
Computing Bifurcation Diagrams with

Deflation

�
Casper Beentjes

St. Catherine’s College

University of Oxford

A thesis submitted for the degree of

M.Sc. in Mathematical Modelling and Scientific Computing

Trinity 2015



I would like to dedicate this thesis to all my friends and family who gave
me the space to grow up blissfully, but stay young in mind.

All grown-ups were once children. . .
but only few of them remember it.

Antoine de Saint-Exupèry (1900-1944)
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Abstract

One of the main deficiencies of current methods in numerical bifurca-
tion analysis is their inability to detect solution branches without first
locating a bifurcation point. As a result these methods cannot compute
disconnected bifurcation branches, or branches that connect outside of
the parameter domain of study. Furthermore, the detection techniques
for bifurcation points are not problem-scale invariant. As a result the cost
of computing bifurcation points in large-scale systems is often a prohibit-
ing factor in the computation of bifurcation diagrams. In this thesis we
propose a method to overcome these two issues.

We study the use of deflation techniques combined with Newton’s method
to generate multiple solution branches starting from a single initial solu-
tion. A theoretical framework for root-convergence and deflation of func-
tions in Banach spaces is set up. In this framework we derive the first
sufficient conditions for convergence towards multiple solutions if New-
ton’s method and deflation are combined.

Deflation can be made a scalable technique and as a result could be used
in tracing out bifurcation diagrams for large-scale systems. We compare
arclength continuation augmented with deflation as a method to compute
bifurcation diagrams with AUTO-07P, one of the most used and reliable
numerical bifurcation software packages available. We find that for a range
of illustrative problems AUTO-07P fails to compute complete bifurcation
diagrams, whereas deflation and continuation combined yield an accurate
result.

Note: this digital version contains modifications made to the paper version
that has been submitted to the Examination Schools on 3 September 2015.
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List of notation

N,R,R+,C Natural, real, positive real and complex numbers respectively.

<(x),=(x) Real and imaginary part of x.

X, Y, Z General Banach spaces.

B(x, ρ), B̄(x, ρ) Open, respectively closed, ball centred around x with radius ρ.

L(X, Y ) Set of bounded linear operators from X to Y .

GL(X, Y ) Set of invertible linear operators from X to Y .

I Identity operator (from X to X).

F ′(x) Fréchet derivative of F (x).

Fx(x, y) Partial Fréchet derivative of F (x, y) with respect to x.
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1. Introduction

As pointed out by the acclaimed physicist Eugene Wigner in his lecture “The unrea-
sonable effectiveness of mathematics in the natural sciences” [47], mathematics turns
up in seemingly unexpected situations and is often remarkably capable of grasping
complex structures hidden beneath our observations of nature. One might therefore
consider mathematics as the lingua franca among scientists as it provides a universal
language able to lift physical problems into the realm of mathematical abstraction.

For many physical problems the result of this abstraction is a mathematical model
which can be described by a set of equations. For this thesis we start with a very
general setting, where the equations are given by

F (u, λ) = 0. (1.1)

Without specifying the exact form of the equations F we do make a clear distinction
between the roles of u and λ. We let u denote the general set of variables and λ
the set of problem parameters. This difference between the two can be hard to pin
down, but for most purposes we think of the variables as the measurable outcome of
an experiment whereas the parameters, also called controls, govern the set-up of the
experiment. One could thus say that u and λ constitute the output and input of the
model respectively. Consider as a simple example the problem of the deformation of
a (slender) beam under a load, see Figure 1.1. The deflection of the beam is now a
variable of the problem and the external load is part of the set of control parameters.

λ

(a) Undeformed beam

λu

(b) Deformed beam

Figure 1.1: Deformation of a horizontal placed beam due to a vertical load λ.

A natural question to ask is how the output of the model, the displacement,
changes if we alter one of the parameters, in this case the load λ. The reader can
experimentally verify the rather uninteresting result that increasing the load increases
the bending of the beam. There might be, however, a point at which the beam cannot
sustain any additional small weight any longer, resulting in failure of the beam, the
straw that breaks the camel’s back. Here we see an example of a problem where a
gradual change in the parameter can lead to a drastic change in the behaviour of its
variables.

A less dramatic result is observed when we place the beam vertically and put a
load on top of the beam, see Figure 1.2. Initially slowly increasing the load will not
result in any bending of the beam; it will merely compress the beam in the vertical
direction. There is, however, a critical value of the parameter λc which induces a
large out of plane deformation of the beam, known as buckling.

These are examples where smoothly passing a parameter threshold value results
in a qualitatively different solution, a phenomenon known as a bifurcation. A wide
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λ

(a) Undeformed beam

λ

(b) Deformed beam with λ < λc

λ λ

(c) Deformed beam with λ > λc

Figure 1.2: Deformation of a vertically placed beam due to a vertical load λ. The
resulting deformation changes qualitatively around a critical value λc of the control
parameter.

variety of bifurcation types exist, such as the creation or annihilation of a solution, the
sudden appearance of periodic cycles or the change in stability of a solution, i.e. the
response of the solution to small perturbations. For a more (mathematically) complete
discussion see [3]. As the concept of a bifurcation is very general it appears in a
wide range of applications ranging from continuum mechanics to ecological problems.
Examples being pattern formation in chemical and biological systems, buckling of
beams and structures, transitions in fluid flows such as the classical Taylor-Couette
experiment, and (possibly) the Tacoma Narrows bridge collapse [43]. In engineering
science bifurcations are widely studied as they potentially can induce catastrophic
failure of structures.

A common way to visualise bifurcations is by means of a bifurcation diagram, in
which we plot J(u), a scalar measure of the outcome u, as a function of the parameters
λ. This way we can depict the structure of the solution curves in parameter space,
which are known as solution branches, and their interactions at bifurcation points.
See Figure 1.3 for sketches of bifurcation diagrams.

The analysis of the solution behaviour of (1.1) as a function of the parameter
set λ and the construction of an accompanying bifurcation diagram is, however, of-
ten difficult as the systems of equations for which bifurcations occur are necessarily
of non-linear nature. One of the ways to nonetheless investigate the behaviour of
these systems is by use of numerical methods, i.e. by numerically approximating their
solutions.

In order to find a numerical solution to non-linear equations we typically use
iterative methods. If we provide an initial guess of the root of (1.1) then these
methods try on every iteration to find a better approximation to the root. One of
the most popular methods in the class of iterative methods is Newton’s method,
due to its fast convergence properties close to actual roots of the equation. Note
though that whereas starting close to a solution with Newton’s method (or any other
iterative method) can result in rapid convergence, starting just slightly too far away
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λc
λ

J
(u

)

(a) Connected branches

λc
λ

J
(u

)

(b) Disconnected branches

Figure 1.3: Schematic bifurcation diagrams showing a scalar measure J(u) of the
output u as a function of the parameter λ. Bifurcation points are denoted by • and
are located at λc and λ̃c respectively. Although the diagrams bear a resemblance
to each other the solution branch structure is fundamentally different in terms of
connectedness.

could result in extremely fast divergence, especially in the case of highly non-linear
problems.

Iterative methods provide us with the most basic framework for the computation
of bifurcation diagrams, numerical continuation. If we are given an initial point on
our solution branch we can use this point as an initial guess to compute a solution
on the same solution branch for a different parameter value using iterative methods
and thus continue our solution along a branch. If we take small enough steps so that
the iterative methods will converge on each step we can proceed iteratively along
branches and thus trace out full solution branches.

To illustrate the working of numerical bifurcation algorithms let us look at the
bifurcation diagrams in Figure 1.3. Suppose we start off in the left part of the bifurca-
tion diagrams and trace out the diagrams in the positive λ-direction. Most numerical
bifurcation algorithms are able to correctly trace out the black solution branch in
Figure 1.3 by making use of continuation techniques. Having found this one solution
branch the next question becomes: how can we detect and trace out the red branches?

In the case of Figure 1.3a we encounter a bifurcation point on this curve and we
might detect this using numerical bifurcation techniques, see for example [44]. Having
found this special point we ideally want to be able to switch to the red branches in
order to fully trace out the diagram. In order to do so we recall that iterative methods
need to be started with sufficiently good initial guesses in order to yield convergence.
Various techniques, based on results in bifurcation theory, exist to construct initial
guesses for the red branches close to the bifurcation point. These are implemented
in contemporary numerical bifurcation software packages and allow users to switch
branches if the location of the bifurcation point is known, see for instance [28]. Current
bifurcation algorithms are therefore able to successfully trace out Figure 1.3a.
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The case of disconnected branches as in Figure 1.3b on the other hand often
poses a more severe problem. First of all if one does not know beforehand that a
disconnected branch of solutions exists it is likely that it will remain hidden in the
course of the construction of the bifurcation diagram as we do not find a bifurcation
point on the branch, which was our indicator in Figure 1.3a for multiple solutions.
Even if we do know that extra branches of solutions for fixed λ exist the question
still remains; how can we construct an initial solution on this other branch which
would allow us to follow this branch using continuation? Standard branch switching
techniques cannot be applied now as we have not located a bifurcation point which
is needed for the standard methods to work. This leaves bifurcation diagrams like
Figure 1.3b uncomputable by current numerical bifurcation algorithms.

We are thus left in the situation where multiple solutions to (1.1) for fixed λ exist
but we are not able to locate a bifurcation point which prevents us from calculat-
ing the full bifurcation diagram. This gives rise to the question: can we devise a
numerical technique that is able not only to find a solution, but also, if they exist,
to find multiple solutions? One such technique has been known for some decades to
work, but only for a special class of functions, namely scalar polynomials. Wilkinson
considered a technique, now known as deflation, to find multiple roots of polynomials
starting from a single initial guess [48]. Based on work by Brown and Gearhart [8]
this deflation technique was recently generalised by Farrell, Birkisson and Funke [18],
to apply to a more general class of functions, which provides a possible solution to the
problem sketched in Figure 1.3b. In this thesis we will investigate the use of defla-
tion in robustly tracing out bifurcation diagrams, especially those with disconnected
branches. In particular, we combine deflation for fixed parameters to generate multi-
ple solutions on distinct solution branches with standard continuation techniques to
trace out branches, which allows us to find more complete bifurcation diagrams.

1.1 Outline of work

The work in this thesis can be roughly divided in two; a theoretical section and a
more practical, numerical section, which are linked together by the main idea of the
thesis, the deflation technique.

First in the the theoretical part we will try to answer the question of whether we
can derive sufficient conditions for the deflation method in combination with Newton’s
method to converge to multiple solutions if they exist. In order to achieve this we
will start with background material on Newton’s method and deflation techniques.
To incorporate a wide range of applications we look at functions F : X → Y , where X
and Y are Banach spaces. This allows us to discuss a very general class of problems
that are of interest to the scientific community, namely that of partial differential
equations (PDEs), ordinary differential equations (ODEs), integral equations and
algebraic problems. We will for sake of notation consider X = U × Λ, a product of
the space of variables U and that of parameters Λ.

We first prove a new result on the convergence of Wilkinson deflation on scalar
polynomials with real roots, which shows that indeed sufficient conditions can be
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found in this special case. In order to derive more general sufficient conditions for
convergence of deflation to multiple roots we review the (local) convergence theory
available for Newton’s method in Banach space setting. We bring together some well
and lesser known convergence theorems and their proofs and look at their similarities
and differences. No such review has been published before.

Next we prove the novel result that under certain restrictions on the type of defla-
tion, some local Newton convergence theorems are still applicable after our function
has been deflated. These results then allow us to start the derivation of sufficient
conditions for convergence towards multiple solutions of the deflation technique in
Banach spaces.

The final chapter looks at a practical numerical bifurcation algorithm built on the
deflation technique. In this chapter we will show that certain types of problems which
were previously inaccessible by traditional implementations of numerical bifurcation
techniques, such as disconnected branches, can be tackled with the addition of de-
flation. We will benchmark our implementation for some illustrative problems with
one of the most robust and reliable numerical bifurcation software packages available,
AUTO-07P [15]. We find that our algorithm succeeds in cases where the methods in
AUTO-07P fail, demonstrating the power of the approach.

5



2. Background on Newton’s method
and deflation

For this thesis we will look at
F (u, λ) = 0, (2.1)

in the general setting of Banach spaces so that its theory can be applied to a wide
variety of problems, including ODEs and PDEs. In order to simplify notation, let the
Banach spaces of the variables and parameters be denoted by U and Λ respectively
and let X = U × Λ be their product space.

In order to study (2.1) we can therefore consider X and Y general Banach spaces
and F : X → Y . Solving (2.1) now translates to finding the roots of F , i.e. x ∈ X
that satisfy F (x) = 0, which can now be amongst other things scalar solutions to
algebraic problems or functions solving a differential equation.

First we will introduce a common technique, Newton’s method, to approximate
a solution to F (x) = 0. This method is only concerned with finding a single root
to this equation. There are, however, functions F for which multiple roots do exist.
Particularly of interest to us is the problem of detection of multiple branches in the
construction of bifurcation diagrams. A natural question thus is whether there exist
methods to find more than one root. To this end we will introduce one computational
technique, deflation, which can make, under certain conditions, Newton’s method find
multiple roots starting from just one initial guess.

2.1 Newton’s method

Exact solutions to the root-finding problem are often hard to acquire. One can,
however, try to approximate the roots by means of various schemes. A popular class
of approximation schemes uses an iterative method of the form,

xk+1 = xk + ∆xk, (2.2)

where the update ∆xk depends on the type of iterative method. Starting from an ini-
tial point x0 one hopes to produce a sequence by the iterative method which converges
towards a root of F .

A specific and widely studied iterative method is Newton’s method, or the Newton-
Raphson method. The classical version of Newton’s method defines the updates by
the equation

F ′(xk)∆xk = −F (xk), (2.3)

where F ′(x) denotes the Fréchet derivative of F (x), which we have to assume to exist
in order for Newton’s method to be well-defined. One motivation for this specific form
of the update can be found by looking at the local Taylor expansion of F around the
current iterate xk.
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Affine transformation invariance

An important observation about Newton’s method is its behaviour under affine trans-
formations of the domain or codomain of the function F . If A ∈ GL(Y ), then one
can see from (2.3) that the functions F (x) and AF (x) yield exactly the same New-
ton sequence, i.e. Newton’s method is affine covariant. Furthermore we see that if
B ∈ GL(X), then the functions F (x) and G(y) = F (By) yield Newton sequences {xk}
and {yk} that are simply related by a scaling xk = Byk. Newton’s method is thus
said to be affine contravariant as well. These properties have important implications,
as we will see later on.

2.2 Deflation techniques

The aforementioned Newton’s method can compute approximate roots starting from
an initial guess x0. If we are to find multiple solutions starting from x0 we will have to
extend our method and one possible candidate to do so is deflation. To introduce the
general technique of deflation we first consider a specific type of deflation which can
be applied to find the roots of scalar polynomials, now known as Wilkinson deflation,
which was the first deflation technique developed [48].

2.2.1 Wilkinson deflation of polynomials

Suppose we are given a scalar polynomial p with distinct roots r1, · · · , rN ∈ C so that
we can write p(x) =

∏N
i=1(x− ri). If by some method we have acquired a set of roots

with indices i ∈ S then we can attempt to find the unknown roots by our original
method if we can hide the known roots from our root-finder. In the case of scalar
polynomials this can be achieved by considering a deflated polynomial

q(x) =
p(x)∏

i∈S(x− ri)
, (2.4)

where we have now filtered the known roots from the original polynomial by polyno-
mial division. Applying our root-finding technique of choice to this deflated polyno-
mial will, if it converges, converge to a root which has not yet been found.

The practical implementation of this technique has to overcome several issues due
to the ill-conditioning of the root-finding problem of polynomials and finite arithmetic,
see for example [36, 48], but we will not explore this matter further here. Instead we
will now look at the combination of Wilkinson deflation with Newton’s method and
show that this combination can provably yield multiple roots starting from a single
initial guess, a result which has not been published before.

Convexity & global convergence

If we have a polynomial with distinct real roots, then we can prove that there exist
infinitely many points which will converge to all the roots of the polynomial by making
use of local convexity of the polynomial. The rate of convergence is, however, not
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specified. It is thus not necessarily quadratic, the fast convergence rate which can be
proven by the local convergence theorems in the next chapter. In order to prove this
statement we need the following lemma, which uses the geometric interpretation of
Newton’s method and the convexity of a function.

Lemma 1. Let f : I ⊆ R → R be a convex, differentiable function where I is an
open interval such that there exists precisely one x∗ ∈ I with f(x∗) = 0. Starting
from x0 ∈ I with f ′(x0) 6= 0, Newton’s method converges to x∗ if x1 ∈ I.

A similar lemma can of course be formulated for concave functions. For a proof,
see Appendix A.1. With this lemma we are now able to prove the following corollary.

Corollary 1 (Wilkinson deflation for purely real roots). Let p(x) be a polynomial
with N distinct real roots

p(x) = σ
N∏
i=1

(x− ri), (2.5)

such that r1 < r2 < · · · < rN and σ ∈ R. Starting from x0 ≥ rN or x0 ≤ r1 Newton’s
method with Wilkinson deflation converges to all roots of p(x).

Note that this theorem could be extended to complex polynomials with collinear
roots in the complex plane, but we will not consider this further here.

Proof. W.l.o.g. assume that σ = 1 as Newton’s method is affine invariant and consider
the case x0 ≥ rN . The case x0 ≤ r1 automatically follows from taking the transfor-
mation x 7→ −x and applying Newton’s method to the transformed polynomial.

As polynomials are twice differentiable we can use the second derivative to look
at the convexity of the polynomial

p′′(x) = 2
N∑
i=1

N∑
j=1
j 6=i

N∏
k=1
k 6=i
k 6=j

(x− rk). (2.6)

Assuming N > 1 it follows that p′′(x) > 0 if x ≥ rN and thus that p is convex on
[rN ,∞). From the continuity of p and p′′ it follows that there exists an open interval
I ⊂ R such that rN , x0 ∈ I, rN−1 /∈ I and p is convex on I. In order to apply lemma
1 it remains to show that x1 ∈ I. If x0 = rN we are done as the Newton iterates will
repeatedly yield rN ∈ I. So let us assume x0 > rN . As p′(x0) > 0 and p(x0) > 0 we
know that x1 < x0. The tangent at x0 is given by l(x) = p(x0) + p′(x0)(x − x0) and
from convexity we know that for all x ∈ I we have p(x) ≥ l(x). Suppose x1 < rN .
By definition of x1 we have l(x1) = 0 and l(x0) = p(x0) > 0. As a result l(rN) > 0,
but as rN ∈ I this implies 0 = p(rN) ≥ l(rN) > 0 which is a contradiction. Therefore
we conclude that rN ≤ x1 ≤ x0 and thus x1 ∈ I.

By applying the above reasoning to a polynomial which deflates rN we can con-
tinue deflating roots and using Newton’s method. The result will be convergence (in
decreasing order) to rN−1, · · · , r2. By deflating these roots we arrive at q(x) = x− r1

which is a linear polynomial. Therefore Newton’s method will yield x = r1 after one
iteration and as a result x0 will have converged to all the roots of p(x).
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Note that this theorem implies that there are indeed functions which allow one to
find multiple roots starting from a fixed x0, but the class of functions is unfortunately
rather limited and the theorem does not have a natural extension into the more general
Banach space setting. Therefore we will now look at a generalisation of Wilkinson
deflation which is applicable in Banach space setting.

2.2.2 General deflation in Banach space setting

Instead of considering a scalar polynomial we return to the problem of a general
(non-linear) function F : X → Y , where X and Y are Banach spaces. Brown and
Gearhart [8] generalised the technique of Wilkinson deflation for the case where X and
Y are finite dimensional real or complex vector spaces, say Rn or Cn, by considering
deflation matrices of the form

M(x; r) =
A

‖x− r‖
, (2.7)

where A is a non-singular matrix. This concept of deflation matrices has a natural
extension to our previous framework of general Banach spaces, as was set out by
Farrell, Birkisson and Funke [18].

Definition 1 (Deflation operator on a Banach space [6]). Let X, Y and Z be Banach
spaces, and D ⊆ X be an open subset. Let F : D ⊂ X → Y be a Fréchet differentiable
operator with derivative F ′. For each r ∈ D, let M(·; r) :D\{r} → GL(Y, Z). We
say that M is a deflation operator if for any F such that F (r) = 0 and F ′(r) is
nonsingular, we have

lim inf
i→∞

||M(xi; r)F (xi)|| > 0 (2.8)

for any sequence {xi} converging to r, xi ∈ D \ {r}.

The most common and practical case is where the deflation operator is a linear
operator in GL(Y ). For this thesis we will use a generalisation of the deflation
matrices by Brown and Gearhart, namely the class of shifted deflation operators.

Definition 2 (Shifted deflation [18]). Shifted deflation specifies

Mp,α(x; r) =

(
1

||x− r||p
+ α

)
I, (2.9)

where α ≥ 0 is the shift, p ≥ 1 and I is the identity operator on Y .

The shift and exponent parameter of the deflation operator can be chosen so as to
improve the convergence of the root-finding technique applied to the deflated function,
see [18]. Note that any other A ∈ GL(Y ) can be chosen instead of I ∈ GL(Y ), but
as Newton’s method is affine covariant this would not change the Newton sequences.
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Convergence to multiple roots

The objective of our theoretical endeavour is to derive conditions which can guarantee
us to find multiple roots, starting from a single initial guess x0. Given an arbitrary
initial guess and function F then we are, however, not guaranteed to even find a single
approximate root of F using Newton’s method. It is therefore of interest to see under
what conditions we can establish guaranteed convergence of Newton’s method. To
this end we present in the next chapter a review of various convergence theorems for
the classical version of Newton’s method as defined by (2.2,2.3).

These local convergence theorems will yield open neighbourhoods around roots of
the function which form regions of guaranteed convergence. Given a region D ⊂ X
with two roots x∗1 and x∗2 we can then sketch the general idea for a convergence result
towards multiple roots. As deflation is changing the objective function we expect
these convergence regions to change and we therefore look for conditions in which the
regions before and after deflation have a non-empty overlap for different roots, as in
Figure 2.1, so that any point in this overlap will converge to at least two solutions.

x∗1

x∗2

x0
ρ1

ρ2

D

(a) Convergence before deflation

x∗1

x∗2

x0

ρ′2

D

(b) Convergence after deflation

Figure 2.1: Illustration of local convergence regions around roots. The approach we
are taking in deriving sufficient conditions for convergence of x0 towards multiple
roots is sketched here. The initial guess x0 lies within a convergence region for x∗1
initially. After deflation x0 will no longer converge to x∗1, but instead lies within a
new region of convergence around x∗2, which has increased relative to the convergence
region for the undeflated function.
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3. A review of local convergence theorems
for Newton’s method

Recall Newton’s method for finding approximate solutions to F (x) = 0

xk+1 = xk + ∆xk, (3.1a)

F ′(xk)∆xk = −F (xk), (3.1b)

which we need to initialise by an initial guess x0. We hope to get a Newton sequence
which converges to a root of F , but as mentioned before Newton’s method is not
guaranteed to succeed in doing so. Several sufficient conditions do exist which can
guarantee convergence of a root if we start in a neighbourhood close to a root and
we present here a non-exhaustive review of various local convergence theorems for
the classical version of Newton’s method as defined by (3.1) in finding solutions to
F (x) = 0.

Note that our general objective is finding sufficient conditions for convergence to
multiple solutions, an idea sketched in Figure 2.1, which we will keep in mind while
looking at the different approaches of the theorems.

3.1 Classical theorems

As can be seen from (3.1) Newton’s method relies upon the solvability of a linear sys-
tem involving the Fréchet derivative of F at the current iterate. In order to guarantee
a solution to the Newton update equation (3.1b) one often requires invertibility of
this Fréchet derivative. The following standard result from linear functional analysis
gives sufficient conditions in order for a linear operator to be invertible.

Lemma 2 (Banach perturbation lemma). Let T : X → Y be a linear operator such
that ‖T‖ < 1. Then I + T is invertible and

1

1 + ‖T‖
≤ ‖(I + T )−1‖ ≤ 1

1− ‖T‖
. (3.2)

For a proof, see, for example, [42, Theorem 4.40]. This will be a key result in
the following convergence theorems as it can be used to show that (3.1) has a well-
defined solution. Another important result is the extension of the mean-value theorem
to functions on Banach spaces.

Lemma 3 (Mean-value theorem). Let F : X → Y be a continuously Fréchet differ-
entiable operator on the open subset D ⊆ X. For any x, y ∈ D we have

F (x)− F (y) =

∫ 1

0

F ′(tx+ (1− t)y)(x− y) dt. (3.3)

11



For a proof, see, for example, [26, Theorem 13.3].
The first theorem is the classical convergence theorem by Kantorovich [27], who

first brought convergence theorems into the framework of functions on Banach spaces.

Theorem 1 (Newton-Kantorovich [27]). Let F : D → Y be a continuously Fréchet
differentiable function on the open convex subset D ⊆ X. Starting at x0 ∈ D, assume
that

i) F ′(x0)−1 exists and set ‖F ′(x0)−1‖ = β, ‖F ′(x0)−1F (x0)‖ = α ,

ii) ‖F ′(x)− F ′(y)‖ ≤ γ‖x− y‖ for all x, y ∈ D (Lipschitz continuity of F ′(x)),

iii) h0 = αβγ ≤ 1
2

,

iv) B = B̄(x0, ρ0) ⊂ D for ρ0 = 1−
√

1−2h0
γβ

= 2α
1+
√

1−2h0
.

Then the Newton sequence defined by (3.1) is well-defined and remains within B. The
Newton sequence converges to a x∗ ∈ B with F (x∗) = 0. Furthermore, if we define

ρ+ = 1+
√

1−2h0
γβ

, then x∗ is unique within D ∩B(x0, ρ
+).

The above theorem turns out to be versatile as it has found use in convergence
proofs of numerical algorithms as well as existence and uniqueness results of roots in
(non-linear) functional analysis. One of the main advantages of the theorem is that
its assumptions are mostly checked at the initial guess x0 and an open neighbourhood
around it and thus yields the option of an a-priori check of convergence. One does
not need to assume the existence of a root beforehand either.

The last part of the Newton-Kantorovich theorem, regarding uniqueness, is often
viewed as a benefit if interested in existence and uniqueness of roots. However, in our
case, we are interested in a number of roots and not just a single root. The Newton-
Kantorovich uniqueness result then forms a potential downside as it can limit the size
of the convergence balls B in the case of multiple roots, which by the theorem are not
allowed to overlap.

We present a modification by Ortega of one of the original proofs by Kantorovich
using majorant functions in full detail as this illustrates some common proof steps
for other convergence theorems as well. First we need to introduce two lemmas.

Lemma 4 (Majorant sequences). Let {xk} be a sequence in X and {tk} a sequence
in R+ with the property

‖xk+1 − xk‖ ≤ tk+1 − tk, (3.4)

where tk → t∗ with t∗ <∞. Then there exists a x∗ ∈ X such that xk → x∗.

The proof of this lemma shows that {xk} is a Cauchy sequence in a Banach space
and thus must have a limit in X. The sequence {xk} is said to be majorised by {tk}.

Lemma 5 (Invertibility of the Fréchet derivative). Let F : D → Y be a continuously
Fréchet differentiable function on the open convex subset D ⊆ X. Let x̃ ∈ D and
assume that

12



i) F ′(x̃)−1 exists and set ‖F ′(x̃)−1‖ = β,

ii) ‖F ′(x)− F ′(y)‖ ≤ γ‖x− y‖ for all x, y ∈ D (Lipschitz continuity of F ′(x)).

Then for all x ∈ B (x̃, 1/βγ) the Fréchet derivative F ′(x) is invertible and its norm
is bounded by

‖F ′(x)−1‖ ≤ β

1− βγ‖x− x̃‖
. (3.5)

Proof. If x ∈ B (x̃, 1/βγ) we find that G(x) = I − F ′(x̃)−1F ′(x) satisfies ‖G‖ < 1 by
use of the Lipschitz continuity of the Fréchet derivative on D. By lemma 2 we then
know that (I + G)−1 exists, i.e. (F ′(x̃)−1F ′(x))−1 is well-defined, which proves that
F ′(x)−1 exists. The bound on the norm follows from (3.2).

With these lemmas we can now give the proof by Ortega which constructs an
explicit majorant sequence to the Newton sequence to prove convergence.

Proof of Theorem 1 [34]. Observation 1 (Difference in Newton iterates)
Given xk for k = 1, . . . , N and using lemma 5 we find that the difference between the
next iterates satisfies

‖xN+1 − xN‖ = ‖F ′(xN)−1F (xN)‖ (3.6)

≤ ‖F ′(xN)−1‖ ‖F (xN)‖ (3.7)

≤ β

1− βγ‖xN − x0‖
‖F (xN)‖. (3.8)

To find an upper bound for the last term note that we can apply the mean-value
theorem and then use convexity of D to apply the Lipschitz continuity

‖F (xN)‖ = ‖F (xN)− F (xN−1)− F ′(xN−1)(xN − xN−1)‖ (3.9)

= ‖
∫ 1

0

[F ′(sxN + (1− s)xN−1)− F ′(xN−1)] ds (xN − xN−1)‖ (3.10)

≤
∫ 1

0

‖F ′(sxN + (1− s)xN−1)− F ′(xN−1)‖ ds ‖xN − xN−1‖ (3.11)

≤ γ

2
‖xN − xN−1‖2. (3.12)

Note that we have used (3.1) at step N − 1 in the first line.
Observation 2 (Construction of an explicit majorant sequence)

Let φ(t) = βγ
2
t2 − t+ α. Note that this is a convex quadratic. By h0 ≤ 1/2 its roots,

given by ρ0 and ρ+, are real. Then applying Newton to this function will result in a
monotonically converging sequence to the roots. If we start with t0 = 0 we will thus
create a sequence {tk} such that tk ↑ ρ0 as ρ0 ≤ ρ+. This sequence is given by

tk+1 = tk −
βγ
2
t2k − tk + α

βγtk − 1
. (3.13)
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Claim: {tk} is a majorising sequence for the Newton sequence started from x0. Note
that t1 = α and ‖x1 − x0‖ = ‖F ′(x0)−1F (x0)‖ = α. Now suppose that for all
k = 0, 1, . . . N the Newton sequence is majorised, i.e. ‖xk − xk−1‖ ≤ tk − tk−1.

Then we find by observation 1 that the difference in Newton iterates is bounded
by

‖xN+1 − xN‖ ≤
βγ

2− 2βγ‖xN − x0‖
‖xN − xN−1‖2 ≤ βγ/2

1− βγtN
(tN − tN−1)2. (3.14)

Using the definition of the Newton sequence from φ(t) and

tk+1 =
tk
2

+
tk
2
− α

βγtk − 1
, (3.15)

we can deduce that the last term in (3.14) is equal to tN+1 − tN , which proves the
claim. Therefore there exists a x∗ ∈ D such that xk → x∗. Additionally we have that
‖xN − x0‖ ≤

∑N−1
0 ‖xi+1 − xi‖ ≤ tN − t0 = tN ≤ ρ0 so that the Newton sequence

remains in B. Thus x∗ ∈ B, and from convergence of Newton’s method it follows that
F (x∗) = 0.
If h0 < 1/2 we find that ρ0 < (βγ)−1 and thus from (3.14) that the convergence is in
fact quadratic by using that ‖xN − x0‖ ≤ ρ0.

Observation 3 (Uniqueness of solution)
We define U = D∩B(x0, ρ

+) andH(x) = F ′(x0)−1F (x). Then H ′(x) = F ′(x0)−1F ′(x)
and as a result H ′(x0) = I. Note that H is Lipschitz continuous on D as well with
Lipschitz constant βγ.

Suppose there exist a, b ∈ B(x0,
1
βγ

) such that F (a) = F (b) = 0, but a 6= b. Then
we find

‖a− b‖ = ‖H(a)−H(b)− I(a− b)|| = ‖H(a)−H(b)−H ′(x0)(a− b)‖. (3.16)

By use of the mean value theorem we then find

‖a− b‖ ≤
∫ 1

0

‖H ′(sa+ (1− s)b)−H ′(x0)‖ ds‖a− b‖ (3.17)

≤ sup
s∈[0,1]

‖H ′(sa+ (1− s)b)−H ′(x0)‖ ‖a− b‖ (3.18)

≤ βγ‖a− b‖ sup
s∈[0,1]

‖sa+ (1− s)b− x0‖ (3.19)

= βγ‖a− b‖ sup
s∈[0,1]

‖s(a− x0) + (1− s)(b− x0)‖ (3.20)

≤ βγ‖a− b‖max (‖a− x0‖, ‖b− x0‖) (3.21)

<
βγ

βγ
‖a− b‖ = ‖a− b‖. (3.22)

Which is a contradiction, so if there exists such a, b they must be unique (this in fact
already proves uniqueness in B).
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To prove uniqueness in U we show that in U \ B there exists no zero in the case
h0 < 1/2 (for the case h0 = 1/2, see [9]). Note that now

‖H(x)−H(x0) +H ′(x0)(x− x0)‖ ≤ βγ

2
‖x− x0‖2, (3.23)

by use of Lipschitz continuity and the mean value theorem. From the reverse triangle
inequality we then deduce that

‖H(x)‖ ≥ −βγ
2
‖x− x0‖2 − ‖H(x0)‖+ ‖x− x0‖ (3.24)

= −βγ
2
‖x− x0‖2 − α + ‖x− x0‖ (3.25)

= −φ(‖x− x0‖) > 0, (3.26)

since ρ0 < ‖x−x0‖ < ρ+ and thus φ is negative. As a result we cannot have F (x) = 0
and thus there is no zero of F in U \ B, which proves uniqueness of x∗ in the ball
B(x0, ρ

+).

Under slightly different assumptions, strengthening condition i) and weakening
condition iii), we arrive at another classical theorem by Mysovskikh, a contemporary
of Kantorovich. A part of the original paper has been often omitted in literature [11,
12, 21, 49], which states conditions for uniqueness, but we will include this here for
completeness.

Theorem 2 (Newton-Mysovskikh [32]). Let F : D → Y be a continuously Fréchet
differentiable function on the convex subset D ⊆ X with invertible Fréchet derivative
F ′(x) for all x ∈ D. Starting at x0 ∈ D let α = ‖F ′(x0)−1F (x0)‖ and assume that

i) ‖F ′(x)−1‖ ≤ β for all x ∈ D ,

ii) ‖F ′(x)− F ′(y)‖ ≤ γ‖x− y‖ for all x, y ∈ D (Lipschitz continuity of F ′(x)),

iii) h0 = αβγ < 2,

iv) B = B̄(x0, ρ0) ⊂ D for ρ0 = αH, where H =
∑∞

k=0

(
h0
2

)2k−1 ≤ 1
1−h0/2 .

Starting at x0 ∈ B, the Newton sequence defined by (3.1) is well-defined and remains
within B. The Newton sequence converges to a x∗ ∈ B for which F (x∗) = 0.
Furthermore, if h0 < h̃, where h̃ ≈ 0.71 is the solution to H = 1/h0, then the solution
is unique within B.

The proof is based on the original proof by Mysovskikh (in Russian) and supple-
mented by the often overlooked uniqueness result found in the original article.

Proof [32]. We use (3.7) and (3.12) from the previous proof with the boundedness of
the Fréchet derivative to derive

‖xN+1 − xN‖ ≤
βγ

2
‖xN − xN−1‖2. (3.27)
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Because of the assumption for Newton-Mysovskikh we can now find an explicit upper-
bound for ‖xN+1 − xN‖

‖xN+1 − xN‖ ≤
(
βγ

2

)2N−1

‖x1 − x0‖2N =

(
βγ

2

)2N−1

α2N = α

(
h0

2

)2N−1

. (3.28)

As the base case N = 0 is true a proof by induction can show that this must be true
for all the elements in the Newton sequence. This in turn can be used to deduce that

‖xN+1 − x0‖ ≤
N∑
i=0

‖xi+1 − xi‖ ≤ α

N∑
i=0

(
h0

2

)2i−1

≤ αH = ρ0, (3.29)

and thus xk ∈ B for all k. A slight modification of the above argument can show
that the Newton sequence is a Cauchy sequence and therefore must converge towards
an x∗ ∈ B. By the definition of the Newton iterates the point x∗ must then satisfy
F (x∗) = 0.

Finally, let us assume the conditions for uniqueness, i.e. h0 < h̃, then we see that

ρ0 = αH < α
h0

= 1
βγ

. Now the uniqueness of x∗ in B = B̄ (x0, ρ0) ⊂ B
(
x0,

1
βγ

)
follows

immediately from the result in the Newton-Kantorovich theorem.

The uniqueness result is often forgotten or omitted in literature which could give
one the impression that there is a fundamental difference with Newton-Kantorovich.
We see, however, that Newton-Mysovskikh proves existence of a root and shares many
other characteristics with Newton-Kantorovich, such as α, γ. So naturally the ques-
tion arises how they differ. Apart from stricter restriction on the Fréchet derivative
in the case of Newton-Mysovskikh the main difference is the constraint on h0 and
the resulting size of the convergence ball. Note that under the condition h0 ≤ 1/2,
i.e. the case where condition iii) holds for both theorems, the size of the convergence
balls is larger for Newton-Kantorovich. Newton-Mysovskikh can, however, be used
to prove uniqueness for a wider range of h0.

The previous two classical theorems derive convergence balls centred at the initial
guess x0 without assuming the existence of a root x∗. In the case that one is given
that roots of the function F exist, a different approach can be taken, which uses
evaluations at the roots. This approach might be more natural for our purposes as
we are considering the case where we assume that multiple solutions do exist and are
thus not concerned with existence proofs of roots.

Theorem 3 (Rall-Rheinboldt [39, 40]). Let F : D → Y be a continuously Fréchet
differentiable function on the open convex subset D ⊆ X. Suppose that there exists
an x∗ ∈ D such that F (x∗) = 0. Assume that

i) F ′(x∗)−1 exists and set β = ‖F ′(x∗)−1‖,

ii) ‖F ′(x)− F ′(y)‖ ≤ γ‖x− y‖ for all x, y ∈ D (Lipschitz continuity of F ′(x)).

Then any ρ∗ ≤ 2/(3γβ) such that B = B(x∗, ρ∗) ⊂ D has the property that starting
at x0 ∈ B, the Newton sequence defined by (3.1) is well-defined and remains within
B. The Newton sequence converges to x∗ ∈ B. Furthermore, if we define ρ+ = 1

γβ
,

then x∗ is unique within D ∩B(x∗, ρ+).
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The proof is very similar to the proof of the Newton-Kantorovich theorem but
uses x∗ instead of x0.

Proof [40]. If x, y ∈ B we find by lemma 5 a bounded Fréchet derivative

‖F ′(x)−1‖ ≤ β

1− βγ‖x− x∗‖
≤ 3β. (3.30)

Suppose that we have a Newton sequence {xk} for k = 1, . . . , N such that xk ∈ B.
Similar to the Newton-Kantorovich proof we find that the next iterate satisfies

‖xN+1 − x∗‖ = ‖F ′(xN)−1 [F (x∗)− F (xN) + F ′(xN)(xN − x∗)] ‖ (3.31)

≤ 3β‖F (x∗)− F (xN) + F ′(xN)(xN − x∗)‖ (3.32)

≤ 3βγ

2
‖xN − x∗‖2 (3.33)

≤ ‖xN − x∗‖2/ρ∗. (3.34)

As xN ∈ B we find ‖xN − x∗‖/ρ∗ < 1 and thus ‖xN+1 − x∗‖ < ‖xN − x∗‖, which
proves that the sequence remains in B as the base case k = 0 is satisfied trivially.
Additionally we observe that xk → x∗, at at least a quadratic rate.

Uniqueness is proved by defining H(x) = F ′(x∗)−1F (x) and follows the same proof
as before.

The Rall-Rheinboldt significantly differs from the previous two theorems and ap-
pears not to be as widespread in literature, perhaps due to its lack of existence results.
This might, however, work as an advantage in our case as we mentioned earlier. The
framework of the theorem, which is now centred around x∗, naturally yields so called
basins of attraction for the roots x∗, regions in X which are guaranteed to converge
to x∗. There is still a uniqueness result, but as this is now centred around a root
instead of an initial guess this does not form a disadvantage for our purposes as was
sketched in Figure 2.1.

There is, however, a major problem with these classic results, as pointed out by
Deuflhard [12]. The Newton sequences are invariant under affine transformations
as we saw in Section 2.1. As a result we have to use β(A) and γ(A), because the
constants depend on the linear transformation chosen. One can easily observe that
β(A) ≤ β(I)‖A−1‖ and γ(A) ≤ γ(I)‖A‖ which therefore yields that β(A)γ(A) ≤
β(I)γ(I)cond(A) where cond(A) is the condition number of A. As the Newton balls
all depend in one way or another on 1/βγ we can thus make these radii of the theorems
shrink to zero by a suitable choice of A, even though the Newton sequences still
converge. The constants appearing in the classical theorems can therefore not be
fundamental constants and we need to set the theorems in a different framework.

3.2 Affine covariant theorems

When monitoring the error ‖xN − x∗‖ as a measure for convergence, the natural
framework to cope with convergence results is that of affine covariant theorems. To
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do so we note that by combining assumptions in the preceding Newton theorems we
can cast these theorems in affine covariant form, so that multiplying by a A ∈ GL(Y )
does not affect the statement of the theorem.

Theorem 4 (Affine covariant Newton-Kantorovich). Let F : D → Y be a continu-
ously Fréchet differentiable function on the open convex subset D ⊆ X. Starting at
x0 ∈ D, assume that

i) F ′(x0)−1 exists and set α = ‖F ′(x0)−1F (x0)‖ ,

ii) ‖F ′(x0)−1 (F ′(x)− F ′(y)) ‖ ≤ ω0‖x− y‖ for all x, y ∈ D
(affine covariant Lipschitz continuity of F ′(x)),

iii) h0 = αω0 ≤ 1
2

,

iv) B = B̄(x0, ρ0) ⊂ D for ρ0 = 1−
√

1−2h0
ω0

.

Then the Newton sequence defined by (3.1) is well-defined and remains within B. The
Newton sequence converges to an x∗ ∈ B with F (x∗) = 0. Furthermore, if we define

ρ+ = 1+
√

1−2h0
ω0

, then x∗ is unique within D ∩B(x0, ρ
+).

The proofs of the affine covariant theorems follow the exact same lines as that of
the classical theorems and we will therefore only highlight some small differences if
necessary. In the above theorem the proof just follows from the classical version if
one lumps β, γ together in ω0.

Theorem 5 (Affine covariant Newton-Mysovskikh). Let F : D → Y be a continuously
Fréchet differentiable function on the convex subset D ⊆ X with invertible Fréchet
derivative F ′(x) for all x ∈ D. Starting at x0 ∈ D let α = ‖F ′(x0)−1F (x0)‖ and
assume that

i) ‖F ′(z)−1 (F ′(x)− F ′(y)) ‖ ≤ ω‖x− y‖ for all collinear x, y, z ∈ D
(affine covariant Lipschitz continuity of F ′(x)),

ii) h0 = αω < 2,

iii) B = B̄(x0, ρ0) ⊂ D for ρ0 = αH, where H =
∑∞

k=0

(
h0
2

)2k−1 ≤ 1
1−h0/2 .

Starting at x0 ∈ B, the Newton sequence defined by (3.1) is well-defined and remains
within B. The Newton sequence converges to an x∗ ∈ B for which F (x∗) = 0.
Furthermore, if h0 < h̃, where h̃ ≈ 0.71 is the solution to H = 1/h0, then the solution
is unique within B.

Strictly speaking we could take the first assumption to be

‖F ′(x)−1 (F ′(y + s(y − x))− F ′(y)) ‖ ≤ sω‖y − x‖, (3.35)

and derive the same proof, which only differs from the classical version by replacing
all occurrences of βγ by ω.
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Theorem 6 (Affine covariant Rall-Rheinboldt). Let F : D → Y be a continuously
Fréchet differentiable function on the open convex subset D ⊆ X. Suppose that there
exists an x∗ ∈ D such that F (x∗) = 0. Assume that

i) F ′(x∗)−1 exists,

ii) ‖F ′(x∗)−1 (F ′(x)− F ′(y)) ‖ ≤ ω∗‖x− y‖ for all x, y ∈ D (affine covariant Lip-
schitz continuity of F ′(x)).

Then any ρ∗ ≤ 2/(3ω∗) such that B = B(x∗, ρ∗) ⊂ D has the property that starting at
x0 ∈ B, the Newton sequence defined by (3.1) is well-defined and remains within B.
The Newton sequence converges to x∗ ∈ B. Furthermore, if we define ρ+ = 1

ω∗
, then

x∗ is unique within D ∩B(x∗, ρ+).

The proof again follows from its classical counterpart by replacing βγ by ω∗. A
combination of elements from Rall-Rheinboldt and the Newton-Mysovskikh theorem
yields the theorem called refined Newton-Mysovskikh which centres around roots x∗

but uses stronger assumptions on the invertibility of the Fréchet derivative.

Theorem 7 (Refined Newton-Mysovskikh [13]). Let F : D → Y be a continuously
Fréchet differentiable function on the convex subset D ⊆ X with invertible Fréchet
derivative F ′(x) for all x ∈ D. Suppose that there exists an x∗ ∈ D such that
F (x∗) = 0. Assume that starting at x0 ∈ D

i) ‖F ′(x)−1 (F ′(x)− F ′(y)) ‖ ≤ ω̄‖x− y‖ for all x, y ∈ D
(affine covariant Lipschitz continuity of F ′(x)),

ii) B = B̄(x∗, ρ̄) ⊂ D for ρ̄ = ‖x0 − x∗‖,

iii) ω̄ρ̄ < 2.

Starting at x0 ∈ B, the Newton sequence defined by (3.1) is well-defined and remains
within B. The Newton sequence converges to x∗ ∈ B. Furthermore, if we define
ρ+ = 2

ω̄
, then x∗ is unique within D ∩B(x∗, ρ+).

A proof based on [13, Theorem 1.1] uses the same techniques as in the proof of
the Rall-Rheinboldt theorem.

Proof [13]. The start of the proof establishes again an estimate for the difference of
the Newton solution with x∗ by use of the Lipschitz condition and the mean-value
theorem

‖xN+1 − x∗‖ ≤
ω̄

2
‖xN − x∗‖2 < ‖xN − x∗‖2/ρ̄ (3.36)

As before this proves that the Newton sequence remains in B and that the sequence
converges to x∗ at a rate at least equal to quadratic.

To prove uniqueness assume that there exists a y∗ ∈ D ∩B(x∗, ρ+) with x∗ 6= y∗.
Then if we choose x0 = y∗ we know that xk = y∗ for all k. Therefore we see that

‖y∗ − x∗‖ = ‖yN+1 − x∗‖ ≤
ω̄

2
‖yN − x∗‖2 =

ω̄

2
‖y∗ − x∗‖2 < ‖y∗ − x∗‖, (3.37)

which yields a contradiction and thus we must have x∗ = y∗.
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All the above theorems are stated in a general setting, with the only severe restric-
tion being a local (affine covariant) Lipschitz continuity of the Fréchet derivative of
the function. Of course there are situations in which the function is in fact smoother
than demanded by the preceding theorems and this can lead to new convergence
theorems, which we will consider in the next section.

3.3 Convergence theorems for analytic functions

We step from continuously differentiable functions to the class of functions that are
infinitely differentiable, a concept known in finite dimensions as analyticity. In doing
so we skip the classes of three, four, etc. times differentiable functions for which some
literature does exist, see for example [23]. The style and approach to those functions
in literature is, however, completely in line with the previous section and authors
merely devise more complex majorant sequences.

Analytic functions are considered to be functions which can (at least locally) be
expanded in a convergent Taylor series, which is likely to be familiar for functions on
R or C. To extend the ideas of analytic functions to general Banach spaces we first
need to redefine a polynomial, which is a crucial concept in the definition of a power
series.

Definition 3. A continuous m-homogeneous polynomial P is a function from X to
Y such that there exists a multi-linear map A of degree m with the property that for
every x ∈ X

P (x) = A(x, . . . , x) = A(xm) := Axm. (3.38)

A remark on notation, xm = (x, . . . , x) ∈ Xm is a m-tuple on which A acts. Norms
on multi-linear maps G : Xn → Y can be defined as induced norms by

‖G‖ = sup
x1 6=0,...xn 6=0

‖G(x1, . . . , xn)‖
‖x1‖ . . . ‖xn‖

. (3.39)

Note that ‖P‖ ≤ ‖A‖ with equality if A is a symmetric multi-linear map. This now
allows us to define the concept of a power series.

Definition 4 ([33]). A power series from X to Y about x̃ ∈ X is a series in x ∈ X
of the form

∞∑
k=0

Pk(x− x̃), (3.40)

where Pk is a continuous k-homogeneous polynomial from X to Y .

A power series is said to be convergent around x̃ if there exists some r > 0 such
that for all x ∈ B(x̃, r) the power series converges uniformly in norm. Analytic
functions are then defined by use of power series.
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Definition 5. A function F : D → Y , with D ⊆ X an open subset is called analytic
if for all x ∈ D there exists a r > 0 such that the function can be expanded in a

convergent power series, F (z) =
∞∑
k=0

1

k!
F (k)(x)(z − x)k, for all z ∈ B(x, r) ⊂ D.

Here F (n)(x) is the n-th Fréchet derivative at the point x and this is a symmetric
multi-linear map of degree n from Xn = X×· · ·×X to Y . The notation in Definition
5 is thus equivalent to (F (n)(x))(z − x, . . . , z − x). The series expansion of F around
x is called the Taylor series. One can now see that the power series in Definition 5
is in fact a direct generalisation of the power series for functions of one variable. In
fact, the Taylor series is the unique power series expansion of F at x just as is the
case for functions of one variable.

Before we proceed to the convergence theorems we need another auxiliary func-
tional analysis result, the Cauchy-Hadamard theorem [33, Proposition 4.1], which
extends the idea of a radius of convergence for power series to a Banach space set-
ting.

Theorem 8 (Cauchy-Hadamard [33]). Given a power series
∑∞

k=0 Pk(x− x̃) from X
to Y about x̃ ∈ X, The largest R such that the power series is uniformly convergent
on every B(x̃, ρ) for 0 ≤ ρ < R is given by

1

R
= lim sup

k→∞
‖Pk‖1/k, (3.41)

and is called the radius of convergence of the power series.

Note that although F might be an entire function, i.e. analytic on X, this does
not imply that its Taylor series around some x̃ ∈ X converges on the whole of X
as this is only true for the finite dimensional case. See, for instance, [33, Remark
7.1] for a counter example, signifying that there are in fact differences between the
finite dimensional case which we normally encounter and the formalism in (infinite
dimensional) Banach spaces.

A related concept in complex analysis to analytic functions is that of a holomorphic
function.

Definition 6. Let X and Y be complex Banach spaces. A function F : D → Y , with
D ⊆ X an open subset, is called holomorphic if F is Fréchet differentiable for all
x ∈ D.

We thus see that all functions that we considered in the preceding section are in
fact holomorphic if X and Y are complex Banach spaces. Just as in finite dimensional
complex analysis the notion of holomorphic and analytic functions are equivalent if
we have Banach spaces over C as pointed out by the following theorem.

Theorem 9 (Goursat [33]). Let X and Y be complex Banach spaces and F : D → Y ,
with D ⊆ X an open subset, then the following statements are equivalent:

i) F is holomorphic,
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ii) F is analytic.

Consequently, the results in this section will only consider a truly different class
of functions F if we use real Banach spaces. In the case of complex Banach spaces
the assumptions in the previous section are actually more restrictive than we will
see in this section, because we previously considered Lipschitz continuous Fréchet
derivatives, whereas for the analytic functions in this section we just have continuous
Fréchet derivatives.

Now consider an F : X → Y analytic and the application of Newton’s method to
find its roots. A different class of convergence theorems can be derived in this case,
based on initial work by Smale [45].

Smale convergence theorems

First we define an auxiliary quantity introduced by Smale

γ(x) = sup
k∈N
k≥2

∥∥∥∥F ′(x)−1F (k)(x)

k!

∥∥∥∥1/(k−1)

. (3.42)

This is a well-defined expression for analytic functions at points where the Fréchet
derivative is invertible. This follows from application of theorem 8 to the Taylor series
of an analytic function F . Note furthermore that γ(x) is an affine covariant quantity.

We start with a convergence theorem similar in spirit to the Rall-Rheinboldt
theorem which, instead of using an affine covariant Lipschitz condition on F ′, makes
use of evaluation of γ(x) at the root of F .

Theorem 10 (Smale’s γ-theorem [7]). Let F : D → Y with D ⊆ X an open subset
be an analytic function. Suppose that there exists an x∗ ∈ D for which F (x∗) = 0 and

F ′(x∗)−1 exists. Let γ∗ = γ(x∗), then any ρ∗ ≤ 5−
√

17
4γ∗

such that B = B(x∗, ρ∗) ⊆ D

has the property that starting at x0 ∈ B, the Newton sequence defined by (3.1) is
well-defined, remains within B. The Newton sequence converges to x∗ ∈ B, which is
unique in B.

We note that this theorem does not seem to appear in literature as a result on its
own and is often merely used to proof another Smale theorem which we will present
hereafter. Nonetheless we state the theorem here as it is of interest for our purposes,
because of the x∗-centred framework in which it is formulated. The theorem and proof
are taken from [7, Theorem 8.1], but with some minor modifications to illustrate some
subtleties.

Proof [7]. Observation 1 (Invertibility of the Jacobian)
Using the fact that F is analytic we expand its Fréchet derivative in a Taylor series.
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We find for some r > 0 and x ∈ B(x∗, r)

F ′(x∗)−1F ′(x) = F ′(x∗)−1

(
F ′(x∗) +

∞∑
m=1

F (m+1)(x∗)

m!
(x− x∗)m

)
(3.43)

= I +
∞∑
m=1

(
1

m!
F ′(x∗)−1F (m+1)(x∗)

)
(x− x∗)m (3.44)

= I +G, (3.45)

which is now of the form I +G with G ∈ GL(Y ).
Our objective is to prove that the Fréchet derivative of F exists on B. In order

to do so we have to use that the Taylor series is defined on the whole of B, or simply
said that the radius of convergence R of the Taylor series satisfies R ≥ ρ∗. This is
a subtle point and has apparently been overlooked by many authors. The radius of
convergence can be found by applying theorem 8 which yields

1

R
= lim sup

n→∞
n≥1

‖Pn‖1/n (3.46)

≤ lim sup
n→∞
n≥1

∥∥∥∥ 1

n!
F ′(x∗)−1F (n+1)(x∗)

∥∥∥∥1/n

(3.47)

≤ lim sup
n→∞
n≥1

(n+ 1)1/n · lim sup
n→∞
n≥1

∥∥∥∥ 1

(n+ 1)!
F ′(x∗)−1F (n+1)(x∗)

∥∥∥∥1/n

(3.48)

= 1 · lim sup
m→∞
m≥2

∥∥∥∥ 1

m!
F ′(x∗)−1F (m)(x∗)

∥∥∥∥1/(m−1)

≤ γ∗. (3.49)

From this we can conclude that the radius of convergence satisfies R ≥ 1/γ∗ > ρ∗

and thus indeed we can use the Taylor series on B.
Let u = ‖x−x∗‖γ∗. Under the assumption that u < 1−

√
2/2, which is guaranteed

by x ∈ B, we find that using the power series

‖G‖ =

∥∥∥∥∥
∞∑
m=1

Pm(x− x∗)

∥∥∥∥∥ (3.50)

≤
∞∑
m=1

‖Pm(x− x∗)‖ (3.51)

≤
∞∑
m=1

‖Pm‖ ‖x− x∗‖m . (3.52)
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Next we use the explicit form of the terms in the series expansion of G to find

‖G‖ ≤
∞∑
m=1

∥∥∥∥ 1

m!
F ′(x∗)−1F (m+1)(x∗)

∥∥∥∥ ‖x− x∗‖m (3.53)

≤
∞∑
n=2

n

∥∥∥∥ 1

n!
F ′(x∗)−1F (n)(x∗)

∥∥∥∥ ‖x− x∗‖n−1 (3.54)

≤
∞∑
n=2

n (γ∗ ‖x− x∗‖)n−1 (3.55)

=
∞∑
n=2

nun−1 ≤ 1

(1− u)2
− 1 < 1. (3.56)

By using lemma 2 we then find that

‖F ′(x)−1F ′(x∗)‖ ≤ 1

1− ‖G‖
≤ 1

1−
(

1
(1−u)2

− 1
) =

(1− u)2

ψ(u)
, (3.57)

where ψ(u) = 1− 4u+ 2u2.
Observation 2 (Evolution of Newton iterates)

We will use an induction argument to show that the Newton sequence remains
bounded within B and forms a converging sequence.

Suppose that we have a Newton sequence {xk} for k = 1, . . . , N such that xk ∈ B.
If we use the Taylor series for F (xN) and F ′(xN) around x∗ we find that the next
iterate satisfies

‖xN+1 − x∗‖ =
∥∥F ′(xN)−1F ′(x∗)

[
−F ′(x∗)−1F (xN) + F ′(x∗)−1F ′(xN)(xN − x∗)

]∥∥
(3.58)

=

∥∥∥∥∥F ′(xN)−1F ′(x∗)

[
∞∑
m=1

(m− 1)
F ′(x∗)−1F (m)(x∗)

m!
(xN − x∗)m

]∥∥∥∥∥
(3.59)

Using the triangle inequality and the γ∗-condition we can derive

‖xN+1 − x∗‖ ≤
(1− u)2

ψ(u)

∞∑
m=1

∥∥∥∥(m− 1)
F ′(x∗)−1F (m)(x∗)

m!
(xN − x∗)m

∥∥∥∥ (3.60)

≤ (1− u)2

ψ(u)

∞∑
m=1

(m− 1)

∥∥∥∥F ′(x∗)−1F (m)(x∗)

m!

∥∥∥∥ ‖xN − x∗‖m (3.61)

≤ (1− u)2

ψ(u)

∞∑
m=1

(m− 1)(γ∗)m−1 ‖xN − x∗‖m (3.62)

= ‖xN − x∗‖
(1− u)2

ψ(u)

∞∑
m=1

(m− 1)um−1 (3.63)

= ‖xN − x∗‖
(1− u)2

ψ(u)

u

(1− u)2
= ‖xN − x∗‖

u

ψ(u)
. (3.64)
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As xN ∈ B we find u < (5−
√

17)/4 which implies u/ψ(u) < 1. Therefore we conclude
that ‖xN+1 − x∗‖ < ‖xN − x∗‖. This proves that the sequence remains in B as the
base case k = 0 is satisfied trivially.

Using induction we can now show that ‖xN−x∗‖ < (u/ψ(u))N‖x0−x∗‖ and thus,
we observe that xk → x∗.

The uniqueness proof follows that of the refined Newton-Mysovskikh theorem.

With this result Smale then derived his point estimate theorem which establishes
local convergence of a point purely based on function evaluations at the starting point
and is more similar to Newton-Kantorovich and Newton-Mysovskikh in spirit.

Theorem 11 (Smale’s α-theorem [45]). Let F : D → Y with D ⊆ X an open subset
be an analytic function. Assume that, starting at x0 ∈ X,

i) F ′(x0)−1 exists and let β0 = ‖F ′(x0)−1F (x0)‖,

ii) α(x0) = β0γ(x0) < α0, where α0 is a universal constant (α0 ≈ 0.1307),

iii) x0 ∈ B = B(x0, ρ0) ⊆ D, where ρ0 = 1−
√

2/2
γ(x0)

.

Then the Newton sequence started at x0 converges to a unique x∗ ∈ B̄(x0, 2β0) for
which F (x∗) = 0 holds.

The universal constant α0 appears to be subject to debate as the optimal value
has not been established as of yet and the best version we found in the literature is
α0 = 3− 2

√
2 [37].
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3.4 Summary of local convergence theorems

In this chapter we have reviewed a collection of local convergence theorems for the
classical Newton’s method. Following an important observation by Deuflhard [12]
we state all the final versions of the theorems in an affine covariant form. The the-
orems share many general characteristics and mainly differ on just two points. A
classification based on these differences is given in Table 3.1.

The first one is the reference frame of the theorem. With that we mean whether
the theorems are centred around an initial guess x0 or around a root x∗. This will
prove to be important in considering the deflation technique in the next chapter, where
we will show that to incorporate deflation there is a clear preference for root-centred
theorems.

The other main difference between theorems is their restriction on the smooth-
ness of the function. Here we make a distinction between real and complex Banach
spaces. In the case of real Banach spaces, the minimal requirement seems to be a
Lipschitz continuous Fréchet derivative on some open set D ⊆ X, which is equivalent
to a bounded second Fréchet derivative if a function is in fact twice differentiable. By
requiring more smoothness in the form of analytic functions we can use a different
approach and use Smale’s point estimation theories. In the case of a complex Ba-
nach space the requirements for the theorems coincide, all theorems now require the
function to be holomorphic. The Lipschitz continuity of the Fréchet derivative is now
actually a more severe constraint than analyticity, which merely implies a continuous
Fréchet derivative.

Lipschitz continuous Fréchet derivative Analytic function

x0

Newton-Kantorovich theorem 4
Smale’s α-theorem 11

*Newton-Mysovskikh theorem 5

x∗
Rall-Rheinboldt theorem 6

Smale’s γ-theorem 10
*Refined Newton-Mysovskikh theorem 7

Table 3.1: Summary of local convergence theorems for Newton’s method. All theo-
rems are understood to be in affine covariant form. The theorems are ordered by their
center of convergence balls and requirements on the objective functions smoothness.
*-Theorems assume invertibility of the Fréchet derivative throughout the domain,
whereas the others just assume invertibility at their respective centres of the conver-
gence balls.
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4. Local convergence of Newton’s
method and deflation

The local convergence theorems in the preceding chapter have been concerned with
the problem of finding a single solution to F (x) = 0. For our purposes, however we
want to be able to find multiple solutions. In this chapter we will therefore start
deriving sufficient conditions that can guarantee the converge of Newton’s method
combined with deflation to multiple solutions starting from a single initial guess x0.

4.1 Examples of local convergence to multiple so-

lutions

The theorems in chapter 3 can be used to prove quadratic convergence of an initial
guess x0 to a root. We will first show by simple examples that it is possible to
prove local quadratic convergence of a single initial point to multiple roots. These
examples also serve as an illustration for the differences in the convergence theorems
for Newton’s method.

Example 1 (Quadratic polynomials). Let X = Y = C and f(x) = (x − 1)(x + 1).
Note that due to the affine-covariant and affine-contravariant properties of Newton’s
method any quadratic polynomial with distinct roots can be brought into this form,
so that the analysis of quadratic polynomials can be done purely on this specific
example.

It is sufficient to prove convergence to one of the roots of the quadratic polynomial
since after Wilkinson deflation the polynomial is linear which will result in Newton’s
method converging in one step. As the function is invariant under the transformation
x 7→ −x we only consider the case <(x0) > 0.

Under the assumption x0 6= 0, the affine covariant Lipschitz constant for Newton-
Kantorovich is given by ω0 = 1/|x0| and the initial Newton step by α = |x2

0−1|/2|x0|.
To apply theorem 4 we need |1−1/x2

0| ≤ 1. As a result we find quadratic convergence
towards x = 1 for UNK = {x ∈ C : |1− 1/x2| ≤ 1}.

The affine covariant Lipschitz constant in the Rall-Rheinboldt (Theorem 6) is
given by ω∗ = 1 and thus for all x ∈ URR = {x ∈ C : |1 − x| < 2/3} we find
convergence towards x = 1.

Note that for the refined Newton-Mysovskikh theorem we can choose the domain
D for which we assume that f ′(x)−1 exists, and we take it to be equal to B̄(1, |x0−1|).
Looking at the affine covariant Lipschitz constant we find ω̄ = 1/(1 − |x0 − 1|) and
we find the exact same convergence region as for the Rall-Rheinboldt theorem.

In this simple case we can calculate Smale’s γ explicitly, which gives γ(±1) = 1/2
and therefore ρ∗ = (5 −

√
17)/2 ≈ 0.438. Convergence to x = 1 is thus guaranteed

for USγ = {x ∈ C : |1− x| < (5−
√

17)/2} ⊂ URR.
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Evaluation of Smale’s α(x0) can be done explicitly as well and yields α(x0) =
|1−1/x2

0|/4. Convergence to x = 1 is thus guaranteed for USα = {x ∈ C : |1−1/x2| ≤
4α0} ⊂ UNK.

The resulting convergence regions are sketched in Figure 4.1. A clear distinction in
the shape of the local convergence regions for the theorems which center convergence
balls around x0 versus those centred around x∗ can be seen.
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<(x)

=
(x

)
Newton-Kantorovich
Rall-Rheinboldt
Smale-γ
Smale-α

Figure 4.1: Local convergence regions given by theorems in chapter 3 for the quadratic
polynomial f(x) = (x− 1)(x+ 1). The roots are indicated by •.

Example 2 (Cubic polynomials). Just as for the quadratic polynomials we use the
invariant properties of Newton’s method to construct a normal form for the cubic
polynomials with distinct roots, which can be chosen to be f(x) = (x+1)(x−a)(x−1)
with a ∈ A = {x ∈ C : |x± 1| ≤ 2, x 6= ±1}. This can be achieved by using an affine
transformation which maps the roots with the greatest separation to ±1 respectively,
the remaining root is closer to the roots and thus has to lie in A. The form is chosen
so that deflation of this standard cubic we can arrive at the standard quadratic from
the previous example. We construct a subset E ⊂ A such that if a ∈ E there exists a
point which converges quadratically to all the roots of the cubic polynomial.

Note that f ′(x) = 3x2 − 2ax − 1 so that f ′(a) = a2 − 1 6= 0. Given a convex set
D ⊂ C we thus have

|f ′(a)−1 (f ′(x)− f ′(y)) | = 1

|1− a2|
|f ′(x)− f ′(y)| ≤ maxz∈D |f ′′(z)|

|1− a2|
|x− y|, (4.1)

using the mean value theorem 3. Now suppose the convex set D is an open ball
B(a, q) ⊂ C. This allows us to find an affine covariant Lipschitz constant on D
(possibly not the best one) as used in the theorem 6,

ω∗ =
maxz∈D |6z − 2a|

|1− a2|
=

4|a|+ 6q

|1− a2|
,
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where we have used that the affine transformation z 7→ 6z − 2a takes B(a, q) to
B(4a, 6q). The element of this new ball furthest away from the origin then has
modulus 4|a|+ 6q.

In order to use theorem 6 we need to have B (a, ρ∗) ⊂ D for ρ∗ ≤ 2/(3ω∗). Take

q = ρ∗ and then solving this inequality yields q ≤
(√
|a|2 + |1− a2| − |a|

)
/3.

W.l.o.g. assume that <(a) ≥ 0 and let q =
(√
|a|2 + |1− a2| − |a|

)
/3, so that

2/(3ω∗) = q. To gain quadratic convergence to all three roots it now suffices to
show that B (a, 2/(3ω∗)) ∩ B(1, 2/3) 6= ∅. The condition of intersecting balls from a
geometrical point of view yields the condition q + 2/3 > |1 − a|. This now defines

the set E+ = {x ∈ A :
(√
|x|2 + |1− x2| − |x|

)
+ 2− 3|1− x| > 0}. Consequently, if

a ∈ E the point 2a/3 + 1/3 is guaranteed to converge quadratically to firstly x = a,
then x = 1 and finally to x = −1. Completely analogous we can define E− around
x = −1 and their union creates the set E , depicted in Figure 4.2.
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Figure 4.2: Area within dotted lines depicts A and the shaded area shows E ⊂ A.
If the root a of f(x) = (x + 1)(x − a)(x − 1) lies within E , there exists a point
which converges quadratically to all three roots of the cubic polynomial. The roots
at x = ±1 are indicated by •.

As we saw from the previous examples there are indeed functions for which the
situation sketch made in Figure 2.1 holds. The convergence balls using for example
the Rall-Rheinboldt theorem grow after deflation which makes it possible for points
to be contained in a convergence ball of a different root at every step of the deflation.
This raises the question whether we can formalise sufficiency conditions for this to
happen in the case of deflation on general functions.

29



4.2 Convergence criteria for deflated functions

Having defined a general framework for deflation in Banach spaces we will now look at
the applicability of theorems in Chapter 3 in the case of deflation in its most general
form.

First we note that we can rule out the use of any theorem which is centred around
the initial guess x0 if we want to prove statements of convergence to multiple roots.
This can be understood as follows. Suppose there exist x1 and x2 such that F (x1) =
F (x2) = 0 and x1 6= x2. Now assume we consider an initial guess x0 that provably
converges to x1 using a convergence theorem in the x0 framework. The result is a ρ
such that x1 ∈ B(x0, ρ) and x2 /∈ B(x0, ρ), see Figure 4.3a. Now after deflating F
we have to consider M(x;x1)F (x). This deflated function in most cases will behave
badly at the deflated root. In the case of shifted norm-deflation (2.9) for example
there will be a pole or discontinuity in the Fréchet derivative at x = x1. In order
to prove convergence to x2 for the deflated function we would need to be able to
find a ρ′ > ρ such that x2 ∈ B(x0, ρ

′), but this would imply that x1 ∈ B(x0, ρ
′), see

Figure 4.3b. Since the convergence theorems require the function to be well-behaved
on these convergence balls and prove that the Fréchet derivative is invertible, the ill
behaviour at x1 poses a problem. As a result we will focus in the next section on the
theorems of the x∗-framework.

x∗1

x∗2

x0

D

ρ

(a) Convergence before deflation

x∗1

x∗2

x0

D

ρ′

(b) Convergence after deflation

Figure 4.3: Illustration of local convergence of the failure of convergence towards
multiple roots in the x0-framework of the convergence theorems. In order to show
convergence to multiple solutions we need the convergence region to grow, i.e. ρ′ > ρ.
This would however imply that the deflated root lies within the new convergence
region, which poses regularity problems on the Fréchet derivative of the deflated
function in the convergence region.

4.2.1 Deflation on analytic functions

In the case of an analytic function and under regularity conditions on the deflation
operator we can show that the deflated operator will remain well-behaved close to
the unknown roots.
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Theorem 12. Let F : X → Y be an analytic function on an open subset D ⊆ X.
Suppose that z ∈ D such that F (z) = 0 and the Fréchet derivative F ′(z) is invertible.
Furthermore assume that we have an x∗ ∈ X, x∗ 6= z, such that F (x∗) = 0. Given
a deflation operator M(·;x∗) : D \ {x∗} → GL(Y, Z) which is analytic on an open
subset E ⊆ D \ {x∗} such that z ∈ E, then the following holds;

i) the Fréchet derivative of the deflated operator M(x;x∗)F (x) is invertible at z,

ii) the deflated operator is analytic on the open subset E containing z.

Note that a shifted deflation operator, as defined by 2.9, satisfies these require-
ments if the norm on X is (locally) analytic and we are close enough to the root x∗

in the sense that 0 < ‖x − x∗‖p < 2, because we want 1/‖x − x∗‖p to be analytic.
In that case we can use the composition rule for analytic functions to show that the
deflation operator, which is now a composition of analytic operators, is indeed ana-
lytic on some open set E ⊆ D \ {x∗}. The question whether a norm is analytic, or
whether a Banach space has an equivalent real analytic norm appears to be subject
of continuing study in functional analysis and we will not dive into detail here, but
just mention that analytic norms do in fact exist [24] and that for separable Hilbert
spaces and Lp[0, 1] spaces with p an even integer we can approximate any equivalent
norm by real analytic norms [14].

In order to prove Theorem 12 we need a lemma generalising the Cauchy product
formula for the product of two series in C to Banach space, which will allow us to
take products and sums of power series.

Lemma 6 (Cauchy product formula [25]). Let X, Y, Z be Banach spaces and α :
X×Y → Z a continuous bilinear map. Suppose that the series

∑∞
n=0 xn and

∑∞
n=0 yn

are absolutely convergent in X and Y and denote their sum by x ∈ X and y ∈ Y
respectively. Then

α(x, y) =
∞∑
n=0

n∑
k=0

α(xk, yn−k). (4.2)

Proof of Theorem 12. By the product rule for differentiation we have

[M(x;x∗)F (x)]′ =M(x;x∗)F ′(x) +M′(x;x∗)F (x). (4.3)

Since z ∈ X is a root of the original functional F , the Fréchet derivative of the
deflated functional at z becomesM(z;x∗)F ′(z). For any x ∈ D the deflation operator
M(x;x∗) ∈ GL(Y, Z) and thus it is invertible. The deflated functional evaluated z is
thus invertible and (

[M(x;x∗)F (x)]′
)−1
∣∣∣
z

= F ′(z)−1M(z;x∗)−1. (4.4)

As both F andM(·;x∗) are analytic on an open set around z we can expand them
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in convergent Taylor series around z,

M(x;x∗) =
∞∑
k=0

1

k!
M(k)(z;x∗)(x− z)k =

∞∑
k=0

Qk(x− z), (4.5)

F (x) =
∞∑
k=0

1

k!
F (k)(z)(x− z)k =

∞∑
k=0

Pk(x− z), (4.6)

where Qk(x), Pk(x) are continuous k-homogeneous polynomials. Now we can apply
the Cauchy product formula to the bilinear form α(x, y) = xy to find a power series
expansion of the deflated operator

M(x;x∗)F (x) =
∞∑
n=0

n∑
k=0

Qk(x− z)Pn−k(x− z) =
∞∑
n=0

Rn(x− z), (4.7)

where Rn(x) is a n-homogeneous polynomial.
The above argument can be repeated for any u ∈ E as both F and M(·;x∗)

are analytic and can be expanded in power series. There exists therefore an open
neighbourhood U around all x ∈ E such that the deflated operator can be expanded
into a convergent power series. As the power series expansion of an operator is
uniquely defined it follows from theorem 9 that the deflated operator is analytic on
E.

A direct consequence of the above theorem is that Smale’s γ remains well-defined
after deflation.

Corollary 2. Under the assumptions in theorem 12, Smale’s gamma-function, given
by (3.42), is well-defined at z ∈ X for both the original function F (x) and the deflated
function M(x;x∗)F (x). In this case denote γ̃(x) as Smale’s gamma-function applied
to the deflated function M(x;x∗)F (x).

Although it is not clear from the above results what the relation is between γ̃(z)
after deflation and γ(z) before deflation, we can conclude that after deflation with
suitable smooth operators that in principle at every stage of deflation there exist open
neighbourhoods around the undiscovered roots for which quadratic convergence with
Newton is guaranteed.

Note, though, that deflating a function can in fact result in γ̃(z) < γ(z) which
results in larger convergence balls after deflation compared with the situation before
deflation, as the following example shows.

Example 3 (Shrinking Smale’s gamma after deflation). We consider again the stan-
dard cubic polynomial f(x) = (x+ 1)(x− a)(x− 1) with a ∈ A = {x ∈ C : |x± 1| ≤
2, x 6= ±1} where x ∈ C. Explicitly calculating the Smale gamma-functions yields

γ(1) = max

{
|3− a|
2|1− a|

,
1√

2|1− a|

}
≥ 1

2
,

γ(−1) = max

{
|3 + a|
2|1 + a|

,
1√

2|1 + a|

}
≥ 1

2
,
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where the inequality is derived from a ∈ A, which implies |1− a| ≤ 2 and |1 + a| ≤ 2,
and the second term over which we take the maximum. Equality for both inequalities
at the same time could only happen then if 2 = |1− a| = |1 + a|, i.e. a = ±i

√
3, but

in that case γ(±1) =
√

3/2 > 1/2. So at least one of the inequalities is strict.
After deflation of the root a we can use Example 1 to find that γ̃(±1) = 1/2.

Therefore we see that at least one of the gamma functions shrinks after deflation.

Combining Theorem 12 with the idea of overlapping convergence balls as in Figure
2.1 we get the first sufficient conditions for convergence to multiple roots from a single
initial guess using deflation and Newton’s method.

Theorem 13 (Deflated Smale’s γ-theorem). Let F : X → Y be an analytic function
on an open subset D ⊆ X. Suppose that z1, z2 ∈ D such that F (z1) = F (z2) = 0 and
the Fréchet derivatives F ′(z1) and F ′(z2) are invertible. Given a deflation operator
M(·; z1) : D \ {z1} → GL(Y, Z) which is analytic on an open subset E ⊂ D \ {z1}
such that z2 ∈ E, then define

i) γ̃(x) as Smale’s gamma-function defined by (3.42) applied to M(x; z1)F (x),

ii) γ∗1 = γ(z1) and ρ∗1 = 5−
√

17
4γ∗1

,

iii) γ∗2 = γ̃(z2) and ρ∗2 = 5−
√

17
4γ∗2

.

If ‖z1 − z2‖ < ρ1 + ρ2 for some ρ1 ≤ ρ∗1 and ρ2 ≤ ρ∗2 such that B1 = B(z1, ρ1) ⊂ D
and B2 = B(z2, ρ2) ⊂ E, then there exists an x0 ∈ B1∩B2. Starting from this x0 with
Newton’s method we first converge to z1 ∈ D and then after deflation using M(·; z1)
we converge to z2 ∈ E.

Note that by Theorem 12 all definitions in Theorem 13 are well-defined. A proof
applies Theorem 12, Theorem 10 and an overlapping condition on convergence balls
before and after deflation as depicted in Figure 2.1.

As the above results are restricted to the case of analytic functions one could ask
a similar type of question for general functions, as treated in Section 3.2.

4.2.2 Deflation on general functions

We now consider functions which are not necessarily analytic, but for which we can
prove local convergence of Newton’s method. As a crucial ingredient of the affine
covariant theorems in Section 3.2 is the affine covariant Lipschitz continuity of the
Fréchet derivative F ′, we first state a lemma on the product of Lipschitz continuous
functions.

Lemma 7 (Product of Lipschitz continuous functions). Let X, Y, Z be Banach spaces
and G : X → L(Y, Z) and F : X → Y be Lipschitz continuous functions on the open
subset D ⊆ X with Lipschitz constants ωF and ωG respectively. Assume furthermore
that F is bounded on D, i.e. there exist NF , NG ∈ R such that for all x ∈ D we have
‖F (x)‖ < NF and ‖G(x)‖ < NG, as G is bounded by definition. Then the product
GF : X → Z is bounded and Lipschitz continuous on D with Lipschitz constant
(NFωG +NGωF ).
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For a proof see Appendix A.2. Note that the given Lipschitz constant might not
be the best Lipschitz constant.

This now sets conditions for our deflation operator such that we can apply the
Rall-Rheinboldt convergence theorem to deflated functions.

Theorem 14. Let F : D → Y be a continuously Fréchet differentiable function on
the open convex subset D ⊆ X. Suppose that z ∈ D such that F (z) = 0 and the
Fréchet derivative F ′(z) is invertible. Furthermore assume that we have an x∗ ∈
D, x∗ 6= z, such that F (x∗) = 0. Suppose then that we have a deflation operator
M(·;x∗) : D \ {x∗} → GL(Y, Z) and an open bounded convex subset E ⊆ D \ {x∗}
with z ∈ E such that the following conditions hold:

i) F satisfies the two Rall-Rheinboldt conditions around z ∈ D (see theorem 6),

ii) M(x;x∗) is continuously Fréchet differentiable for all x ∈ E,

iii) ‖M′(x;x∗)−M′(y;x∗)‖ ≤ ωM′‖x− y‖ for all x, y ∈ E.

Then there exists a ρ > 0 such that if we start at x0 ∈ B = B(z, ρ) the Newton se-
quence defined by (3.1) on the deflated functionM(x;x∗)F (x) is well-defined, remains
in B and converges to z ∈ B.

Note that a shifted deflation operator, as defined by 2.9, satisfies these require-
ments under the condition that the norm on X is (locally) at least twice continuously
differentiable on E (this implies a Lipschitz continuous Fréchet derivative as E is
bounded). In that case we can use the composition rule for differentiable functions to
show that the deflation operator, which is now a composition of differentiable opera-
tors, is indeed twice continuously differentiable E. The Lp spaces for 1 < p <∞ and
Sobolev spaces (W k,p for k ∈ N and 1 < p < ∞) are reflexive spaces and therefore
admit a continuously differentiable norm on any open subset not containing zero,
see for example [20]. The question whether a continuously twice differentiable norm
exists seems to be a more involved question in functional analysis. We point out that
for 2 ≤ p <∞ the Lp standard norm is at least twice continuously differentiable [46,
Theorem 8] and that Banach spaces that are isomorphic to a Hilbert space can be
equipped with twice differentiable norms as well [29, 17].

This statement in essence states conditions for which the Rall-Rheinboldt theorem
is not only applicable to the original function, but to the deflated function as well.

Proof. To start with we know by the same reasoning as in theorem 12 that the Fréchet
derivative of M(x;x∗)F (x) is invertible at z.

As F (x) andM(x;x∗) are continuously Fréchet differentiable on E we know that
they are Lipschitz continuous as well. Being Lipschitz continuous also implies that
the operators are bounded on E and thus F (x), F ′(x),M(x;x∗) and M′(x;x∗) are
all bounded on E.

As a result we know that the Fréchet derivative of the deflated operator

(M(x;x∗)F (x))′ =M(x;x∗)F ′(x) +M′(x;x∗)F (x) (4.8)
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is Lipschitz continuous by use of the triangle inequality and Lemma 7. Therefore
there exists some (affine covariant) ω̃ > 0 such that∥∥∥([M(z;x∗)F (z)]′

)−1
[(M(x;x∗)F (x))′ − (M(y;x∗)F (y))′]

∥∥∥ ≤ ω̃‖x− y‖, (4.9)

for all x, y ∈ E. This means that the affine covariant Rall-Rheinboldt theorem can
be applied to both F (x) and M(x;x∗)F (x), proving the claim in the theorem.

Now we can state sufficient conditions for a general function to convergence to
two solutions by using deflation and Newton’s method. The proof simply applies the
previous theorem and the Rall-Rheinboldt theorem 6.

Theorem 15 (Deflated Rall-Rheinboldt). Let F : D → Y be a continuously Fréchet
differentiable function on an open subset D ⊆ X. Suppose that z1, z2 ∈ D such that
F (z1) = F (z2) = 0. Let E1 be an open convex subset E1 such that E1 ⊂ D \ {z2}
and z1 ∈ E1. Furthermore let E2 be an open bounded convex subset E2 such that
E2 ⊂ D \ {z1} and z2 ∈ E2. Additionally let M(·; z1) : D \ {z1} → GL(Y, Z) be a
deflation operator such that the following conditions hold

i) F ′(z1)−1 and F ′(z2)−1 exist,

ii) ‖F ′(z1)−1 (F ′(x)− F ′(y)) ‖ ≤ ω∗1‖x− y‖ for all x, y ∈ E1,

iii) ‖F ′(z2)−1 (F ′(x)− F ′(y)) ‖ ≤ ω∗2‖x− y‖ for all x, y ∈ E2,

iv) M(x; z1) is continuously Fréchet differentiable for all x ∈ E2,

v) ‖M′(x; z1)−M′(y; z1)‖ ≤ ωM′‖x− y‖ for all x, y ∈ E2.

Then there exists a ω̃2 > 0 such that for all x, y ∈ E2 there holds∥∥∥([M(z2; z1)F (z2)]′
)−1

[(M(x; z1)F (x))′ − (M(y; z1)F (y))′]
∥∥∥ ≤ ω̃2‖x− y‖. (4.10)

If ‖z1 − z2‖ < ρ1 + ρ2 for some ρ1 ≤ 2/(3ω∗1) and ρ2 ≤ 2/(3ω̃2) such that we have
B1 = B(z1, ρ1) ⊂ E1 and B2 = B(z2, ρ2) ⊂ E2, then there exists an x0 ∈ B1 ∩ B2.
Starting from this x0 with Newton’s method we first converge to z1 ∈ E1 and then
after deflation using M(·; z1) we converge to z2 ∈ E2.

Note that a crude upper bound for ω̃2 could be derived using Lemma 7, the
triangle inequality and bounds on the norms of F (x),M(x; z1) and their Fréchet
derivatives. The Lipschitz constant derived in this way is, however, likely to be a
gross overestimation of the optimal Lipschitz constant and therefore might not be
useful in practice.

We conclude with the observation that in order to derive sufficient conditions for
convergence we imposed the same regularity conditions on the deflation operator as
those imposed on the original function. This seems natural as we want their product,
the deflated function, to satisfy similar regularity conditions in order to apply the
local convergence theorems from Chapter 3.
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5. Bifurcation diagrams and deflation

Now we turn our attention to an application of the method of deflation in finding
multiple solutions, namely the construction of bifurcation diagrams. We will first
give a short introduction to the numerical computation of bifurcation diagrams using
so-called continuation techniques. Then we will highlight where deflation can com-
plement the traditional numerical bifurcation toolbox. In practice we observe that
for a range of illustrative problems with deflation and continuation combined we can
trace out bifurcation diagrams where continuation alone fails.

Part of the code used for this thesis is publicly available at https://bitbucket.org/
CasperBeentjes/files-msc-dissertation.

5.1 Numerical bifurcation techniques

Branch continuation

We return to the original problem

F (u, λ) = 0, (5.1)

and suppose for the moment that we are initially given a root (ũ, λ̃). A natural
question now is whether we can solve 5.1 for u(λ), i.e. whether we can find a relation
between the output of the model and the controls. Sufficient conditions for such a
curve to exist are given by the implicit function theorem [26, Theorem 13.22]. They
mainly require an invertible partial Fréchet derivative with respect to u, denoted Fu,
at the given roots and result in an open neighbourhood around the given root for
which u(λ) such that u(λ̃) = ũ is uniquely defined and a root to (5.1). As these
conditions are satisfied away from bifurcation points we can hope to trace out these
curves by making small steps along the curve, an idea which was already known to
Poincaré [38], and is known under the name continuation.

In this classical setting of continuation the solution curve is parametrised by the
natural occurring parameter for the problem, namely λ. This parametrisation works
well in regions where Fu is non-singular so that we are guaranteed to have a unique
parametrisation by the implicit function theorem. Note, however, that exactly at
the bifurcation points we see that Fu becomes singular and we lose uniqueness which
results in a breakdown of our parametrisation. There are multiple ways to elude this
problem and one of the most widespread options is to change the parametrisation of
the solution branch such that at bifurcation points the partial Fréchet derivative is
non-singular. A natural way to parametrise a curve is the arclength parametrisation
which is depicted in Figure 5.1. If we denote the arclength parameter by s we now
look for u(s) and λ(s) and have to add to (5.1) the arclength constraint to get a closed
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system of equations. Doing so we arrive at

F (u(s), λ(s)) = 0, (5.2a)∥∥∥∥(du(s)

ds
,
dλ(s)

ds

)∥∥∥∥
U×Λ

= 1. (5.2b)

With this added equation we are now able to continue branches through bifurcation
points and we compute a bifurcation curve parametrised by s instead of λ.

λ0 λ1

u0

ucor

upred

∆s

predictor path
corrector path

λ

u

Figure 5.1: Illustration of a predictor-corrector step for a scalar problem, where we
have used a tangent predictor to make an arclength step of length ∆s. The predictor
step is shown in blue and serves as an initialisation for the correction step, whose
path is shown by the dashed line.

We make use of a standard framework in numerical bifurcation analysis, predictor-
corrector methods, which we sketch in Figure 5.1. One of the most used predictor
steps is based on the observation that along the curve, parametrised by λ, we have

0 = Fu(u, λ)uλ + Fλ(u, λ), (5.3)

known as the Davidenko equation. If given (u, λ) we can solve this for the tangent
vector uλ. Note that in the natural parametrisation this equation breaks down at
the bifurcation due to the Jacobian Fu becoming singular. To overcome this problem
we again use the arclength parametrisation (5.2) and solve for a tangent vector,
depending on s, in this augmented system, which is done by solving

Fu
du(s)

ds
+ Fλ

dλ(s)

ds
= 0, (5.4a)∥∥∥∥(du(s)

ds
,
dλ(s)

ds

)∥∥∥∥
U×Λ

= 1. (5.4b)
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One constructs a predictor for a new solution in this tangent direction and uses this
as an initial guess for the computation of the corrected solution which should lie on
our bifurcation curve again as depicted in Figure 5.1.

Therefore under the assumption of a starting point on the branch, or at least a
point sufficiently close for Newton to converge, we have a numerical procedure to trace
out the solution branch. For a more detailed treatment of arclength continuation and
different continuation techniques see, for example, [44].

Branch detecting and branch switching

In addition to continuation techniques we need methods which can detect bifurcation
points and a device that gives us the option to change solution branch at these
bifurcation points. The detection of a bifurcation is often done by looking at a test
function, which is constructed such that it has a zero at bifurcation points. The
specific form of the test function relies heavily on the type of bifurcation one wants
to detect. The type of bifurcation points is determined by the behaviour of the
eigenvalues of the Jacobian Fu and in practice test functions therefore rely often on
calculation of either eigenvalues or determinants of the Jacobian, which is numerically
expensive. This makes this approach not scalable to large-scale systems, such as those
arising in discretisations of PDEs, as the cost of the test-function becomes prohibitive.
We will not discuss test functions in more detail here, but instead refer the reader to
[28, 44].

Having detected a bifurcation point one now knows that multiple solutions have
to exist close to this point. Different techniques, dependent on the type of bifur-
cation, have been devised to switch to different branches at bifurcation points and
we refer for details again to [28, 44]. Having switched branches we can, once more,
use continuation techniques to trace out these branches fully. A sketch of how the
aforementioned techniques are combined is given in Figure 5.2.

λ

J
(u

)

(a) Detect bifurcation point

λ

J
(u

)

(b) Switch to new branch

λ

J
(u

)

(c) Continuation new branch

Figure 5.2: Illustration of standard numerical bifurcation algorithm. We start out
by continuation of a branch as in Figure 5.2a. If we detect a bifurcation point we
can use specialised techniques to switch branch at the bifurcation point, depicted in
Figure 5.2b. If we have a point on the new branch we can use standard continuation
to trace out the new branch as in the rightmost figure.
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5.2 Deflation and continuation combined

As mentioned in the introduction there is a flaw in the current numerical bifurcation
algorithms in the sense that they are not able to detect different branches in the
absence of a bifurcation point. A standard situation in which this might arise is in
the case of bifurcation branches which are disconnected from the initial branch such
as we saw in Figure 1.3. The numerical continuation techniques are capable of tracing
out branches if and only if we can initialise them with a point which actually lies on the
solution branch. The problem of tracing out diagrams with disconnected branches,
such as in Figure 5.3, now asks for a method to calculate multiple solution points
for a given parameter value. The deflation technique as discussed in the previous
chapters can provide an answer to this problem and we will now shortly discuss two
novel applications of augmenting numerical bifurcation algorithms with deflation.

Detecting (disconnected) branches

As deflation is able to compute multiple solutions from one single initial guess, we
propose the augmentation of numerical bifurcation analysis with deflation in the
following way; we start with a given initial solution to trace out an initial branch.
If the parameter λ reaches some pre-determined value λ̃ we stop the continuation
and we thus have some solution (ũ, λ̃) to (5.1). Instead of tracing a branch we now
look for a solution to (5.1) at λ̃ + ∆λ based on our knowledge of the solution at
λ̃, i.e. we use ũ as an initial guess for the problem at parameter λ̃ + ∆λ. If ∆λ is
sufficiently small, this will at least yield the continuation of the solution ũ on the
same branch. Having found this continuation we can then employ deflation, which
will prevent the solver to converge to the same branch again. If we now retry with ũ
as an initial guess we are guaranteed not to converge to the same branch again. Under
suitable conditions we can now find different solutions to (5.1) for the same parameter
value, which thus must lie on a different branch. In this way we can generate initial
points on multiple branches and as we now have good initial points we can again use
continuation techniques to fully trace out these branches. For a sketch of this method
see Figure 5.3.

Note that this approach does not rely on either the presence or proximity of a
bifurcation point and can thus be applied to find disconnected branches.

Branch switching

The previous framework provides a method to find disconnected branches by using
deflation at some specific parameter values, without any extra knowledge on the
bifurcation structure of the problem. If we, however, do know more details about the
specific bifurcation structure in the form of the approximate location of a bifurcation
point we can use this to our advantage. Close to a bifurcation point, the solutions
which emanate from this point will be close to each other. This means that it is
likely that an initial guess close to the bifurcation point will be able to yield multiple
solutions using deflation. Deflation can therefore be used to perform branch switching.
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(a) Initial continuation
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(b) Deflate to find multiple
branches

λ

J
(u

)

(c) Continuation of branches

Figure 5.3: Illustration of the use of deflation in numerical bifurcation analysis. We
start out by continuation of a branch as in Figure 5.3a. Along our branch we stop
and fix the parameter λ and attempt a deflation step to find multiple solutions for
this parameter value as in Figure 5.3b. If the deflation step is successful we have a
points on multiple branches and we can use standard continuation to trace out these
branches as in the rightmost figure.

Although many different branch switching techniques do already exist, deflation is
useful in this context for two reasons.

First of all its generality, as branch switching with deflation is not dependent
on the bifurcation type and can be used for a variety of bifurcations. The only
requirement that we need for deflation is that the problem can be formulated as a
system of equations of the form (5.1).

More importantly, branch switching with deflation can be made scalable. The
classical branch switching techniques depend heavily on detection of the bifurcation
point, which is computationally expensive. By contrast, if a good preconditioner is
available for the underlying problem Farrell et al. [18] showed that the deflated systems
can be solved with the same computational efficiency as the underlying undeflated
system. Deflation for branch switching is thus the first scalable bifurcation technique.

5.3 Comparison with existing software

AUTO-07P

A large collection of software packages is available for numerical bifurcation analysis
and an extensive list is described in [16]. One of the most widely used packages is
AUTO-07P [15], which is written in Fortran 95 and partially equipped with a Python
wrapper. The program is known for its reliability and offers both continuation and
branch switching algorithms for various types of bifurcations. AUTO-07P can apply
its bifurcation analysis tools to two different classes of equations. First of all it can
do a limited analysis on algebraic systems of the form

0 = F (u, λ), u ∈ Rn, λ ∈ Rm. (5.5)
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This is for example useful in order to track bifurcations of steady state solutions
to a system of ODEs as this naturally results in a system of the form (5.5). The
second class of problems for which it can be used are one-dimensional boundary value
problems (BVPs) of the form

u′(τ) = F (u(τ), λ), u(τ) ∈ Rn, λ ∈ Rm, τ ∈ [a, b], (5.6)

with boundary conditions and possibly integral constraints. Besides its use in looking
at bifurcation diagrams for BVPs this also allows one to investigate the stationary
states of certain parabolic PDEs describing reaction-diffusion equations of the form

uτ = Duxx + F (u, λ), u(x) ∈ Rn, λ ∈ Rm, x ∈ [a, b], (5.7)

where D is a diagonal Rn×n matrix containing the diffusion constants. The steady
states to this problem can be rewritten to (5.6).

Practical implementation deflation and continuation

We compare the bifurcation diagrams computed with AUTO-07P with our imple-
mentation of deflation and continuation techniques. Our implementation was writ-
ten in FEniCS [31], an automated programming environment for solving differential
equations using the finite element method (FEM), which we control using a Python
interface. We need to supply the equations in variational form, see [31], and the FEM
discretisation to be used. FEniCS then assembles the discretised system of FEM
equations which can be solved using numerical linear algebra software, in this case
the PETSc toolbox [4, 5, 10] in combination with the MUMPS package [1, 2].

To carry out the numerical bifurcation analysis we use an arclength continuation
and deflation class written for FEniCS by P.E. Farrell [19] augmented by a branch
switching method purely based on deflation and a bifurcation detector based on the
determinant test function. Our implementation of branch switching is thus purely
based on deflation in contrast to other software such as AUTO-07P. The algorithm
gives the option to only switch branches at bifurcation points or to safeguard against
missed branches by using deflation away from bifurcation points at points specified
by the user.

5.3.1 Steady state continuation

We consider the problem of steady state continuation of ODEs, a BVP and a non-
linear diffusion equation so that we can make use of AUTO-07P. We assume that we
are initially given a steady state by either an explicit construction, a homotopy [44]
or by integrating the time-dependent problem.

Algebraic problems

The first problem that we consider is the cusp, the second of the elementary catas-
trophes in catastrophe theory, which can depend on two parameters λ and µ. The
ODE that we consider is

u′ = u(λ− u2) + µ, (5.8)
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where now u(t) and u′ means differentiation with respect to t. We are interested in
the steady states of this ODE as a function of the parameters, which can be achieved
by setting u′ = 0 and solving the algebraic equation.

We start with the case µ = 0 and allow λ to vary. This is now the normal form
of a pitchfork bifurcation in which two non-trivial (symmetrical) solutions emanate
from a trivial branch in the bifurcation point. Since the bifurcation point connects
all branches, both AUTO-07P and our deflation implementation trace out the full
bifurcation diagram, see Figure 5.4a.
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(a) µ = 0
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Figure 5.4: Bifurcation diagram for (5.8) as computed by AUTO-07P and the de-
flation technique. For AUTO-07P we plot a data point every 2 steps. In the case
of µ = 0 there is a supercritical pitchfork bifurcation which connects all branches,
whereas for µ = 0.1 we see that the symmetry of the pitchfork bifurcation has been
broken and the branches are disconnected. In this case AUTO-07P can only find one
branch.

If we now set µ 6= 0 the reflection symmetry u 7→ −u gets broken and we arrive
at the imperfect pitchfork bifurcation. This is an example of a bifurcation diagram
with disconnected branches. We have one trivial branch and two branches which
arise from a fold bifurcation and do not connect with the trivial branch. As a result
AUTO-07P is not able to compute the full bifurcation diagram if we start from the
trivial branch, see Figure 5.4b.

The next problem is inspired by Rosenblat and Davis [41] who studied bifurcations
at infinity as a possible explanation of observations in stability analysis of Hagen-
Poiseuille flow and Couette flow. We start with the ODE

u′ = −λu+ u2 − u3, (5.9)

and again set u′ = 0. Now the bifurcation structure consists of a trivial branch and
two solutions emanating from a subcritical fold bifurcation or saddle-node bifurcation
at λ = 1/4. The non-trivial branches connect with the zero branch in a transcritical
bifurcation at λ = 0 and the bifurcation diagram is thus fully connected. Deflation
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and AUTO-07P therefore correctly compute the full bifurcation diagram, see Figure
5.5.
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Figure 5.5: Bifurcation diagram for (5.9) as computed by AUTO-07P and the defla-
tion technique. For AUTO-07P we plot a data point every 2 steps. There are two
bifurcation points, a transcritical bifurcation at λ = 0 and a subcritical fold bifur-
cation at λ = 1/4, which connect all the branches. Both AUTO-07P and deflation
compute the full bifurcation diagram.

If we now, however, make the transformation µ = 1/λ we drastically change the
bifurcation diagram. We consider,

u′ = −u
µ

+ u2 − u3, (5.10)

for µ > 0. We still have a trivial branch and two non-trivial branches originating in
a supercritical fold bifurcation at µ = 4. However, we see now that the transcritical
bifurcation at λ = 0 becomes a bifurcation at µ = ∞ and as a result the branches
only connect at infinity, which leaves them uncomputable to AUTO-07P, see Figure
5.6.

The seemingly disconnected branches are important to the understanding of the
problem. A linear stability analysis would tell that the trivial branch is stable, but
for sufficiently large µ any positive perturbation would make the solution switch to
one of the disconnected branches and this indicates that a linear stability analysis
can yield misleading results.

The previous examples show that deflation can trace out complete diagrams where
AUTO-07P fails in the case of algebraic problems. For the preceding examples this
result could have been anticipated based on the results in Section 4.1 and the obser-
vation that the considered problems were in fact all cubic polynomials. We will now
show that in the case of more complicated problems deflation still gives better results
than AUTO-07P.
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Figure 5.6: Bifurcation diagram for (5.10) as computed by AUTO-07P and the de-
flation technique. For AUTO-07P we plot a data point every 20 steps. There is one
finite bifurcation point, a supercritical fold bifurcation at µ = 4. The branches are
however disconnected for all finite values of µ. One of the branches that emanates
from the fold bifurcation connects to the trivial branch at infinity. AUTO-07P does
not detect a bifurcation point and thus only finds the trivial branch by continuation,
whereas deflation traces out the full bifurcation diagram.

Boundary value problems

We now return to the problem sketched in the introduction of a slender beam under
a loading, where we assume the loading to be in the longitudinal direction as in
Figure 1.2. This problem has a long mathematical history tracing back to Galileo,
the Bernoulli family and Euler [30]. It was the latter who showed that the deformation
of the beam can be described in terms of the angle θ made relative to the vertical
axis as a function of the arclength s. If the beam is subject to a transversal force the
steady states of the beam are governed by Eulers elastica equation

θss + λ2 sin(θ) = µ, 0 ≤ s ≤ 1, (5.11a)

θ(0) = θ(1) = 0, (5.11b)

where λ is a non-dimensional load and µ depicts a non-dimensional transversal force.
In the case µ = 0, i.e. in the absence of a transversal force, the initially straight
solution, θ ≡ 0, forms the trivial branch and is valid for all s. A series of pitchfork
bifurcations at λ = mπ for m ∈ N result in the buckled modes emanating from
the trivial branch. Both deflation and AUTO-07P therefore compute a complete
bifurcation diagram, see Figure 5.7a.

If we introduce a transversal force by taking µ 6= 0 we destroy a reflection sym-
metry, just as we saw for the cusp bifurcation. The initial branch now disconnects
from all the other branches in a similar fashion as we observed before. The difference
now, however, is that there is an infinite number of branches which originally were
connected to the initial branch and which now become disconnected. The result is
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Figure 5.7: Bifurcation diagram for (5.11) as computed by AUTO-07P and the de-
flation technique, where we take the scalar measure J(u) = σ‖u‖L2 , a signed norm.
Here σ is given by σ = ux(0). For AUTO-07P we plot a data point every 8 steps. In
the case of µ = 0 a series of supercritical pitchfork bifurcations at λ = mπ for m ∈ N
connects all branches. For µ = 0.1 we see that the symmetry of the pitchfork bifur-
cation has been broken and the branches are disconnected. In this case AUTO-07P
can only find one branch.

that those branches are not found by continuation in AUTO-07P, yielding a very un-
satisfactory representation of the bifurcation structure. Deflation on the other hand
is able to trace out disconnected branches as we see in Figure 5.7b.

Lastly we return to the work by Rosenblat and Davis [41] on bifurcations from
infinity. We consider the PDE

ut =
uxx
µ

+ u2 − u3, 0 ≤ x ≤ 1, µ > 0, (5.12a)

u(0, t) = u(1, t) = 0, (5.12b)

u(x, 0) = u0(x), (5.12c)

and look for its steady state solutions. As one can see, the trivial state is a solution for
all µ. Analogous to (5.10) Rosenblat and Davis showed using singular perturbation
theory that there are two non-trivial solutions which emanate from a supercritical
fold bifurcation and one of these branches connects with the trivial branch at µ =∞.
These two non-trivial branches can not be found by AUTO-07P using continuation
and bifurcation tools, see Figure 5.8.

This PDE can be used to show that there exist systems in which an infinite number
of periodic solutions of small norm bifurcate from the trivial solution at infinity. This
has implications for the use of standard analytic methods to compute bifurcation
solutions [41].

If we transform the system to a form similar to (5.9) by identifying λ = 1/µ,

ut = λuxx + u2 − u3, 0 ≤ x ≤ 1, (5.13)
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(a) Bifurcation diagram (5.12)
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(b) Solutions (5.12) at µ ≈ 47.303

Figure 5.8: Bifurcation diagram for (5.12) as computed by AUTO-07P and the de-
flation technique, where we take the scalar measure J(u) = ‖u‖L2 . Solutions at • are
depicted in Figure 5.8b.
For AUTO-07P we plot a data point every 100 steps. There is one finite bifurcation
point, a supercritical fold bifurcation at µ ≈ 41.157. One of the branches which
emanates from this fold bifurcation connects to the trivial branch at infinity. AUTO-
07P does not detect a bifurcation point and thus only finds the trivial branch by
continuation, whereas deflation traces out the full bifurcation diagram.

with the same boundary and initial conditions, one would expect to move the bifur-
cation at infinity to λ = 0. However, we do not detect a bifurcation point on the
trivial branch using AUTO-07P, see Figure 5.9. A possible explanation would be that
the point λ = 0 is at the same time a singular point for the equation and AUTO-07P
might not be suited to solve such problems. Deflation with the bifurcation detector
is able to trace out the full diagram as shown in Figure 5.9.
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Figure 5.9: Bifurcation diagram for (5.13) as computed by AUTO-07P and the de-
flation technique, where we take the scalar measure J(u) = σ‖u‖L2 , a signed norm.
Here σ denotes the sign of the function, determined by u(0.5) in this case. Solutions
at • and • are depicted in Figure 5.9b and Figure 5.9c respectively.
For AUTO-07P we plot a data point every 2 steps. There are two bifurcation points, a
transcritical bifurcation at λ = 0 and a supercritical fold bifurcation at λ ≈ 0.024296.
AUTO-07P does not detect a bifurcation point, possibly because the point is also a
singular point of the equation, and thus only finds the trivial branch by continuation,
whereas deflation traces out the full bifurcation diagram.
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6. Conclusions

In this thesis we studied the application of deflation techniques to robustly tracing
out bifurcation diagrams, even in cases where solution branches are disconnected in
the parameter domain of study.

The first part was concerned with deriving sufficient conditions which guaran-
tee that an initial guess x0 will converge to multiple solutions using deflation and
Newton’s method, a result which is not specific to the computation of bifurcation
diagrams.

In Chapter 2 an introduction to Newton’s method and deflation was given. We
derived a new result on the existence of infinitely many points which converge to all
the roots of a scalar polynomial with real roots using Wilkinson deflation.

In the quest for more general conditions on functions on Banach spaces we re-
viewed local convergence theorems for Newton’s method in Chapter 3. As the idea
for sufficiency conditions is that an initial guess lies in different convergence regions
of different roots before and after deflation we made a direct comparison between the
theorems from this perspective. Such a review has not been published before and we
fill in some details and gaps of the existing review literature. We found that in or-
der to derive sufficiency conditions we need to employ Newton convergence theorems
which center their convergence regions around the roots of the equation instead of
the initial guess, thereby limiting the theorems that we can use.

In Chapter 4 we showed some example convergence regions for specific functions
illustrating that using convergence balls of local theorems we can in fact show con-
vergence to multiple solutions in some cases. Two of the local convergence theorems,
the affine covariant Rall-Rheinboldt and Smale’s γ-theorem, are then used to derive
the first known sufficiency conditions for convergence towards multiple roots using
deflation in Banach spaces. These conditions extend the conditions that are assumed
to hold for the original function by the original convergence theorems so that the
same conditions hold for the deflation operator as well. The deflated function, which
is a product of the deflation operator and the original function, can then be shown
to satisfy similar conditions to the original function and therefore we can apply the
convergence theorems before and after deflation.

In the last part of this thesis we investigated the practical use of deflation in ro-
bustly tracing out bifurcation diagrams. We tested an implementation of a deflation
and continuation algorithm with one of the best available standard software packages
for numerical bifurcation analysis, AUTO-07P. Results in Chapter 5 show that for
a range of test problems, containing disconnected branches or bifurcations at infin-
ity, AUTO-07P fails in tracing out the complete bifurcation diagrams, whereas the
combination of deflation and continuation succeeds in correctly computing the full
bifurcation diagram.
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Further work

Both the theoretical and numerical results leave ample space for future research.
Deflation as a technique to find multiple solutions has a wide range of possible ap-
plications as pointed out in [18], however we will focus here on the computation
of bifurcation diagrams using deflation. We will highlight some possible extensions
which we believe would be fruitful:

1. The result on Wilkinson deflation on polynomials with real roots relies heavily
on the interplay between convexity of the function and properties of Newton’s
method. Some results on extending the concept of convex functions to finite
dimensional real vector spaces have been made in [35, Chapter 13]. Can this be
used to extend the scalar case result on Wilkinson deflation?

2. The local convergence theorems considered in this thesis do not make use of any
special structure that could be present in bifurcation problems. For example,
deflation is expected to work particularly well in regions where the solutions are
close to the initial guess, such as is the case for bifurcation points. Does adding
information from bifurcation theory yield extra insight?

3. The Banach space framework covers PDEs and integral equations as well and as
showed in [18] we can use deflation to trace out connected bifurcation diagrams
for some PDE examples. Can we find examples of disconnected branches (for
example in two-dimensional elastic beam buckling) or bifurcations at infinity in
PDEs or integral equations and can we compute, using deflation, their complete
bifurcation diagrams?

4. Deflation can make the switching of solution branches scalable. However, we
can often not compute the location of bifurcation points using classical test
functions for large scale systems, which would mean that regions of good per-
formance of deflation can be missed and heuristic methods for the application of
deflation have to be used. We can therefore ask whether we can devise scalable
indicator methods which can hint at the proximity of a bifurcation point? For
example, for medium-sized problems, where we can use a LU-decomposition of
the Jacobian whilst solving the Newton iterations, the determinant test function
can be calculated cheaply. A possible extension of such a technique to the case
of solving large-scale systems using preconditioned GMRES is given in [22].
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A. Proofs of auxiliary results

A.1 Convergence Newton’s method for convex real functions

Lemma. Let f : I ⊆ R→ R be a convex, differentiable function where I is an open
interval such that there exist precisely one x∗ ∈ I with f(x∗) = 0. Starting from
x0 ∈ I with f ′(x0) 6= 0, Newton’s method converges to x∗ if x1 ∈ I.

Proof. Since f is convex and differentiable we know that for all x, y ∈ I we have

f(x) ≥ f(y) + f ′(y)(x− y), (A.1)

which states that the function must lie above its tangents. In addition one knows
that f ′(x) is monotonically increasing on I.

First of all we note that by (A.1) and the construction of the Newton iterates that
f(x1) ≥ f(x0)− f(x0) = 0 regardless of the initial guess.

Now let us assume that f ′(x0) > 0. Suppose that f(x0) < 0, then by construction
of the Newton iterates we have x1 > x0. As f ′ is monotonically increasing on I this
implies f ′(x1) > 0 as well. We thus have x1 ∈ I (by assumption of the lemma),
f(x1) ≥ 0 and f ′(x1) > 0. If we assume that f(x0) = 0 we are done, as then we
would have x0 = x∗. If instead we assumed f(x0) > 0 we know that x∗ < x0.
Since the function has to lie above its tangent at x0 we conclude that x∗ ≤ x1 < x0

and thus f ′(x1) ≥ 0 as f ′ is monotonically increasing and f ′(x∗) ≥ 0. Therefore
we know that under the assumptions of the theorem and f ′(x0) > 0 there holds
x1 ∈ I, f(x1) ≥ 0 and f ′(x1) ≥ 0. If f ′(x1) = 0 we conclude that by convexity we
have 0 = f(x∗) ≥ f(x1) ≥ 0 and thus f(x1) = 0 and x1 = x∗.

Assume that for all 1 ≤ n ≤ N that xn ∈ I, f(xn) ≥ 0 and f ′(xn) > 0. Then it
follows from the construction of the Newton sequence that xn+1 ≤ xn for all n ≤ N .
Suppose that xN+1 /∈ I, then it follows from (A.1) that f(x) > 0 for all x ∈ I, but
then f cannot have a root in I, which contradicts our assumption. Therefore it must
be that xN+1 ∈ I, from which we can immediately conclude that f(xN+1) ≥ 0.

It remains to prove that f ′(xN+1) > 0. If f ′(xN+1) = 0 we find by a similar
argument as before that xN+1 = x∗ and we are done. Suppose thus, again by contra-
diction, that f ′(xN+1) < 0. As the function f is strictly positive on [xN+1,∞)∩I and
f ′ is negative on (−∞, xN+1]∩ I by monotonicity we know that f is strictly positive
on I and thus cannot have a root, which contradicts our assumptions. Therefore
f ′(xN+1) > 0.

By induction it then follows that either xn = x∗ for all n ≥ M for some M ∈ N
or for all n ∈ N≥1 that xn ∈ I, f(xn) ≥ 0 and f ′(xn) > 0.

In the latter case we see that as the sequence {xn} is constructed by Newton’s
method it furthermore follows that xn ≤ xn+1 for all n ∈ N≥1, and thus it is a
decreasing sequence. By the monotone convergence theorem it then follows that the
sequence {xn} converges, i.e. limn→∞ xn = x̄. Suppose x̄ /∈ I, then it must hold that
f is strictly positive on I, but this contradicts the assumption on x∗. Therefore x̄ ∈ I
and by construction of the Newton sequence we must have that x̄ = x∗.
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The assumption f ′(x0) > 0 leads to a monotonic decreasing sequence to x∗ ∈ I.
A similar argument with f ′(x0) < 0 results in a monotonic increasing sequence to
x∗ ∈ I.

A.2 Product of Lipschitz continuous functions

Lemma. Let X, Y, Z be Banach spaces and G : X → L(Y, Z) and F : X → Y be
Lipschitz continuous functions on the open subset D ⊆ X with Lipschitz constants
ωF and ωG respectively. Assume furthermore that F is bounded on D, i.e. there exist
NF , NG ∈ R such that for all x ∈ D we have ‖F (x)‖ ≤ NF and ‖G(x)‖ ≤ NG, as
G is bounded by definition. Then the product GF : X → Z is bounded and Lipschitz
continuous on D with Lipschitz constant (NFωG +NGωF ).

Proof. Let x, y ∈ D be arbitrary points. As both F and G are bounded on D their
product is bounded as well

‖G(x)F (x)‖ ≤ ‖G(x)‖‖F (x)‖ ≤ NGNF <∞.

From the assumptions we can furthermore derive that

‖G(x)F (x)−G(y)F (y)‖ = ‖G(x)F (x)−G(x)F (y) +G(x)F (y)−G(y)F (y‖
≤ ‖G(x)F (x)−G(x)F (y)‖+ ‖G(x)F (y)−G(y)F (y)‖
= ‖G(x)‖‖F (x)− F (y)‖+ ‖G(x)−G(y)‖‖F (y)‖
≤ NG‖F (x)− F (y)‖+NF‖G(x)−G(y)‖
≤ NGωF‖x− y‖+NFωG‖x− y‖
= (NFωG +NGωF )‖x− y‖,

which proves the claim.
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