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Abstract. Movement of magma through the earth’s mantle can be seen as porous media

flow. To model this molten rock migration we derive a model describing a viscous fluid flow
through a compacting solid matrix based on work by McKenzie [10]. Upon simplification using,

inter alia, a Boussinesq approximation we arrive at a more tractable non-linear model with

rich behaviour. Solitary wave type solutions have been observed numerically for simplified
models [3, 13]. Analytic expressions for a restricted class of travelling waves are derived which

confirm the existence of solitary waves. Strong evidence to date suggests that these special

wave solutions are not solitons.

1. Introduction

The dynamics of the earth’s crust and mantle have been subject of intense study by geophysi-
cists. One of the problems encountered in the study of the outer layers of the earth is related to
the presence of molten rock or magma. It is observed that the crust and mantle seem to contain
more highly concentrated regions of magma, such as magma chambers, than can be expected
from experiments looking at the partial melting of rocks. Note that one might intuitively con-
sider this partial melting of rocks as the main source of magma. As a result it is believed that
large-scale migration of molten rocks is an important factor that has to be incorporated in models
of the earth’s mantle. The combination of creation of melt in the outer layers and its transport
attracted attention from the geophysical community in the eighties, when mathematical models
of this mechanism were proposed. The majority of these models were based on the idea of a two-
phase flow consisting of a melt and its solid phase. The most successful of these was proposed by
McKenzie [10] in 1984, describing the compaction and formation of partially molten rock derived
from conservation laws. Simultaneously equations similar in spirit were derived independently
for the flow of water through glaciers by Fowler [6]. The set of equations in the context of magma
dynamics are nowadays known under the name McKenzie equations.

After the introduction of the McKenzie model, its analysis showed interesting dynamics. One
of the most prominent features is the apparent formation of solitons, called magmons in the
literature. This was first observed by Scott & Stevenson [13] in 1984 in a simplified model
leading to the so-called magma equation. Later analysis of these solitary wave-type solutions by
Barcilon & Richter [3] showed evidence for the solutions not being pure solitons (as defined by
Drazin & Johnson [4]).

This paper will follow the historical order of the development of solitary wave solutions in
magma dynamics, by first considering a derivation of the governing equations, the McKenzie
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equations and the closely related magma equation. Thereafter, we will look at the travelling
solitary wave solutions and the question whether they are solitons or not.

2. Magma dynamics: McKenzie equations

We will consider the dynamics of a highly viscous fluid, the melt, in a porous matrix, following
the successful introduction by McKenzie in 1984 [10]. The high viscosity is justified by the very
low Reynolds’ number, of the order 10−8 or smaller [10], observed for both the flow of the melt
as that of the matrix. As a result we will ignore inertial effects in the model.

The model is inspired by observations of the local microscopic environment of the melt/matrix
mixture. Based on observations (e.g. Zhu et al. [15]) we assume the magma makes up an
interconnected network of small tubes in between solid grains of rock, see figure 1. The typical
length scale of the grains a ∼ 10−3 m [10, 15] is assumed to be much smaller than the typical
global scale at which the magma is moving (∼ 103 m) so that we can derive a macroscopic model
for a two-phase fluid.

(a) Two-dimensional slice of grain and
magma distribution.

(b) Three-dimensional interconnected melt
tubes forming a network.

Figure 1. Sketch by Barcilon et al. [3] of the melt grain distribution on micro-
scopic scale. The melt makes up a network of connected tubes surrounding the
solid grains. Suggested by evidence we assume that tubes stay interconnected
even for low volume fractions of magma [10].

To this effect, we consider a reference volume element V (t), which is being convected by one
of the fluids. The size of the volume element must be larger than the microscopic scale a, so as
to allow averaging over the volume, neglecting individual magma pores. On the other hand it
has to be much smaller than any macroscopic scale as we do not want to average out the global
dynamics. To derive dynamic equations we use Reynolds’ transport theorem, i.e. for any scalar
function f(x, t)

(1)
d

dt

∫
V (t)

f dV =

∫
V (t)

∂f

∂t
+∇ · (fv) dV,

where v is the velocity of the convecting fluid under consideration. As we need to distinguish
between melt and solid we will denote the different variables with subscripts m and s respectively.
Lastly we introduce the porosity φ as a ratio of melt and solid volume [5]

(2) φ =
1

V

∫
V (t)

1dV,
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where 1 is an indicator function

(3) 1(x) =

{
1 if melt at x,

0 if solid at x.

2.1. Conservation laws.

Conservation of mass. We start with the conservation of mass. The mass of both phases in
a volume element is found by integrating φρm and (1 − φ)ρs respectively for melt and solid.
Conservation of mass then reads∫

V (t)

∂φρm
∂t

+∇ · (φρmvm) dV =
d

dt

∫
V (t)

φρm dV =

∫
V (t)

Γ dV,(4) ∫
V (t)

∂(1− φ)ρs
∂t

+∇ · ((1− φ)ρsvs) dV =
d

dt

∫
V (t)

(1− φ)ρs dV =

∫
V (t)

−Γ dV,(5)

where Γ is the mass-transfer rate per unit volume from solid phase to melt, i.e. the melting rate.
As the volume is arbitrary we arrive at the continuum relations describing conservation of mass

∂φρm
∂t

+∇ · (φρmvm) = Γ,(6)

∂(1− φ)ρs
∂t

+∇ · ((1− φ)ρsvs) = −Γ.(7)

Note that Γ is unspecified and needs to be prescribed by a constitutive law describing conser-
vation of energy. See Spiegelman [14] for an example of the dynamics of mid-ocean ridges. In this
paper we will only consider dynamics without melting, i.e. Γ = 0, following the early analysis of
the McKenzie equations which used this assumption mainly for simplicity reasons [2, 3, 11–13].
In section 2.2 another motivation for neglecting melting and freezing will be given.

Conservation of momentum. In the conservation of momentum we must now include interactions
between the melt and the surrounding matrix, the gravitational pull and Cauchy stresses. This
yields that

d

dt

∫
V (t)

φρmvm dV =

∫
V (t)

φρmg dV −
∫
V (t)

f I dV +

∫
V (t)

∇ · (φσm) dV,(8)

d

dt

∫
V (t)

(1− φ)ρsvs dV =

∫
V (t)

(1− φ)ρsg dV +

∫
V (t)

f I dV +

∫
V (t)

∇ · ((1− φ)σs) dV,(9)

where g represents gravitational acceleration, f I the melt-matrix interaction force per body
volume produced by moving melt on the soid matrix and σm,s the Cauchy stress tensor for melt
and solid. Because of Newton’s third law the reaction force from the matrix on the moving melt
is given by −f I . Note that the stress tensor is multiplied by the proper voidage factor. This can
be understood by looking at the origin of the stress term, i.e. surface forces. The stresses only
act along that part of the surface that is occupied by the right phase yielding a voidage factor
in the surface integral deriving the total Cauchy stress on the volume. The Cauchy stress tensor
is then derived using the divergence theorem, which puts the porosity inside the divergence.

Recall that we are considering low Reynolds flow and as a result we neglect any inertial effect,
effectively setting the LHS of (8) and (9) to zero. The result is a local force balance given by

0 = φρmg − f I +∇ · (φσm),(10)

0 = (1− φ)ρsg + f I +∇ · ((1− φ)σs).(11)

Next we need to specify the constitutive relation between f I , σm,s and the unknowns vm,s, ρm,s
to close the system of equations. First we note that the interaction force f I has to be independent
of the inertial reference frame. Drew & Segel [5] derived a list of functions depending on vm,s
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which satisfy this constraint, of which the simplest one is a linear relation to the relative velocity
of melt and matrix vm − vs. Furthermore they argued that an interphasial force should also
depend on pressure forces in the magma generated by the gradient of the voidage φ. Taking the
simplest model incorporating these requirements McKenzie arrived at

(12) f I = C(vm − vs)− Pm∇φ,
where C is a for now undetermined constant.

For the stress tensor we distinguish between the magma and the solid matrix. The magma is
modelled as an isotropic incompressible fluid which yields

(13) σm = −PmI + µ(∇vm + (∇vm)T ),

where I is the identity tensor and µ the dynamic viscosity. By averaging over a volume element
containing disordered melt channels it is assumed that the strain rate term on the RHS of (14)
vanishes by self-cancellation [9] (note that McKenzie does not provide a justification for the
omission of the strain)

(14) σm = −PmI.

The stress tensor for the matrix is more involved as we model the solid as a compressible highly
viscous fluid in order to account for compaction and deformation of the matrix. This yields the
general stress tensor

(15) σs = −PmI + η(∇vs + (∇vs)T ) +

(
ζ − 2

3
η

)
(∇ · vs)I,

where η is the matrix shear or dynamic viscosity and ζ is the bulk viscosity. At first sight it might
be remarkable to have Pm appearing in the stress tensor for the solid matrix. A more compelling
justification is given by Scott & Stevenson [12]. They argue that compaction of the matrix
resulting in the melt being expelled is a direct consequence of a pressure difference between melt
and matrix, which can be written as

(16) Pm − Ps = ζ̃∇ · vs,

where ζ̃ is an effective matrix bulk viscosity. The pressure is commonly related to the mean
normal stress or trace of the stress tensor by

(17) Ps = −1

3
Tr(σs).

It can then be checked that the choice of Pm in (15) gives the desired compaction-pressure relation
(16).

Combining the derived constitutive relations and substituting them in (10) we find

(18) vm − vs = − φ
C

(∇Pm + ρmg).

Using this form, we can find an expression for C by noting that in the case of a steady matrix,
i.e. vs = 0, we would have to retrieve Darcy’s law for flow through a porous medium,

(19) φvm = −K
µ

(∇Pm + ρmg),

where K depicts the permeability of the matrix and µ the fluid viscosity. We thus find that we
can identify C = µφ2/K so as to get the right limiting behaviour of the equations

(20) φ(vm − vs) = −K(φ)

µ
(∇Pm + ρmg).

Note that the fluid viscosity µ is taken, in this paper, to be constant, although it could depend
on variables such as temperature in a more complex model [9]. The permeability, however, is
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typically a (non-linear) function of the voidage, i.e. K(φ). A commonly used relation put forward
by Scott & Stevenson [12] specifies a simple power law behaviour

(21) K(φ) =
a2φn

b
= K0φ

n,

where a is the earlier defined grain size and b a dimensionless parameter, lumped together in K0.
Substitution of (15) and (10) into (9) and working through the algebra gives

(22) ∇Pm + ρmg = (1− φ)∆ρg +∇ ·
(
η∗(∇vs + (∇vs)T )

)
+∇

((
ζ∗ − 2

3
η∗
)
∇ · vs

)
.

Here we have introduced

∆ρ = ρs − ρm,(23)

η∗ = (1− φ)η,(24)

ζ∗ = (1− φ)ζ,(25)

so ∆ρ is the difference in density between melt and matrix. We therefore see that the melt
pressure which drives the porous flow is generated by gravitational buoyancy forces and matrix
deformations. Note that both η∗ and ζ∗ could depend on the porosity. Indeed for φ � 1 Scott
& Stevenson [12] propose a variation as φ−m for 0 ≤ m ≤ 1, whereas the original model by
McKenzie [10] assumes constant values or m = 0

(26) η∗ = η0φ
−m, ζ∗ = ζ0φ

−m.

Now equations (8),(9),(20),(22) together with constitutive relations for η∗, ζ∗,K, µ,Γ form the
full set of McKenzie equations. These can be solved for unknowns vm,s, Pm,s if we prescribe
ρm,s-equations or for vm,s, ρm,s if we prescribe Pm,s-equations.

2.2. Boussinesq approximation. Progress on this set of equations turns out to be complicated
and therefore we first simplify the system slightly by using a Boussinesq approximation. We
assume that the densities of the melt and matrix are constants (not necessarily equal) and that
the difference is negligibly small, except where it is of influence in gravitational terms where we
assume it is a constant. This reflects the idea that buoyancy is a crucial factor in driving the melt
flow through the matrix. Next we write g = gĝ, where ĝ is the unit vector in the direction of
gravitational pull. Therefore we can also redefine the fluid pressure by incorporating lithostatic
pressure directly into the fluid pressure

(27) P = Pm − ρmgG,

where ∇G = −ĝ (in case of ĝ = −k̂, the vertical downward direction, we have G = z). This
yields a new similar set of equations which we will consider from now on

∂φ

∂t
+∇ · (φvm) =

Γ

ρm
,(28a)

−∂φ
∂t

+∇ · ((1− φ)vs) = − Γ

ρs
,(28b)

−K(φ)

µ
∇P = φ(vm − vs),(28c)

∇P = (1− φ)∆ρgĝ +∇ ·
(
η∗(∇vs + (∇vs)T )

)
+∇

((
ζ∗ − 2

3
η∗
)
∇ · vs

)
,(28d)

where ∆ρ = ρs − ρm is the difference in density between melt and matrix and is assumed to be
constant. The first two equations can be summed to yield

(29) ∇ · (φvm + (1− φ)vs) =
∆ρΓ

ρmρs
.
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Note that using actual estimates of the densities ρm ≈ 2.8 ·103 kg m−3 and ρs ≈ 3.3 ·103 kg m−3

from McKenzie [10] we find that ∆ρ/ρmρs ∼ 10−4 which justifies neglecting the term containing
the melting Γ in many cases (termed the extended Boussinesq approximation by Katz [9]).

2.3. Non-dimensionalisation. In order to further analyse the set of equations they need to be
non-dimensionalised. In literature it appears to be customary to first use further approximations
to simplify the equations, e.g. [3, 11]. It is however possible to pursue the process of non-
dimensionalising on the above set of equations derived by the Boussinesq approximation trying
to motivate as many of the rescaling on physical arguments.

An important feature is the determination of the so-called compaction length δ as given by
McKenzie in his original paper, but lacking a clear motivation. We will firstly set

(30) x = δx̂, t = T t̂, vm,s = V v̂m,s, Γ = Γ0Γ̂, ρm,s = ρ0ρ̂m,s.

By using (6),(7) we find that, as might be expected, the time scales as T = δ/V and melting rate
as Γ0 = ρ0/T .

In order to use the momentum equations we need to find a suitable scale for the pressure.
Motivated by the buoyancy driven pressure gradient to migrate melt we choose to scale pressure
on a buoyancy scale. The scale of the matrix viscosities η, ζ will be set by the same parameter
as proposed by Scott & Stevenson [12]

P = ∆ρgδP̂ , K = K0K̂, η∗ = ξ0η̂, ζ∗ = ξ0ζ̂.(31)

The conservation of magma momentum (28c) leads to V = K0∆ρg/µ. Using this information
in the conservation of matrix momentum (28d) then yields δ2 = ξK0/µ. McKenzie proposes to
scale the viscosities, based on the equation for constant η, ζ, with ξ = ζ0 + 4η0/3 (see appendix
A.1). In doing so we retrieve the compaction length proposed by McKenzie [10]

(32) δc =

√
(ζ0 + 4η0/3)K0

µ
, T =

1

∆ρg

√
µ(ζ0 + 4η0/3)

K0
,

which is the natural length scale for the reaction of the matrix-melt to a compaction (see appendix
A.2).

Now we find upon using the rescaling and by dropping of the hats the non-dimensionalised
Boussinesq approximation of the McKenzie model

∂φ

∂t
+∇ · (φvm) =

Γ

ρm
,(33a)

−∂φ
∂t

+∇ · ((1− φ)vs) = − Γ

ρs
,(33b)

−K∇P = φ(vm − vs),(33c)

∇P = (1− φ)ĝ +∇ ·
(
η(∇vs + (∇vs)T )

)
+∇

((
ζ − 2

3
η

)
∇ · vs

)
.(33d)

Boundary conditions need to be prescribed to make the problem well-posed. These depend on
the specific problem set-up and will be posed at the subsequent places in the paper.

3. Solitary waves

No direct solutions are know to date to the full McKenzie model and it is mainly studied
using numerics. Slight simplifications of the Boussinesq approximation of the McKenzie model
however offer rich behaviour as we will see.

We will from now on direct our attention to a one-dimensional column of matrix-melt with
vertical coordinate z where gravity points in the negative z-direction. All the derivatives in
space thus become partial derivatives in z. We also assume that there is no active melting
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process transferring matrix into magma or vice versa, i.e. Γ = 0. We choose (21) and (26) as
specific models for permeability and viscosity. Two very similar sets of equations have been
derived on these assumptions, by Scott & Stevenson [13], which in literature is often termed the
magma equation, and by Barcilon & Richter [3].

Magma equation. To derive the magma equation we assume a low porosity matrix-melt system,
i.e. φ� 1. This results in (1− φ) ≈ 1 which gives upon elimination of P and vm

∂φ

∂t
=
∂vs
∂z

,(34a)

vs = φn
(
−1 +

∂

∂z

(
φ−m

∂vs
∂z

))
,(34b)

or written as a single non-linear PDE in φ, the magma equation

(35)
∂φ

∂t
=

∂

∂z

[
φn
(
−1 +

∂

∂z

(
φ−m

∂φ

∂t

))]
.

Barcilon & Richter equation. If we instead make an extra rescaling on the assumption that we
are given a reference state φ0 without assuming it being small, we arrive at a different equation.
The assumption of the functional form of the viscosities η and ζ was suggested to be valid for
φ� 1 and we therefore do not assume this for this derivation. Instead we pick them both equal

and constant. We rescale now with φ = φ0φ̂ and as φ is already a dimensionless number we
can choose freely where to incorporate this new quantity as long as it is done so consistently.
Following Barcilon & Richter we choose t̃ = φ0

1−φ0
t and ṽm,s = (1 − φ0)vm,s. Furthermore we

choose K0 = K(φ0). After elimination of P and vm and dropping of the tildes this yields

∂φ

∂t
=

∂

∂z
((1− φ0φ)vs) ,(36a)

vs
φn

= −1− φ0φ

1− φ0
+
∂2vs
∂z2

.(36b)

This shows the motivation for the rescaling, as now the state φ = 1, vs = −1 provides a steady
state of the system, a uniform compacting solid matrix. Note that for φ0 � 1 we recover the
magma equation (35) for m = 0.

3.1. Solitary wave solutions. Scott & Stevenson were one of the first to look for solutions
of (35) using numerics [13]. They considered, among other things, the set-up where a region
with high magma fraction lies beneath a region with low magma fraction. In this case they
observed the formation of what appeared to be solitons, strongly localised travelling waves which
retain their shape while moving. The soliton-like solutions appeared to interact cleanly, retaining
their shape and leaving the background porosity undisturbed. This led them to believe that the
solutions were in fact solitons and thus they proposed the name magmons to describe this type
of waves.

Analytical progress can, in fact, be made as was showed by Scott & Stevenson in the same
paper. They derived the wavespeed for the travelling waves for the magma equation in the cases
m = 0 and m = 1. A major drawback of the magma equation in applicability is, however, that
it is only valid for small φ thereby possibly neglecting higher order effects. In spirit of Barcilon
& Richter, will therefore consider the case m = 0, i.e. constant matrix viscosities, more rigorous
by considering (36a),(36b) for general background voidage φ0.
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Travelling wave transformation. We look for travelling wave solutions by switching to a travelling
wave coordinate y = z− ct, where c is the wavespeed. We assume the solutions to be of the form

φ(z, t) = f(z − ct) = f(y),(37a)

vs(z, t) = g(z − ct) = g(y).(37b)

We look for a specific type of travelling wave as suggested by observations, a solitary wave.
Therefore we assume that f and g strongly decay to the background state at infinity,

f → 1, f ′ → 0, f ′′ → 0 as |y| → ∞,(38a)

g → −1, g′ → 0, g′′ → 0 as |y| → ∞.(38b)

Here differentiation with respect to y is depicted by a prime. The travelling wave transformation
changes the PDEs (36a) and (36b) into a set of two ODEs

−cf ′ = ((1− φ0f)g)′,(39a)

g

fn
= −1− φ0f

1− φ0
+ g′′.(39b)

Equation (39a) can be integrated directly. By employing the far-field conditions to explicitly
determine the integration constant, we can then express g as

(40) g = −c(f − 1) + (1− φ0)

1− φ0f
.

Next we set p = f ′ and note the identity dp2/df = 2f ′′. This and (40) allow us to reformulate
(39b) as an ODE for p

(41)
c(f − 1) + (1− φ0)

fn(1− φ0f)
=

1− φ0f

1− φ0
+

1

2
(1− φ0)(c+ φ0)(1− φ0f)2 d

df

(
p2

(1− φ0f)4

)
.

An interesting consequence of this reformulation is that we can interpret the solitary waves as
homoclinic orbits in (p, f) phase space governed by (41). The orbits must emanate from the point
(0, 1) and make an excursion through the positive f -half-plane. The orbit must ultimately return
in a symmetric fashion to (0, 1). The maximal amplitude A of the solitary wave is, consequently,
found to be the crossing of the f -axis, i.e. when p = 0.

To calculate the trajectories, and thus the waveform, and wavespeed of the solitary waves we
have to work through some cumbersome algebra. We will only sketch the general procedure here
and refer the interested reader for details to appendix A.3.

Amplitude dispersion. Firstly we will derive the phase speed c of the solitary waves. We write
(41) in a more condensed form

(42) λ
d

df

(
p2

(1− φ0f)4

)
= ch1(f, n, φ0) + h2(f, n, φ0),

for some functions h1, h2 and constant λ. By formal integration over the trajectory, i.e. starting
from p = 0, f = 1, with respect to f from 1 to x we thus find that

(43) p2 =
(1− φ0x)4

λ
(cH1(x, n, φ0) +H2(x, n, φ0)) ,

where H1(x), H2(x) are the definite integrals of h1, h2 from 1 to x.
Then we recall that at the point of maximal amplitude A we have p = 0 and thus find that

(44) 0 =
(1− φ0A)4

λ
(cH1(A,n, φ0) +H2(A,n, φ0)).
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As a result we find a wavespeed c which depends on the maximal amplitude A,

(45) c = C(A,n, φ0) = −H2(A,n, φ0)

H1(A,n, φ0)
,

for the more detailed form of c, see appendix A.3. Figure 2 shows the phase speed C(A,n, φ0) as
a function of the amplitude A for various n and φ0.
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(a) Phase speed as a function of the maximal am-
plitude A of the wave for n = 3 and different back-
ground voidage levels φ0.
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imation found by considering φ0 � 1 is plotted as
dashed lines.

Figure 2. Behaviour of the phase speed c = C(A,n, φ0) as a function of its
arguments. Figure 2a shows the (non-linear) dependency on φ0. Figure 2b de-
picts the dependency on n and shows comparison with low voidage linearisation
results, as found for example in [13].

As noted from the expression for c and its plot, the wavespeed depends (strongly) on the
amplitude of the wave. This amplitude dispersion is a general feature for non-linear waves and
can be observed in many non-linear wave models, such as the KdV equation. We can infer from
the dispersion relation that if multiple solitary waves with different amplitude A are to co-exist
they will have to interact with one another. The waves have different speeds and resultantly
cross each other, initiating a strong interaction between the waves.

As an interesting side note we recall that the (36a) and (36b) in the limit of φ0 � 1 will
converge towards (35). Scott & Stevenson derived a wavespeed based on this model and this
should thus agree, at least to linear order, with our results. It is thus reassuring to observe that
both agree up to order φ0 for A→ 1, see figure 2b and appendix A.3.

Waveform. From (43) we can infer p and thus df/dy. This allows us to find an implicit description
of the waveform, f(y), by using

(46) y(x) =

∫ A

x

dy

df
df =

∫ A

x

1

p(f)
df.

Therefore, given A, φ0 and n, we are in principle able to calculate y(f) which gives upon inversion
f(y) the shape of the wave. In turns out that in practice (46) is infeasible due to the complicated
expression for p(f). The integral can of course be approximated using numerical integration.
This yields the waveforms depicted in figure 3.
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We see that the travelling waves are indeed strongly decaying towards infinity, making them
localised pulses and thus solitary waves. The effect of the amplitude, apart from drastic effects
on the wave speed, seems to be merely a scaling of the waveform, see figure 3a. The background
porosity φ0 appears to control the localisation of the solitary wave, see figure 3b. We thus expect
to see sharply localised pulses for low background voidage.
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(a) Waveform f(y) as a function of travelling wave
coordinate y = z − ct for different amplitudes A.
The background voidage is φ0 = 0.01 in all cases
and n = 3.
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(b) Waveform f(y) as a function of travelling wave
coordinate y = z − ct for different background
voidage φ0. The amplitude A = 4 in all cases and
n = 3.

Figure 3. Waveform of the solitary wave for different parameters. For varying
amplitude A, see figure 3a. For varying background voidage φ0, see figure 3b.
The background voidage seems to control the width of the solitary wave, making
it more localised for smaller values of background voidage.

Note that the width of the solitary waves is of the order of 10 in non-dimensional units which
rescales to the same amount of compaction lengths. Using estimates of the compaction length,
on the order of 10 km [12], we conclude that magmons should be measurable, if they are a real
phenomenon. The wavespeed in dimensional units is estimated to be of the order of 10 cm per
year, which should be observable as well.

3.2. Solitons or solitary waves? Barcilon & Richter noted that in numerical simulations of
(36a),(36b) where two unequal sized solitary waves interact, an imperfection is observed [3]. A
dispersive tail remains after collision of the waves, disrupting the background porosity. Con-
sequently, an interesting question one may ask upon this observation is, whether the travelling
wave solutions in the preceding models are pure solitons or are merely solitary waves. As defined
by Drazin & Johnson a soliton is “any solution of a nonlinear evolution equation (or system)
which (i) represents a wave of permanent form; (ii) is localised, so that it decays or approaches
a constant at infinity; (iii) can interact strongly with other solitions and retain its identity” [4].

Equations admitting soliton solutions are rather exceptional. They have to admit a solution
using the inverse scattering transform (IST), which puts a severe restriction on the type of
equations, these equations are namely said to be completely integrable. There is an intimate link
between the notion of integrability and conservation laws of the PDE as it is conjectured that
completely integrable systems possess an infinite set of these conserved quantities. This provides
a way to strongly suggest non-existence of soliton solutions for a PDE.

Another conjecture relates the complete integrability of a system to ODEs that can be derived
from it by exact reduction. It is conjectured that all of these differential equations have to satisfy
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the Painlevé property. This again serves as a way to suggest non-existence of solitons. It has
to be noted, however, that as of yet these methods do not provide concluding evidence as the
conjectures remain unproven.

Conservation laws for PDEs. In looking for a conservation law for an evolution equation in
variables t, z one looks for T,X such that

(47)
∂T

∂t
=
∂X

∂z
,

so that we find a constant of motion by noting that

(48)
∂

∂t

∫
Ω

T dz = 0.

Functions of the form T = fz, X = ft are excluded because they trivially satisfy (47). As one
needs to be able to evaluate T at t = 0 its dependence on its arguments is restricted to functions
which can be evaluated from the initial conditions.

Strengthened by their observation of dispersive interaction between two solitary wave type
solutions Barcilon & Richter set out to find conservation laws for (36a),(36b) for n = 3 and in
the approximation of low background voidage φ0 [3], thus in effect (35) for n = 3 and m = 0.
Given the constraint of dependency on the initial data we look for conservation laws of the form

T = Tn(φ, φz, . . . , φnz),(49a)

X = Xn(φ, φz, . . . , φnz, φt, φtz),(49b)

where φnz represents the n-th derivative with respect to z. Note that higher time derivatives can
be expressed in space derivatives and φt, φtz by use of the PDE and thus need not be included in
the arguments of T,X explicitly. Barcilon & Richter were able to only find two such conserved
quantities T0, X0 and T1, X1, while proving that no conservation law for T3, X3 is possible. This
suggests that the observed solutions are indeed not solitons.

A more general and rigorous treatment was performed by Harris [7], who considered the magma
equation for all constant values m,n. She concluded that in general only two conservation laws
exist. The first one given by

T1 = φ− 1,(50a)

X1 = mφn−m−1φtφz − φn−mφtz + φn,(50b)

and has as interpretation that it is linked to conservation of matrix mass. Another conservation
law of first order is found which depends on the specific choice of m,n, but is given for m 6=
1, 1− n, 2− n by

T̃1 =
1−m− n

2
φ−2mφ2

z +
1

2−m− n
(
φ2−m−n − 1

)
(51a)

X̃1 = mφ−2mφtφz − φ1−2mφtz +
n

1−m
φ1−m(51b)

generalising the results found by Barcilon & Richter. In addition Harris showed that higher order
conservation laws do not exist unless m,n take the combination m = n+1, n 6= 0 or m = 1, n 6= 0
confirming the hypothesis by Barcilon & Richter that the equations only have a finite number of
conserved quantities.

Note that the case m = 1, n 6= 0 is the only of the two remaining combinations which could
have physical meaning as 0 ≤ m ≤ 1, 2 ≤ n ≤ 3 is expected from the modelling of viscosity and
permeability.
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Painlevé property. PDEs can be reduced to ODEs by certain types of transformation, for example
by changing to a travelling wave frame or by similarity reduction. The type of ODE coming from
these reductions and integrability of the evolution equation appear to be intimately linked due
the following conjecture

Conjecture 1 (Ablowitz-Ramani-Segur [1]). Consider an evolution equation in the IST class.
Then every ODE obtained by an exact reduction of the evolution equation has the Painlevé
property.

The Painlevé property concerns second order ODEs of the form

(52)
d2w

dz2
= F

(
w,

dw

dz
, z

)
,

where F is a rational function in w and dw/dz. If these ODEs do not posses a movable singularity
in their solution they are said to posses the Painlevé property. The name honours Painlevé, who
showed that only a restricted class of 50 equations satisfy this property.

As noted by Drazin & Johnson a proof (or disproof) of the conjecture is still unknown, but
strong evidence points towards it being true. Many of the equations with soliton solutions by
the IST, such as the KdV equation and the non-linear Schrödinger equation, have indeed showed
to confirm the conjecture.

Using the reduction by travelling wave coordinates Harris [8] was able to show that for integer
m,n only m = 0, n = −1 and m = 0, n = −2 yield an ODE satisfying the Painlevé property1.
Combining this result with the lack of conservation laws found by Harris earlier strengthens the
hypothesis that for the physical acceptable magma models the solutions are not of a soliton type
and thus are likely to be mere solitary waves.

4. Conclusion

In this paper we derived a model for the flow of magma through the earths mantle by using a
two-phase flow. We describe the mantle as a solid permeable matrix through which the viscous
magma fluid gets transported.

The model is simplified using a Boussinesq approximation and assuming special forms for
the constitutive laws governing permeability and viscosity of the matrix. This yields a set of
equations first described by Barcilon & Richter [3]. Analytical expressions are found describing
solitary waves in this model confirming the numerical experiments performed by various authors
[3, 13].

Based on numerical simulations of the interaction between such waves, it was hypothesised
that the waves are not pure soliton solutions [3]. There exists strong evidence confirming this
hypothesis. Firstly, only a finite number of conservation laws can be found for the evolution
equation. Secondly, the reduction from the evolution equation to an ODE by a travelling trans-
formation results in an ODE which does not posses the Painlevé property. Both properties are
conjectured to be necessary conditions for an evolution equation to admit soliton solutions.

A possible extension of the work carried out in this paper is the obvious step from one to
higher-dimensional formulation of the equations. An immediate question arises in this context,
are the solitary waves found stable in more dimensions? It has been proved in the literature that
this is not the case [2] and that the solitary waves break up to form circular localised waves in
two dimensions [12].

1By further analysis using similarity solution reduction it can be shown that the list of admissible rational
m,n can be reduced further to m = 0, n = −1 and m = 1/2, n = −1/2. In both cases the magma equation can

be transformed into PDE which is known to be completely integrable [8].
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Appendix A. Appendix

A.1. Matrix viscosity rescaling. Motivation for the η, ζ rescaling comes from considering the
constant viscosities problem. In that case (28d) can be written as

(53) ∇P = (1− φ)∆ρgĝ − η∗∇×∇× vs +

(
ζ∗ +

4

3
η∗
)
∇(∇ · vs).

Here we have used the vector identities ∇ · ∇v = ∇(∇ · v), ∇ · (∇v)T = ∇2v and ∇2v =
∇(∇ · v) − ∇ × ∇ × v. In an irrotational matrix flow the curl term vanishes and it can be
observed that ζ∗ + 4η∗/3 is the natural occurring matrix viscosity. Choosing the rescaling as
proposed by McKenzie the equation thus takes a very simple form in the irrotational limit

(54) ∇P = (1− φ)ĝ +∇2vs.

Note that this rescaling can also be achieved by considering the problem in one dimension, as in
this case the curl term is absent as well. The result is the same rescaled equation with ∇ = d

dz .

A.2. Compaction length. A basic interpretation of the compaction length was offered by
McKenzie [10]. Consider the problem of a one-dimensional initial constant porosity mantle
column being compressed by an impermeable horizontal surface moving with speed V . We take
z ∈ [0,∞) for the domain. The no-slip boundary condition comes from the impermeability of the
compression surface, i.e. vm,s(0) = V . For the pressure, we assume that for z →∞ the pressure
is undisturbed and thus P → 0. We consider this problem only on a small time-scale such that
φ ≈ 1, the reference porosity. By neglecting buoyancy terms and melting, the equations become

d

dz
(vm − vs) = − 1

φ0

dvs
dz

,(55)

−dP
dz

= (vm − vs),(56)

φ0
dP

dz
=
d2vs
dz2

.(57)

We can combine these into

(58)
d3vs
dz3

=
dvs
dz

.

Using the boundary condition we thus find that bounded solutions satisfy

(59) vs(z) = V e−z, vm(z) = V +
V (1− φ0)

φ0
(e−z − 1), P (z) = −e

−z

φ0
.

The compaction rate of the matrix is defined by

(60)
dvs
dz

= −V e−z.

Recall that all these expressions are in non-dimensional units and thus that the effect of the
compression at the surface of the column has a decay factor of δ in dimensional units. The
compaction length is thus the length over which the compaction rate dies out by a factor 1/e,
hence the name compaction length.
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A.3. Derivation wave speed and waveform. To derive a more detailed expression for the
wave speed c we return to (41) and the related equation (42). We can make the following
identification of λ, h1 and h2

λ =
1

2
(1− φ0)(c+ φ0),(61a)

h1(f, n, φ0) =
1− f

fn(1− φ0f)3
,(61b)

h2(f, n, φ0) =
1

(1− φ0)(1− φ0f)
+

φ0 − 1

fn(1− φ0f)3
.(61c)

Integrating h1 and h2 with respect to the amplitude from 1 to f then yields

H1(f, n, φ0) =

∫ f

1

1− x
xn(1− φ0x)3

dx,(62a)

H2(f, n, φ0) =
−1

φ0(1− φ0)
log

(
1− φ0f

1− φ0

)
+

∫ f

1

φ0 − 1

xn(1− φ0x)3
dx.(62b)

The resulting wave speed is given by the very appealing formula

(63) c = C(A,n, φ0) = −

1

φ0(1− φ0)
log

(
1− φ0A

1− φ0

)
+

∫ A

1

1− φ0

xn(1− φ0x)3
dx∫ A

1

x− 1

xn(1− φ0x)3
dx

.

This closely resembles the formula given in [3], although it seems there are some typos in their
derivation.

The process of calculating the shape is very tedious. We start out by expanding (43) to get

(64) p2(f, n, φ0) =
2(1− φ0f)4 (C(A,n, φ0)− C(f, n, φ0))

(1− φ0)(C(A,n, φ0) + φ0)

∫ f

1

1− x
xn(1− φ0x)3

dx,

where we now have used that c = C(A,n, φ0) for the maximal amplitude A of the wave. By
following the procedure described in the main body one can now calculate an implicit expression
for the waveform

(65) y(f) =

∫ A

f

1

p(x, n, φ0)
dx.

As pointed out by Barcilon & Richter the calculation of the integral can be difficult using
numerical techniques as we know that p(A) = 0 and thus (65) shows a diverging integrand at
one of the endpoints (note that this does not mean that the integral is not well-defined). One
way to numerically elude this issue is to split the integral

(66) y(f) =

∫ A−ε

f

1

p(x, n, φ0)
dx+

∫ A

A−ε

1

p(x, n, φ0)
dx.

Now note that we can approximate the latter integral by using a Taylor approximation of p2

around x = A. This expansion is given by

p2(x, n, φ0) =
∂p2

∂x

∣∣∣∣
x=A

(x−A) +O
(
(x−A)2

)
= 2κ(A− x) +O

(
(x−A)2

)
,(67)
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where κ = −f ′′(A) the negative curvature of the waveform at the maximal amplitude (note that
κ > 0 for a solitary wave). This finally yields

(68) y(f) =

∫ A−ε

f

1

p(x, n, φ0)
dx+

√
2ε

κ
,

which is numerically more stable.

Comparison with Scott & Stevenson[13]. Upon taking φ0 → 0 in (41) we recover the travelling
wave formulation for the magma equation as derived by Scott & Stevenson [13]

(69)
1

2
c
dp2

df
=
c(f − 1) + 1

fn
− 1.

Following the same procedure as described in this paper (but much less cumbersome!) one can
now derive an expression for c and this yields the result by Scott & Stevenson

(70a)


c(A) =

(A− 1)2

A log(A)−A+ 1
, for n = 2,

c(A) = (n− 2)(n− 1)
A+ (A1−n − n)/(n− 1)

1 + (n− 2)A1−n − (n− 1)A2−n for n > 2.

We would like to point out that limA→1 c(A) = n in this case. Taking the limit of A → 1 for
C(A,n, φ0) we obtain

(71) lim
A→1
C(A,n, φ0) = n− (n+ 2)φ0.

Consequently, we find that the difference between them is indeed of linear order in φ0.
Especially noteworthy is the case n = 3, as was shown by Barcilon & Richter [3]. In this

case the approximation yields a particularly easy form for the phase speed, c(A) = 2A+ 1. This
special case allows us to explicitly integrate (65)

y(f) = ±
√
A+

1

2

∫ A

f

x

(x− 1)
√
A− x

dx

= ±
√
A+

1

2

(
−2
√
A− f +

1√
A− 1

log

(√
A− 1−

√
A− f√

A− 1 +
√
A− f

))
,(72)

which closely resembles the waveform for small φ0. It looks as if the case n = 3 is however of a
very special type as the explicit integration cannot be easily extended to other values of n.
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ferential equations of painlevè type. Lettere al Nuovo Cimento 23, 333–338 (1978).

2. Barcilon, V. & Lovera, O. M. Solitary waves in magma dynamics. Journal of Fluid Mechanics
204, 121–133 (1989).

3. Barcilon, V. & Richter, F. M. Nonlinear waves in compacting media. Journal of Fluid
Mechanics 164, 429–448 (1986).

4. Drazin, P. G. & Johnson, R. S. Solitons: An Introduction (Cambridge University Press,
1989).

5. Drew, D. A. & Segel, L. A. Averaged equations for 2-phase flows. Studies in Applied Math-
ematics 50, 133–166 (1971).

6. Fowler, A. C. On the transport of moisture in polythermal glaciers. Geophysical & Astro-
physical Fluid Dynamics 28, 99–140 (1984).

7. Harris, S. E. Conservation laws for a nonlinear wave equation. Nonlinearity 9, 187–208
(1996).
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