌋
, (5.34)

is remarkably close to the true optimal solution that is found by numerically minimis-

ing the complexity-normalised IMSE, which can be verified in Figure 5.21(a). Note

that the complexity of this approach is C ≈ 2τf , i.e. twice that of the standard MC

Poisson process construction. The IMSE, however, is significantly reduced and using,

our approximation (5.27), can be estimated to be

˜IMSE(τf ; τf ) ≈
τf
4

(
1 +

log τf
3

)
. (5.35)

This means that if we compute the efficiency of this strategy relative to the stan-

dard MC method we find it is O(τf log−1 τf ), thus achieving increasingly large im-

provements when the length of the Poisson process, τf , increases. We verify in Fig-

ure 5.21(b) that in practice this is very close to the actual limit when finding the

optimal L∗ by numerically optimising the complexity normalised IMSE. Effectively,

for a given computational budget, the resulting antithetic midpoint-based method has

an IMSE and MSE of O(τf ) and O(1), respectively, whereas the standard MC method

achieves, for the same statistical error measures, only O(τ 2
f ) and O(τf ), respectively.

For completeness we note that the optimal solution L∗ found by numerically

optimising the complexity-normalised IMSE grows slower than predicted by equa-
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(a) Optimal number of midpoint levels, L∗,
for the antithetic midpoint-based Poisson
bridge method when step size τs = τf .

(b) Efficiency of the antithetic midpoint-
based Poisson bridge method with τs = τf
and optimal number of midpoint levels, L,
relative to the standard MC Poisson process
construction.

Figure 5.21: Comparison between choosing the number of midpoint levels, L∗, ei-
ther by numerically optimising the complexity normalised IMSE for the antithetic
midpoint-based Poisson bridge method with step size τs = τf or by using the approx-
imation given in equation (5.34).

tion (5.34). By empirically fitting a larger class of functions than equation (5.34), of

the form ba+ b log τfc for free parameters a and b, we find that L∗ is more accurately

described, at least on the interval τf ∈ [100, 106], by

L∗ =

⌊
0.94 · log 0.9τf

log 2

⌋
, (5.36)

i.e. the growth of L∗ with τf is only slightly slower than predicted by equation (5.34).

Note that this approximation to the optimal L∗ differs by not more than unity for

τf ∈ [100, 1010], which should be sufficient for all practical purposes, and for large

τf > 104 forms a lower bound for L∗. If we use this method to select the (approximate)

optimal number of levels the previous conclusions about the efficiency of the resulting

antithetic midpoint method still hold.
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Going beyond antithetic sampling

Though the previous sections mainly focussed on the antithetic midpoint-based Pois-

son bridge construction it is possible to use these results to study more general ver-

sions of the midpoint-based Poisson bridge method. In particular, we note that the

key result to derive optimal parameters for the Poisson bridge construction is Corol-

lary 3, which describes the IMSE of the full Poisson process purely in terms of the

statistical error in the Poisson skeleton constructed via the midpoint-based method.

Importantly, we reiterate that this result is independent of the specific sampling tech-

nique used in the construction of the Poisson bridge. We can therefore study the

performance of many other variance reduction techniques, such as Latin hypercube

sampling, stratified sampling or QMC sampling in the same framework. The only

quantity needed for this procedure is ψ̄L(τ), given in equation (5.26), and in an ideal

scenario we can (approximately) calculate it analytically, as was done when we con-

sidered the antithetic endpoint method. The more likely scenario, however, is that

ψ̄L(τ) is intractable for many sampling techniques, but as shown in the previous sec-

tion, a reasonable phenomenological approximation is all that is needed in practice

to get excellent results.

5.B Algorithm details

In this section we provide explicit descriptions of the algorithms used in the midpoint-

based and median-based Poisson bridge constructions. This is largely based on [63,

Chapter 15] with minor corrections and additions to allow for more memory efficient

implementations.

Efficient sampling of uniform order statistics

We first describe in Algorithm 5.1 an efficient and stable implementation of the ex-

ponential spacings method to sequentially generate the order statistics of uniform
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random variables on a finite interval based on [63, Section 15.6]. This subroutine is

used in both the median-based and midpoint-based Poisson bridge constructions.

Algorithm 5.1 UOS(a, b,N).
This generates N ordered uniform random variates on (a, b).

Input: Interval (a, b)
Input: Number, N , of uniform random variates on (a, b)

1: S ← 0
2: for n = 1, . . . , N do
3: Generate vn ∼ U(0, 1)
4: S ← S + log vn/(N − n+ 1)
5: P ← exp(S)
6: P ← 1− P . n-th smallest uniform random variable, out of N , on (0, 1).
7: un ← a+ (b− a)P . Scale to interval (a, b).
8: end for
9: return u

Midpoint-based Poisson bridge

The full midpoint-based Poisson bridge construction is described in Algorithm 5.2,

which uses two subroutines; Algorithm 5.4 to construct a Poisson skeleton and Al-

gorithm 5.5 to fill in such a Poisson skeleton. Note that to use variance reduction

techniques in combination with the Poisson bridge method we simply make sure that

the uniform random variables, u, that are used to construct the Poisson skeleton are

sampled via a variance reduction technique, such as antithetic sampling.

Median-based Poisson bridge

The full median-based Poisson bridge construction is described in Algorithm 5.3,

which uses of two subroutines; Algorithm 5.6 to construct a Poisson skeleton and

Algorithm 5.7 to fill in such a Poisson skeleton. Note that to use variance reduction

techniques in combination with the Poisson bridge method we simply make sure that

the uniform random variables, u, that are used to construct the Poisson skeleton are

sampled via a variance reduction technique, such as antithetic sampling.
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Algorithm 5.2 PBmidpoint(τf , τs, L,u).
This generates a single Poisson process Y (τ) when τ ∈ [0, dτf/τseτs) via the midpoint-
based Poisson bridge construction with L levels and step size τs.

Input: Final time τf
Input: Step size τs
Input: Number of levels L
Input: u ∈ [0, 1)d uniform random variable, where d = dτf/τse2L

1: τ ← 0
2: T ← ∅ . Initialise the arrival epochs of Y (τ).
3: k ← 0
4: while τ < τf do
5: t,M ← stepPBmidpoint(τs, L,u1+k2L:(k+1)2L) . Sample a Poisson skeleton

on [0, τs).
6: T ← τ + fillPBmidpoint(M, t) . Fill in Poisson skeleton and

scale to [τ, τ + τs).
7: T ← T ∪ T . Append to previously sampled arrival epochs.
8: τ ← τ + τs
9: k ← k + 1

10: end while
11: return T . Arrival epochs for Poisson process Y (τ)

when τ ∈ [0, dτf/τseτs).

Algorithm 5.3 PBmedian(Nf , Ns, L,u).
This generates a single Poisson process Y (τ) when 0 ≤ Y (τ) ≤ dNf/NseNs via the
median-based Poisson bridge construction with L levels and step size Ns.

Input: Final time Nf

Input: Step size Ns

Input: Number of levels L
Input: u ∈ [0, 1)d uniform random variable, where d = dNf/Nse2L

1: N ← 0
2: τ ← 0
3: T ← ∅ . Initialise the arrival epochs of Y (τ).
4: k ← 0
5: while N < Nf do
6: t, j ← stepPBmedian(Ns, L,u1+k2L:(k+1)2L) . Sample a Poisson skeleton.
7: T ← τ + fillPBmedian(j, t) . Fill in Poisson skeleton and

scale.
8: T ← T ∪ T . Append to previously sampled arrival epochs.
9: N ← N +Ns

10: τ ← τ + tend

11: k ← k + 1
12: end while
13: return T . Arrival epochs for Poisson process Y (τ)

when 0 ≤ Y (τ) ≤ dNf/NseNs.
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Algorithm 5.4 stepPBmidpoint(τs, L,u).
This generates a single Poisson skeleton for the Poisson process Y (τ) when τ ∈ [0, τs)
via the midpoint-based Poisson bridge construction with L levels.

Input: Step size τs
Input: Number of levels L
Input: u ∈ [0, 1)2L uniform random variable

1: M ← 0 . Initialise the increments of the Poisson
skeleton with a zero vector of size 2L.

2: Generate N ∼ P(τs) using inverse transform sampling on u1.
3: k ← 2
4: M1 ← N . Poisson skeleton at level l = 0.
5: for l = 0, . . . , L− 1 do
6: for n = 2l, 2l − 1, . . . , 1 do . Construct increments of Poisson skeleton

at level l.

7: Generate B ∼ B(Mn, 0.5) using inverse transform sampling on uk.
8: k ← k + 1
9: h ← 2n− 1

10: Mh+1 ← Mn −B
11: Mh ← B
12: end for
13: end for
14: for i = 1, . . . , 2L do
15: ti ← iτs/2

L

16: end for
17: return t,M . Poisson skeleton such that

∑i
j=1Mj = Y (t−i ).

Algorithm 5.5 fillPBmidpoint(M, t).
This fills in a single Poisson skeleton generated by the midpoint-based Poisson bridge
construction.

Input: Poisson skeleton increments M
Input: Poisson skeleton times t

1: N ← ∑
iMi . Total number of arrival epochs.

2: T ← 0 . Initialise arrival epochs with a zero vector of size N .
3: q ← 0
4: a ← 0
5: for n = 1, . . . , N do
6: p ← q + 1
7: q ← q +Mn

8: b ← tn
9: Tp:q ← UOS(a, b,Mn) . Sample Mn arrival epochs, indexed p to q, on (a, b).

10: a ← b
11: end for
12: return T
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Algorithm 5.6 stepPBmedian(Ns, L,u).
This generates a single Poisson skeleton for the Poisson process Y (τ) when 0 ≤
Y (τ) ≤ Ns via the median-based Poisson bridge construction with L levels.

Input: Step size Ns

Input: Number of levels L
Input: u ∈ [0, 1)2L uniform random variable

1: t ← 0 . Initialise the Poisson skeleton with a zero vector of size 2L + 1.
2: j ← 0 . Index vector for arrival epochs in median-based construction.
3: Generate τ ∼ Gamma(Ns, 1) using inverse transform sampling on u1.
4: k ← 2
5: t2L+1 ← τ . Poisson skeleton at level l = 0.
6: for l = 0, . . . , L− 1 do
7: j2l+1 ← Ns

8: for n = 2l, 2l − 1, . . . , 1 do . Construct Poisson skeleton at level l.
9: c ← jn

10: d ← jn+1

11: m ← d(c+ d)/2e . Find median index between c and d.
12: if d 6= m then . Find median arrival epoch.

13:
Generate B ∼ Beta(m − c, d −m) using inverse
transform sampling on uk.

14: A ← td+1 − tc+1

15: C ← tc+1

16: tm+1 ← AB + C
17: k ← k + 1
18: end if
19: h ← 2n
20: jh ← m
21: jh+1 ← d
22: end for
23: end for
24: return t, j . Poisson skeleton such that ti is exactly the ji-th arrival epoch.

Algorithm 5.7 fillPBmedian(j, t).
This fills in a single Poisson skeleton generated by the median-based Poisson bridge
construction.

Input: Poisson skeleton values j, assumes j1 = 0
Input: Poisson skeleton times t, assumes t1 = 0

1: N ← jend . Total number of arrival epochs.
2: T ← 0 . Initialise arrival epochs with a zero vector of size N + 1.
3: for m = 1, . . . , length(j)− 1 do
4: p ← jm + 1
5: q ← jm+1

6: Tq+1 ← tm+1

7: T(p+1):q ← UOS(tm, tm+1, q − p) . Sample q − p arrival epochs, in-
dexed p to q − 1, on (tm, tm+1).

8: end for
9: return T2:end . Remove the entry for the trivial 0-th arrival epoch.
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Chapter 6

Discussion

The common theme throughout this thesis has been the efficiency improvement of

simulation approaches for chemical reaction networks via incorporation of variance

reduction techniques into SSAs. Our approach has focused on adapting existing

variance reduction techniques from the MC sampling literature to the simulation of

CTMCs and we have shown that this can lead to sizeable efficiency improvements.

Importantly, these new methods are largely complementary and orthogonal to many

of the algorithmic improvements that have already been proposed in the literature,

thus allowing one to combine improvements to even further increase the efficiency of

SSAs. In this final chapter we first provide an overview of the results achieved in this

thesis in Section 6.1 before we lay down some open questions and challenges, arising

from these results, in Section 6.2.

6.1 Review

Chapter 2

In this thesis we studied the synthesis of SSAs for chemical reaction networks and

variance reduction techniques. In Chapter 2 we therefore first reviewed the two key

components to this thesis, stochastic model and simulation approaches for chemical
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reaction networks, and variance reduction methodology for MC methods, respectively.

We discussed both exact SSAs, which were further studied in Chapters 3 and 5, and

approximate SSAs, which played an important role in Chapter 4. Importantly, we

placed extra emphasis on the problem of estimating distributions, for example in

Section 2.3.1, because it is a common problem of interest in the context of chemical

reaction networks and, perhaps, not as widely discussed as necessary in the literature.

The concept of efficiency was also introduced as a trade-off between computational

complexity and statistical error and we showed via simple examples throughout the

chapter how algorithmic and statistical improvements can be made so as to improve

the efficiency of stochastic simulations of chemical reaction networks, thereby setting

the scene for the rest of this thesis.

Chapter 3

In Chapter 3 we focussed on the uniformisation technique for CTMCs. We introduced

the UDM, which is an algorithmic improvement of Gillespie’s DM, and showed how,

in terms of complexity, this new method is on par with standard SSAs for chemical

reaction networks. This allowed us to consider variance reduction techniques that can

make use of the extra structure in a uniformised chemical reaction network. Firstly,

via stratification of the total number of reactions firing in the uniformised system we

could get modest improvements when estimating (raw) moments of chemical species

using the UDM without increasing the computational complexity. Secondly, we used

the uniformised system to construct the wUDM, a weighted variant of the UDM,

which has the important property that it acts as a low-pass filter when used to

estimate distributions of chemical species. For systems in which the species of interest

evolves on the fast time-scale of the system the wUDM can be much more efficient

than conventional approaches.
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Chapter 4

Motivated by the impressive efficiency improvements researchers and practitioners

have observed when using QMC methodology to simulate SDEs and SPDEs we first

studied in Chapter 4 the combination of RQMC methods with the closest analogue to

SSAs used for SDEs, namely the τ -leap method. Though RQMC variants improved

upon standard SSAs we found that the efficiency improvements were smaller than

perhaps anticipated. By comparing the difference between the results for the τ -

leap method with those from numerically solving the CLE approximation we could

pinpoint the reasons why standard QMC methodology is less well suited to direct

application in SSAs for chemical reaction networks, namely the inherent discreteness

and the large effective dimension of the problems relevant to this thesis.

A possible way to overcome these limitations is the use of array-RQMC, a recently

developed variant of RQMC. In Section 4.3 we showed, empirically, how the combina-

tion of array-RQMC methodology with a variety of SSAs is a more suitable approach

when simulating chemical reaction networks compared to standard RQMC method-

ology. In particular, for two different approximate SSAs we discussed how the type

of summary statistic and the number of sample paths influence the observed perfor-

mance benefit. Finally, we combined the array-RQMC method with the wUDM from

Chapter 3 and showed that this combination can also be more efficient than a stan-

dard MC implementation of the wUDM for certain problems. We also showed that

for this specific combination previously reported results in the literature misspecified

the efficiency improvements.

Chapter 5

Finally, in Chapter 5 we considered the discrete analogue of the successful Brownian

bridge construction for Wiener processes in the form of Poisson bridge methods, which

can be used to construct unit-rate Poisson processes. Though such methods have been
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around for roughly 20 years, recent interest in them sparked us to provide a theoretical

analysis of a particularly promising variant of the Poisson bridge, the midpoint-based

Poisson bridge. Using our results we were able to show how the Poisson bridge can

be constructed optimally, in the sense of having the smallest average statistical error

of the Poisson process over a fixed time interval of interest, when we use antithetic

sampling to generate two negatively correlated Poisson process sample paths.

We then used the results on the optimal configuration of the midpoint-based

Poisson bridge to create an antithetic variant of the MNRM, which can yield efficiency

improvements compared to regular SSAs of up to orders of magnitude when we want

to estimate the mean number of species in a chemical reaction network, importantly

with minimal SSA configuration tweaking.

6.2 Future work and challenges

In this thesis we have explored the use of a number of variance reduction techniques

in the context of MC simulations of chemical reactions. Though we have been able

to derive and study new, more efficient, simulation approaches, many open questions

and challenges related to the scope of this work remain. We now discuss some future

ideas and projects split into three themes, namely: i) the testing and understanding

of variance reduction techniques, both current and new; ii) the development of new

variance reduction techniques; and iii) the application of variance reduction techni-

ques.

6.2.1 Testing and understanding variance reduction techni-

ques

Firstly, in order to exploit variance reduction techniques to their fullest potential

we need to be sure of their correctness and understand their merits and weaknesses

so that we can guide practical users of MC simulations, or developers of stochastic
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simulation software, as to how and when to use a given approach. Here, we highlight

two worthwhile avenues towards these goals.

Benchmark suite for SSAs

A crucial step in the development of any computational method is the verification and

testing of the method’s correctness and accuracy. It is therefore common practice to

consider test problems for which we know exact answers, or can approximate answers

to high-precision, and compare them to the output of simulations. For the numerical

computation of both partial and ordinary differential equations one can, for example,

use the method of manufactured solutions [188] or rely on a benchmark suite, e.g.

as done for the DifferentialEquations.jl solver suite in the Julia language [176]. For

SSAs this procedure is, however, complicated by the stochastic nature of the output.

Nevertheless, given enough sample paths, a statistical comparison of the SSA output

can be made to an exact solution of the CME if one is available, or alternatively

to a reference output of an SSA using many samples. An important step towards

verification of SSAs for chemical reaction networks is the Systems Biology Markup

Language (SBML) discrete stochastic models test suite (DSMTS) [60], which contains

mean and standard deviation solutions for three simple chemical reaction models in

different scenarios. Though useful as a first step, we believe that a larger and better

benchmark suite is required moving forward.

Firstly, the enrichment of the benchmark suite with summary statistics beyond

the first two central moments would better reflect the breadth of applications for

SSAs. For example, (marginal) distributions and exit-time distributions are widely

used in practice to study chemical systems, but are not included in any benchmark.

Note that for the problems currently incorporated in the DSMTS benchmark it is

possible to solve the CME for the full species distribution, either analytically [104]

(and Appendix 2.C) or numerically, e.g. using [200].

In addition we note that the behaviour of the systems in the DSMTS is relatively
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trivial, a necessity to derive exact answers. Due to the lack of a method of manufac-

tured solutions for stochastic models this means that little consistent benchmarking

is done on systems beyond simple (linear) models that exhibit more exotic behaviour

such as multiple scales, oscillations, rare events, delays or influence from external

noise. However, note that such models, and their investigation via SSAs, are in fact

commonplace in the literature. In particular, most new SSA development papers

include at least one non-trivial reaction network, often tailored to the specifics of the

new method presented. However, these papers generally fail to discuss weaknesses of

the new SSA relative to other approaches. As such it is often not clear under what

circumstances one should prefer one method over another. A central collection of

models, in each case including parameters, initial conditions and time-course data,

combined with a description of the class of behaviour for which they are suitable,

would provide a level playing field to compare different (implementations of) SSAs.

Ideally such a benchmark would also include the results of an (exact) SSA using many

sample paths if no analytic results are known.

Effective dimension, dimension reduction and smoothing

A different challenge lies in gaining a deeper understanding of the performance of

variance reduction methods in the context of chemical reaction networks. Many

variance reduction techniques are introduced on problems with more smoothness or

problems with a smaller state space than is common in the context of this thesis,

and therefore it is often far from clear if and how effective a technique, taken from

a different context, will be in the generation of sample paths for chemical reaction

systems. In particular, a deeper understanding of the problem structure in the context

of chemical reaction models could lead to better QMC methods.

For example, the concept of effective dimension is devised to quantify the relative

importance of sources of statistical error in an SSA [162, Chapter 17]. Techniques

to reduce said dimension are widely studied in the context of QMC methods for fi-
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nancial applications, but the implications of problem dimension for the models of

interest in biology have received little attention. In [124, 159] the authors study the

statistical error decomposition in reaction networks via individual reaction channels

and their interactions. Such knowledge could be used in conjunction with, for ex-

ample, the Poisson bridge method in Chapter 5. Extending such a decomposition to

approximate SSAs, such as the τ -leap method, could provide further explanation of

the observations in Chapter 4.

Another factor influencing the efficacy of QMC methods discussed in this thesis

is the discreteness of the state space in chemical reaction network models. In [63,

Chapters 2, 7 and 8] it was suggested that smoothing techniques, such as conditional

MC or interpolation for discrete random variables, can boost the effectiveness of QMC

methods. In practice such techniques have already proven to be effective in MLMC

methods for digital options, see e.g. [72] and references therein. We have, however,

not seen adaptation of smoothing methods for models in the context of this thesis

and there might therefore be scope to improve upon the QMC methods discussed

in Chapter 4. For example, the conditional MC technique, as recently discussed in

[3], either using an exact or approximate SSA, combined with a QMC method could

prove to be an interesting alternative approach to QMC methods in this thesis.

6.2.2 Developing new variance reduction techniques

Secondly, we believe that, despite growing computational resources, a demand for

more efficient simulation methods will remain. The development of new variance

reduction techniques, either through combining known variance reduction techniques

or by developing bespoke adaptations of techniques from a different context, will

make accurate exploration of larger and more complex reaction systems with MC

methods possible and we therefore mention two such ideas for new variance reduction

techniques.
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MFMC methods for chemical reactions

Over the past few decades a range of model reduction techniques have been de-

rived, such as those based on a separation of scales [35, 44, 82, 93, 96, 108, 178],

species-reaction coupling arguments [61], a marginal process framework [29], or on

approximations like the CLE and the RRE from Section 2.1. The output of sample

paths from such reduced models, though generally faster to generate, will normally

be biased and therefore not always be informative (enough) of the dynamics of the

full model. If, however, we can generate coupled sample paths from reduced models

and the full model we can exploit MFMC techniques [172] to construct a reduced

variance estimator. Such an approach first appeared in [5] and by using just a single

reduced model it was shown that the resulting MFMC method was over an order of

magnitude more efficient. Though these MFMC approaches share characteristics with

hybrid-methods, such as [54, 97], we reiterate that MFMC methods yield unbiased

estimators, whereas hybrid-methods are biased by construction and generally aim to

merely control the bias arising from model reductions in a trade-off with efficiency.

MLQMC methods for chemical reactions

In the context of SDEs and stochastic PDEs the combination of MLMC and QMC

methods has already been realised, e.g. [45, 73, 115]. Despite the lack of a general

multilevel quasi-Monte Carlo (MLQMC) theory these methods in practice outper-

formed both standard MLMC and (R)QMC methods. In the context of CTMCs this

feat has not been achieved yet, partially due to the fact that QMC methods have

received little attention to date. We see two possible avenues towards a MLQMC

method for the simulation of sample paths of chemical reaction networks, based on

extending the currently available MLMC methods using the τ -leap or R-leap method.

• If the main cost of the MLMC simulation takes place at the coarse levels the

priority in improving complexity and run-time lies in lowering the statistical
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error of the (coarse) τ -leap/R-leap steps. This can be achieved by using either

standard RQMC methods or the array-RQMC method and should be a rela-

tively straightforward application of previous work. Note, however, that if we

use the array-RQMC method the state space is now doubled due to presence of

two (coupled) sample paths on a single level and the sorting step therefore is

non-trivial, even if the underlying model is one-dimensional.

• If, however, sizeable cost in the standard MLMC simulation comes from the

exact final level (Gillespie’s DM), then one could try to use the combination of

uniformisation and array-RQMC (Chapter 3 and [95]). Note that it is not clear

how to couple this uniformised approach to a τ -leap approach and therefore the

original MLMC method [5] cannot be used. It might, however, be possible to

couple an array-RQMC exact level with an R-leap level, which would allow the

MLMC method with R-leap [135] to be run with low-discrepancy points across

all levels. Alternatively one could use results from Chapter 5, i.e. the use of

QMC methods to generate the Poisson processes driving the sample paths on

the exact final level. Note that this approach can also be used in conjunction

with the original coupling method for MLMC in the context of chemical reaction

systems [5].

6.2.3 Applying variance reduction techniques

Practical use of variance reduction techniques

Results in this thesis and the literature show that also in the context of chemical

reaction network simulation variance reduction techniques can provide significant im-

provements over standard approaches. However, to date, uptake of these techniques

by practitioners has been lagging behind. A major contributing factor to this discrep-

ancy between theory and practice is the lack of implementations of variance reduction

techniques in standard software suites, such as StochSS [53] and COPASI [101]. As
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computational resources are inherently limited, moving forward it should therefore

be the aim to marry efficient standard SSAs provided in such software suites with

complementary variance reduction techniques in order to maximise the efficiency of

exploration of (stochastic) chemical reaction networks.

A first practical concern, however, when implementing variance reduction techni-

ques could be the parallelisation of SSAs when they are combined with a variance

reduction technique. We note that apart from array-RQMC all variance reduction

methods encountered in the context of chemical reaction networks are still embar-

rassingly parallel. The array-RQMC method is not strictly embarrassingly parallel

due to the sorting step, which requires communication between synchronised trajec-

tories. In addition, some implementations of variance reduction techniques can result

in a larger memory footprint, e.g. a standard implementation of the Poisson bridge

in Chapter 5 first generates the Poisson processes needed for a simulation with the

MNRM and thus have to store these in memory, rather than generating them on-

the-fly. Such considerations have to be explored further in the context of simulation

software development.

A further concern for software developers could be the conception that model com-

plexity must be low or a certain structure needs to be present in models for variance

reduction techniques to work effectively. Efforts to speed up SSAs have often been

motivated by the need to simulate increasingly ‘larger and more complex’ chemical

reaction networks, which might impede the effectiveness of variance reduction techni-

ques. Notably, spatially extended models modelled in the framework of CTMCs can

certainly lead to systems with many reactions and reactants and the use of variance

reduction for such systems has received little attention. Nevertheless, there is a spe-

cial structure present in spatial models, represented by the distinct nature of diffusion

reactions compared to regular chemical reactions. The development of variance re-

duction methods tailored to this specific structure is therefore something that could

be investigated in future work. We note, however, that many well-mixed chemical
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reaction network models used in practice are relatively small in size, see for example

Figure 6.1. We can attribute this to the fact that models are often build to be as sim-

ple as possible so as to remain interpretable, an application of Occam’s razor. With

this in mind, the examples in this thesis have been relatively low-dimensional (up to 8

species and 10 reactions) in order to provide a thorough investigation of the workings

and limitations of variance reduction techniques in the context of chemical reaction

networks. The outcome of this thesis and related work in the literature shows that

the use of effective variance reduction techniques for many practical models is thus a

genuine possibility.
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Figure 6.1: Size, in terms of the number of species and reactions, of the 640 curated
models in the 31st release (June 2017) of the BioModels database [125]. Note that
75% of the models have less than 32 reactants and 40 reactions.

Inference

Finally, we look ahead and consider the use of variance reduction techniques in one

of the most active areas of research in the field of chemical reaction networks, namely

(Bayesian) inference. Problems in this context concern the identification of model

structure or parameters from observed data and, as such, are known as inverse prob-

lems, as opposed to forward problems in which we are tasked with generating data

or sample paths given a model structure and parameters. The variance reduction
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methods in this thesis are defined purely in the context of forward problems, but we

will discuss here how they can be employed to also improve inference methods.

For simplicity we focus here solely on the inverse problem of parameter inference

and thus assume we have a model with unspecified parameters θ that we believe gave

rise to some observed data YD, where we do not restrict ourselves as to the type of

data. We can then use Bayes’ theorem to find the probability distribution, p(θ | YD),

for the parameters, θ, given the data, YD, via

p(θ | YD)︸ ︷︷ ︸
posterior

∝ p(θ)︸︷︷︸
prior

· p(YD | θ)︸ ︷︷ ︸
likelihood

, (6.1)

where the beliefs about θ before observing the data are encoded in the prior. Methods

to establish the posterior directly based on equation (6.1) generally require special

structure in the model and data. If such an approach is not applicable we can often

find methods that generate samples θi from the posterior distribution, such as Markov

chain Monte Carlo (MCMC). In the context of chemical reaction networks with data

consisting of (discrete) observations of (some of) the species we can sample from the

posterior distribution using the MCMC methods in [66, 179, 180, 222]. Note, however,

that these methods, which are exact in the sense that they target the true posterior

distribution, p(θ | YD), are generally only computationally feasible for models with

small state spaces, because they rely on the computation of the likelihood, p(YD | θ).
Such approaches are infeasible for many chemical reaction systems of interest, where

the likelihood function becomes too expensive to evaluate, and therefore most recent

research has been focused on approximate inference techniques. The first important

class of such methods performs exact inference on approximate models with tractable

likelihoods, such as the RRE, the CLE or its linear noise approximation, and we

refer the reader to [193, Section 6.4] and references therein for more information.

The second class of methods, likelihood-free inference methods, instead works with

approximate proxies for the likelihood of the original model, generally computed via
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the use of forward simulations, and here we highlight three such approaches that we

think can be improved upon by incorporating variance reduction techniques.

Pseudo-marginal MCMC

The crucial observation from [12] is that for an MCMC method to correctly target

the posterior distribution it is sufficient to work with unbiased estimates of the like-

lihood functions, p̂(YD | θ), rather than the actual likelihood, p(YD | θ), leading to

a pseudo-marginal approach. This implies that, rather than considering the likeli-

hood of the data under all possible sample paths, we can run a finite number, N , of

forward simulations to generate a MC estimate of the likelihood based on these N

sample paths. In the context of chemical reactions such estimates can be constructed

using blind forward simulations, but such an approach is bound to be ineffective if

the observation noise in (part of) the data is small as noted, for example, in [87].

To improve the efficiency of pseudo-marginal methods we can use conditional path

sampling methods, e.g. using the recent method provided in [86]. We note that such

conditional sampling methods often rely on forward simulations with (sequential)

importance sampling to bring simulations closer to the observed data and thus can

already be viewed as a type of variance reduction technique. This, however, does

not prevent the use of further additional variance reduction techniques, as for exam-

ple shown by the recent sequential quasi-Monte Carlo (SQMC) method [67], which

combines QMC with a variant of sequential importance sampling.

In particular, we propose that exploration of the SQMC method in combination

with a bridged τ -leap method, inspired by the conditional sampling method by [86],

could be interesting based on the promising results in Section 4.3.1 and the relation-

ship between the SQMC and array-RQMC methods. Though this approach would

be approximate in nature, it could be competitive when used in a pseudo-marginal

MCMC sampler due to an improved effective sample size, see, for example, [67, Section

5.3]. Alternatively, and slightly more involved, we could combine the array-RQMC
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version of the wUDM as discussed in Section 4.3.3 with the conditional sampling

method proposed in [86] to construct an ‘exact approximate’ inference method.

Approximate Bayesian computation

In order to estimate the true likelihood, pseudo-marginal MCMC methods still rely on

it being feasible to compute the path-wise likelihood of the data. For large chemical

reaction models or high-dimensional data even calculating the likelihood for single

sample paths can become computationally very demanding. A viable alternative to

previously discussed pseudo-marginal methods in this case is the use of approximate

Bayesian computation (ABC). The basic ingredient of the ABC method is that it

replaces the true likelihood by instead considering a non-parametric approximation

of the likelihood which is much cheaper to compute. To construct this proxy we

define a distance metric, ρ(YD,YS), which compares the data, YD, with simulated

data from the model, YS , and approximate the likelihood via

pABC(YD|θ) = p(ρ(YD,YS) ≤ ε | θ) ≈ p(YD | θ), (6.2)

where ε is a distance parameter. Note that, due to the approximation of the likelihood,

the ABC method does not target the true posterior distribution. In practice the ABC

likelihood is also not analytically tractable and instead is computed using forward

simulations. This makes the ABC method effectively a pseudo-marginal method, but

one that targets an approximate posterior distribution. We refer the reader to [217]

and references therein for a comprehensive review on ABC methods with a focus on

the context of chemical reaction networks.

Variance reduction via coupling arguments (Section 2.4.2) in the context of ABC

methods has received a lot of attention recently, see for example [174, 217]. However,

despite what one might think based on results for many pseudo-marginal methods [52,

197], there is an intrinsic limit to the usefulness of variance reduction techniques in
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the forward simulations of ABC methods. For many of the standard ABC methods,

such as ABC rejection sampling, ABC importance sampling and ABC MCMC, it was

recently proven in [26] that if the parameter proposals are generated via standard MC

methodology then it is most efficient to use only a single sample path to estimate the

ABC likelihood. Effectively this is due to the fact that the statistical error in these

ABC approaches stems from two sources, the sampling of parameter proposals and

the estimation of the ABC likelihood, respectively. Using more samples to estimate

the ABC likelihood will reduce part of the statistical error, but at the same time

generating more samples incurs a proportional cost. The statistical error due to the

parameter sampling, however, remains, regardless of the number of samples used to

estimate the ABC likelihood. The overall efficiency of the standard MC version of

ABC methods can therefore not be improved, and in fact is often lowered, by gener-

ating more samples to estimate the ABC likelihood. Since many variance reduction

techniques for forward simulation methods rely on inducing a correlation between

at least two sample paths this effectively rules out such approaches for most ABC

methods using standard MC parameter proposals.

Recently, however, it was shown in [30] that the use of QMC methods to generate

parameter proposals removes this intrinsic limit for some important ABC methods,

such as ABC sequential Monte Carlo (SMC), ABC rejection sampling and ABC im-

portance sampling. As a result it becomes worthwhile to use multiple forward sim-

ulations per parameter proposal to estimate the likelihood and we can leverage this

by introducing a correlation between sample paths that reduces the variance of ABC

likelihood estimates, e.g. using antithetic sampling or QMC methods. We therefore

believe that moving forward in the context of inference on chemical reaction network

models the use of variance reduction methods to reduce both sources of statistical

error in ABC methods, i.e. due to parameter proposals as in [30], and forward simu-

lations using methods such as described in this thesis, could become the standard.

Similar in spirit to the result in [30] it was shown in [167] that the combination of
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certain MCMC approaches with specific QMC methods can also significantly reduce

the statistical error due to parameter sampling. If this result extends to pseudo-

marginal MCMC approaches then a similar conclusion regarding variance reduction

methods for forward simulations could also hold for ABC MCMC.

Bayesian synthetic likelihood

Lastly, we mention a third likelihood-free method that recently gained attention,

namely Bayesian synthetic likelihood (BSL) [175]. Similar in spirit to the ABC

method, the BSL method replaces the true model likelihood by an approximate proxy,

but, contrary to the ABC method, it assumes a parametric form for this approximate

likelihood. In particular, the BSL method assumes that the summary statistics follow

a multivariate normal distribution, implying that the (synthetic) likelihood under this

simplification is also Gaussian. For most models this synthetic likelihood, however,

is not known and in practice the BSL method is therefore often used in a pseudo-

marginal approach, i.e. the synthetic likelihood is constructed using (estimated) sum-

mary statistics from N forward simulations where, contrary to the standard ABC

methods, N > 1 generally. Due to its reliance on forward simulations to estimate

likelihoods many of the possible improvements using variance reduction techniques of

the ABC method that we discussed in the previous section could equally well apply

for the BSL method.

6.3 Conclusions

Looking back on the work contained in this thesis and by standing on the shoulders

of giants, we see that no one-size-fits-all approach exists for stochastic simulations

of chemical reaction networks. However, at the same time we realise that we can

certainly do much better than following the conventional approaches. The results in

this thesis contribute not only to the development of improved simulation procedures,

but also to a deeper understanding of the challenges and limitations one is faced with

in the field of chemical reaction network simulation.
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If our small minds, for some convenience, divide this glass of wine, this

universe, into parts – physics, biology, geology, astronomy, psychology,

and so on – remember that nature does not know it!

So let us put it all back together, not forgetting ultimately what it is for.

Let it give us one more final pleasure: drink it and forget it all!

Richard Feynman (1918-1988)
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126. Lécot, C. & Tuffin, B. Quasi-Monte Carlo methods for estimating transient

measures of discrete time Markov chains in Monte Carlo and Quasi-Monte

Carlo Methods in Scientific Computing 2002 (ed Niederreiter, H.) (Springer,

Berlin, Heidelberg, 2004), 329–343.

127. Lehmann, E. L. Some concepts of dependence. The Annals of Mathematical

Statistics 37, 1137–1153 (1966).

128. Leite, S. C. & Williams, R. J. A constrained Langevin approximation for chemi-

cal reaction networks. The Annals of Applied Probability 29, 1541–1608 (2019).

129. Lemieux, C. Monte Carlo and Quasi-Monte Carlo Sampling 1st ed. (Springer-

Verlag, New York, NY, 2009).

130. Leobacher, G. Fast orthogonal transforms and generation of Brownian paths.

Journal of Complexity 28, 278–302 (2012).

131. Lester, C., Yates, C. A. & Baker, R. E. Efficient parameter sensitivity computa-

tion for spatially extended reaction networks. The Journal of Chemical Physics

146, 044106 (2017).

132. Lester, C., Yates, C. A., Giles, M. B. & Baker, R. E. An adaptive multi-level

simulation algorithm for stochastic biological systems. The Journal of Chemical

Physics 142, 024113 (2015).

133. Lester, C., Baker, R. E., Giles, M. B. & Yates, C. A. Extending the multi-

level method for the simulation of stochastic biological systems. Bulletin of

Mathematical Biology 78, 1640–1677 (2016).

279



134. Lester, C., Baker, R. E. & Yates, C. A. Efficiently simulating discrete-state

models with binary decision trees. arXiv: 2001.07247 (2020).

135. Lester, C., Yates, C. A. & Baker, R. E. Robustly simulating biochemical reac-

tion kinetics using multi-level Monte Carlo approaches. Journal of Computa-

tional Physics 375, 1401–1423 (2018).

136. Levien, E. & Bressloff, P. C. Coupling sample paths to the thermodynamic

limit in Monte Carlo estimators with applications to gene expression. Journal

of Computational Physics 346, 1–13 (2017).

137. Levin, D. & Peres, Y. Markov Chains and Mixing Times 2nd ed. (American

Mathematical Society, 2017).

138. Li, H. & Petzold, L. Logarithmic direct method for discrete stochastic simula-

tion of chemically reacting systems tech. rep. (University of California Santa

Barbara, 2006), 1–11.
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