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Abstract. Self-organising patterns originating from the Turing instability have been widely

studied in the context of continuous media. One commonly studied question is how robust

these Turing patterns are to a variety of external and internal changes to the underlying system
and dynamics. More recently the extension of Turing’s work to the case of networks has been

made, introducing the element of the network topology to Turing pattern formation. This

introduces a new kind of robustness question, how robust are the developing patterns to changes
in the network topology. We address this question by looking at pattern change under a bond

percolation process. In this paper we also explain some of the theory of Turing patterns on
networks, the parameter constraints needed for such patterns and its influence on the final long-

time patterns that are observed.

1. Introduction

The spontaneous emergence of patterns out of a disordered initial state is widely observed within
models in physics, chemistry, biology and ecology [7, 15, 21, 25]. These self-organising patterns
have attracted a lot of attention from the scientific community and have for example been coined
as a mechanism for cell differentiation in the developmental stage of organisms [24]. Seminal work
from 1952 by Alan Turing showed that it is possible to create spontaneous pattern formation in
the mathematical framework of reaction-diffusion equations [23], now known as Turing patterns.
His work revolves around a partial differential equation formalism and it is an intricate diffusion
difference between at least two species that can generate spatially extended patterns, whereas in
the absence of this diffusion a homogeneous state would be observed.

The original Turing pattern formalism is necessarily a continuous medium description and as
such is therefore insufficient to describe self-organisation in cases where there is no inherent contin-
uous space. Examples can be found in the early stages of biological development, where individual
cells make up discrete building blocks of space over which chemicals spread out [19], or in ecology,
where the metapopulation description is used to describe fragmented habitats [9]. In many such
discrete models the dynamics of chemicals, animals, or other agents, can be described by species
residing on network nodes which can be transported between nodes over the network edges. In
1971 Othmer and Scriven showed how to extend the Turing pattern formalism to dynamics on
networks [19]. In this network formalism the topology of the network provides a new ingredient in
the study of pattern formation. Initially, however, this newly developed theory was only applied
to a small portion of possible networks, namely lattices and small networks [10, 14, 19, 20].

In the last decade Turing patterns on more general networks became topic of scientific study,
initiated by a paper by Nakao and Mikhailov [17], who for the first time considered Turing patterns
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on large complex networks. This opened the door to the usage of large unstructured (random)
networks, scale-free networks and small world models, all widely studied in networks field. This
extends the usage of Turing patterns to cases where the networks in the modelare not necessarily
derived from some consideration of physical space, e.g. functional areas in the brain and their
connections [22]. The theory has since then been extended to directed networks [4], stochastic
Turing patterns [5] and multilayer networks [2, 11], in some cases showing distinctively different
behaviour compared to the classical Turing patterns.

Recently Asllani, Carletti and Fanelli studied the effects of changing the network topology on the
creation and destruction of patterns [3]. They specifically considered two interacting species which
were allowed to live on different networks, yielding an extra way to induce symmetry-breaking
Turing patterns. A question inspired by the aforementioned work is how robust established Turing
patterns on networks are, where we will have to define a notion of robustness. In a developmental
biology scenario, for example, one might hope to have a Turing pattern developing even in the
case where a (small) part of the original network is malfunctioning or missing, a problem known as
percolation in the mathematics community. We therefore define robustness merely by considering
whether a pattern forms or not. A more stringent robustness problem could be the question whether
a specific pattern can persist in the case of a partially malfunctioning network. This, arguably
harder, problem has been previously studied in the classical continuum framework, see for example
Maini et al. [12]. In this paper, however, we focus on the former definition of robustness.

We first introduce the Turing instability in reaction-diffusion systems on networks in Section 2.
One important difference between continuum and networked systems as noted by Nakao and
Mikhailov is the form of the long-time patterns that form. In Section 3 we look at the (lin-
earised) pattern space, which gives an idea of which patterns will form at certain points in our
parameter space. This will turn out to be related to the robustness problem, which we will further
discuss in Section 4. We will consider several (small) network models with equal number of nodes
and see how robust patterns are on the respective networks.

2. Turing instability on networks

Reaction-diffusion models. For the sake of simplicity we consider the case with two interacting
species U and V , whose concentration we denote by u and v respectively. More specifically we
consider u to be an activator species, i.e. the production of u is autocatalytically stimulated by
u, and v is an inhibitor, i.e. this species represses the production of u. In the absence of space,
either in a network or continuous medium case, the dynamics of the species is then governed by
the ordinary differential equations (ODEs)

du

dt
= f(u, v)(1a)

dv

dt
= g(u, v),(1b)

where the (local) interaction between u and v is captured by the functions f(u, v) and g(u, v).
Turing in his 1952 paper added a continuous spatial component to the model and let the species
diffuse, arriving at a reaction-diffusion system of the form

∂u

∂t
= f(u, v) +Du∇2u(2a)

∂v

∂t
= g(u, v) +Dv∇2v,(2b)

where now Du and Dv are the respective diffusion coefficients for u and v.
In this paper, however, we consider an undirected network G with N nodes νi for i = 1, . . . , N

and the usual adjacency matrix A, i.e. Aij = 1 if there is a connection between νi and νj . The two
species in our model are assumed to reside on the nodes νi of the graph, which we can represent
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by the two vectors u and v, such that ui represents the concentration of species U on node νi. In
the absence of a coupling between the different nodes this leads to dynamics similar to (1)

dui

dt
= f(ui,vi)(3a)

dvi

dt
= g(ui,vi),(3b)

which now holds for i = 1, . . . , N . To add interaction between the species on different nodes
Othmer and Scriven introduced Fickian diffusion between the nodes which leads to a system of N
coupled reaction-diffusion ODEs

dui

dt
= f(ui,vi) +Du

N∑
j=1

Aij(uj − ui)(4a)

dvi

dt
= g(ui,vi) +Dv

N∑
j=1

Aij(vj − vi),(4b)

where we assume that the diffusion constants Du and Dv can differ between the two species, but
not across the network 1. If we define the matrix D as the diagonal matrix with Dii = ki, the vertex
degree of νi, we can rewrite the diffusion part by using the graph Laplacian matrix L = D−A. We
then define the vector functions F(u,v) and G(u,v) such that Fi(u,v) = f(ui,vi) and similarly
for G. With this notation we can rewrite the system of ODEs (4) in a form reminiscent of the
original reaction-diffusion system (2) that Turing proposed

du

dt
= F(u,v)− εLu(5a)

dv

dt
= G(u,v)− εσLv,(5b)

where we introduced ε = Du and σ = Dv/Du to bring notation in line with [17] and subsequent
work. We note that the Laplacian matrix L does differ in sign from the continuous Laplacian
operator in the original system of equations (2), which is conventional in the networks literature.

Turing instability. The Turing instability classically manifests itself when a homogeneous steady
state is stable in the absence of diffusion (i.e. when Du = Dv = 0), but turns unstable when
diffusion is added. This formalism caries over to the networks case. We assume that the reaction
dynamics f and g allow a non-zero steady state (u∗, v∗) for (1). This yields a homogeneous steady
state for the reaction-diffusion system (5) of the form (u∗,v∗), which attains ui = u∗ and vi = v∗

at every node νi.
In the absence of diffusion, i.e. ε = 0, we demand (u∗,v∗) to be a stable steady state, yielding

the traditional conditions on the reaction dynamics

(i) fu + gv < 0,
(ii) fugv − fvgu > 0,

where the above expressions are evaluated at (u∗, v∗). If we now let ε > 0 the homogeneous steady
state should become unstable. To derive the necessary conditions for this to happen we consider a
(non-homogeneous) perturbation of the steady state, i.e. u = u∗ + ηu and v = v∗ + ηv, such that

1Such an anisotropy effect, however, could conceivably be accounted for by considering a weighted network and

similarly adapted adjacency matrix A. This has not (yet) been reported in the literature though.
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‖ηu‖, ‖ηv‖ � 1. These perturbations then satisfy the following linearised ODEs

dηu

dt
= fuηu + fvηv − εLηu(6a)

dηv

dt
= guηu + gvηv − εσLηv,(6b)

with again all partial derivatives of f and g evaluated at the steady state. The perturbations ηu

and ηv therefore satisfy a 2N linear ODE system and their long-time behaviour can be studied
using the eigenvalues of the matrix

(7)

(
fuI + εL fvI
guI gvI + εσL

)
.

Note that in general analytical progress cannot be expected for large matrices of this form. We
can, however, apply a similar technique as in Turing’s work, where we expand the dynamics on a
well chosen orthogonal basis. In the continuum case one uses the orthogonal basis of eigenfunctions
of the Laplace operator and in the network case we can instead use the eigenvectors of the graph
Laplacian L. Note that because L is a real positive semi-definite matrix the eigenbasis for L is
indeed orthogonal and the corresponding eigenvalues are real and non-negative.

Denote by
{
ψ(r)

}
the set of N eigenvectors of L with accompanying eigenvalues Λr, which lie

in the interval [0, N ]. We assume for simplicity that the eigenvectors are ordered such that the
eigenvalues Λr are in increasing order. We then expand the perturbations on this basis

(8) ηu =

N∑
r=1

ar exp (λrt)ψ
(r), ηu =

N∑
r=1

arbr exp (λrt)ψ
(r),

where λr now is the growth rate of the r-th eigenvector direction in the perturbation in the reaction-
diffusion system (6). Upon substitution of this ansatz we find the following system for the growth
rates λr

(9) λr

(
1
br

)
=

(
fu + εΛr fv

gu gv + εσΛr

)(
1
br

)
,

which leads to two possible growth rates for the r-th eigenvector

λr =
1

2

(
Tr ±

√
T 2
r − 4Dr

)
(10a)

Tr = fu + gv + ε(1 + σ)Λr(10b)

Dr = σ(εΛr)2 + εΛr(σfu + gv) + fugv − fvgu.(10c)

In order for the steady state (u∗,v∗) to become unstable we need to have at least one eigenvector
direction for which <(λr) > 0 holds. Note that (10) yields two possible solutions for λr, but since
we are only interested in growth rates with <(λr) > 0, we focus attention on the solution with
the positive branch. To get an unstable state we find from (10) that we need Dr < 0 for some
r = 1, . . . , N . Using the fact that Dr is a quadratic in εΛr the condition <(λr) > 0 yields the last
two Turing conditions

iii) σfu + gv > 0,
iv) −(σfu + gv)2 + 4σ(fugv − fvgu) > 0,

which is exactly the same as derived in the continuous medium case [15, Chapter 2]. Again this is
due to the direct correspondence between the eigenvectors and eigenvalues of the graph Laplacian
and their counterpart eigenfunctions and eigenvalues for the Laplacian operator.

The Turing conditions i)-iv) now define a region in the model parameter space (parameters for
f and g plus ε and σ) for which the Turing instability as described before is possible. We will
discuss this further in Section 3. Note that the preceding analysis is similar to a master stability
function type approach, see for example [18, Chapter 18].
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Mimura-Murray model. In the remainder of this paper we will make a specific choice for
the activator-inhibitor dynamics, namely f and g will follow the predator-prey Mimura-Murray
model [13]. The analysis and conclusions previously (and much of what follows), however, are not
dependent on a specific choice of model dynamics.

In the Mimura-Murray model we have four parameters a, b, c and d and the functions

f(u, v) = u

(
a+ bu− u2

c
− v
)

(11a)

g(u, v) = v (u− (1 + dv)) .(11b)

Note that this model allows for two positive steady states, i.e. roots to f and g simultaneously.
The trivial state u∗ = v∗ = 0 and

(12) u∗ = − c
2

−(b
c
− 1

d

)
−

√(
b

c
− 1

d

)2

+
4

c

(
a

c
+

1

d

) , v∗ =
u∗ − 1

d
.

With the parameter choice a = 35, b = 16, c = 9 and d = 2/5 as in [13] this turns into (u∗, v∗) =
(5, 10) and one can verify that this satisfies the first two Turing conditions.

Network models. In this paper we consider 4 different small networks. The machinery applies
to large networks as well, but the computational costs for section 4 scale badly with the network
size and so we only consider graphs with N = 20 nodes. We consider the complete graph K20,
which has a connection between every node. Furthermore we look at two graphs which follow from
a patterning of two-dimensional space, namely with a rectangular or hexagonal grid. These lead
to a rectangular lattice graph and a triangular lattice graph. Lastly we consider a class of random
graphs which in the limit of N → ∞ yield scale-free networks, graphs from the Barabási-Albert
model [6]. Being inherently a random graph model, we show results for one specific realisation of
the model, but with representative behaviour. We choose to initiate the Barabási-Albert model
graph with a complete graph of size m and then built the graph using preferential attachment with
the same m, which in this paper is taken as m = 2. The effect of the initial core of the graph is
not immediately clear and we make a few comments in appendix B.

3. Pattern selection

Having fixed the reaction dynamics the model still has two tunable parameters ε and σ, both
related to the diffusion. This is the part where the network topology starts to play a role via the
spectrum of the graph Laplacian L and therefore this is where the results on networks can start
to deviate from the continuous media case.

Note that the spectrum of L is discrete and we can determine for each eigenvector ψ(r) when it
has a growth factor with <(λr) > 0. To determine the bounding curves in (ε, σ)-space where this
happens we look at the marginal stability curves of each of the modes, i.e. the curves in (ε, σ)-space
for which <(λr) = 0. The union of these curves will define a subsection of the parameter space for
which Turing patterns can exist, also known as Turing space [16].

Turing space. Carrying out the analysis of the marginal stability curves (this can be done by
solving Dr = 0) we find for each mode the bounding curve

(13) εr(σ) =
1

2σΛr

(
−(σfu + gv)±

√
(gv + σfu)2 − 4σ(fugv − fvgu)

)
.

Noting that because this curve has to be real valued we get a condition on σ stating a critical value
below which no patterns can form

(14) σc =
1

f2u

(
fugv − 2fvgu + 2

√
fvgu(fvgu − fugv)

)
.
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(a) Complete graph K20. (b) Barabási-Albert graph generated with
N = 20 and m = 2.

(c) Two-dimensional rectangular grid
graph.

(d) Two-dimensional triangular lattice
graph.

Figure 1. Network topologies used in this paper.

This does not mean that for all (ε, σ) combinations with σ > σc a Turing pattern can form as
we will see in Figure 2.

In Figure 2 we have plotted the Turing space for the different networks mentioned in the previous
section. We see in grey the union of the regions for which different eigenvectors become unstable.

From these graphs we can observe that in general the Turing space will be larger if the network
admits various eigenvectors with different eigenvalues. In the case of the complete graph with N
nodes KN the eigenvalues are 0 and N with the latter having algebraic multiplicity of N − 1. The
Turing space therefore is formed purely by one bounding curve and as a result is fairly small, see
Figure 2a. In the case of a more diverse spectrum we see that the Turing space, as a combination
of the Turing pattern regions with different Λr, now forms a larger whole.

A first approximation to the form of the Turing space can be given by considering the bounding
curves ε2(σ) and εN (σ), the curves for the smallest and largest non-zero eigenvalues respectively.
If connected by the line σ = σc this gives a rough idea of what the Turing space looks like, apart
from irregularities which mainly appear around the critical value of σc. In the case of the complete
graph these two extremal bounding curves are equal, whereas for the other networks they clearly
differ. If one wants a Turing space to stretch out for large values of ε, i.e. strong diffusion, one needs
consequently to have a network with a small Λ2. This does have an intuitive explanation as this
smallest non-zero eigenvalue, Λ2, the Fiedler eigenvalue, is related to the algebraic connectivity of
the network. A small Fiedler eigenvalue will generally mean that the graph can be well partitioned
in two components with little connections between them, whereas a larger Fiedler eigenvalue will
mean that such a partitioning is harder to make. If we cannot make such a partitioning that will
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mean that the network is well connected and if we would combine that with a large diffusion value
ε this would intuitively yield a homogeneous state, because the diffusion will quickly even out any
local differences. On the other hand with a small Fiedler eigenvalue and a good partitioning of the
network one can have the situation where the fast diffusion yields a fairly homogeneous state within
the partitions, which are well connected within itself, but not necessarily overall a homogeneous
state. This could be because in this case the lack of strong connections between the two partitions
counterbalances the high diffusion constant.
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(a) Complete graph K20.
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(b) Barabási-Albert graph generated with N = 20
and m = 2.
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(c) Two-dimensional rectangular grid graph.
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(d) Two-dimensional triangular lattice graph.

Figure 2. Turing space for different network topologies as shown in Figure 1.
Grey area shows the part of space for which Turing patterning is possible based on
analysis in section 2. Dark grey lines within the Turing space show the bounding
curves for regions with different fastest growing eigenvectors.

Mode selection. From the growth rates one could in theory predict in which eigenvector direction
the perturbation will grow initially, namely one might expect that the eigenvector with the largest
growth rate λr will dominate the initial growth phase. From this we can derive another set of
bounding curves, which divide Turing space into regions in which one of the eigenvectors will
dominate, something first done in [1] for the continuum case. This can be achieved by setting the
growth rate of two adjacent eigenvectors equal to each other, i.e. find the curves in (ε, σ)-space for
which λr = λr+1 for r = 1, . . . N − 1. This prediction of what the pattern could look like is known
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as mode selection. These dividing curves are also shown in Figure 2 as dark grey lines. Note that
these regions are ordered top to bottom from the smallest to the largest non-zero eigenvalue, i.e.

the uppermost region corresponds to the part of space in which the eigenvector ψ(2) dominates.
Mode selection could be expected to work well in cases where only one of the eigenvectors

will have <(λr) > 0. One can, however, ask whether this still holds true if we have multiple
eigenvectors having positive growth rates. Another issue is that the above analysis is based on a
linear analysis, whereas the final pattern established will follow the non-linear dynamics from (5).
In the continuum case this non-linearity can cause the excitation of higher order harmonics [15,
Chapter 2], but it is not clear whether such effects will still hold true in the network case. Nakao
and Mikhailov already mentioned that the mode selection in networks differs significantly from the
continuum case [17]. They found that the final pattern does not correspond to what they call the
critical eigenvector, i.e. the eigenvector with the largest growth rate.

We now show, at least empirically, that this depends on where in the Turing space one looks.
First we fix σ = 25, but note that this is completely arbitrary as long as σ > σc. We take the
Barabási-Albert graph as example and look at the decomposition of the solution u at time t = 1000
started from random initial conditions for different values of ε. We decompose the vector u − u∗

onto the eigenbasis to see which of the eigenvectors is most strongly present in the established
Turing pattern. In Figure 3 we see that it is mainly in the region ε < 1, where many modes have
<(λr) > 0, that we do not see a clear eigenvector direction being favoured. In more detail, it
looks as if a strong mode selection is present for the first few eigendirections and high values of
ε, whereas for lower values of ε and thus eigenvectors with higher eigenvalues it seems as if the
final Turing pattern consists more of a mixture of different eigenvectors. This could explain why
Nakao and Mikhailov observed that final time Turing patterns on networks deviate strongly from
the critical eigenvector directions and therefore behave very different from the continuum case [17].
The parameter values chosen in their study might have focussed on a subset of the Turing space
where the different eigenvector directions mix such as in Figure 3 for ε < 1. It would be interesting
to see whether their conclusions still hold if a different value for ε is chosen.

4. Robustness of Turing patterns

There are many ways to study the ‘robustness’ of Turing patterns. Research effort has focussed
on the classical setting of reaction-diffusion PDEs and people have looked at, amongst others,
the effect of external noise and growth on the type of pattern that develops [12], the effect of
boundary and initial conditions [1] and the effect that noise on the model parameters has on
the mode selection [16]. Such robustness questions have to our knowledge not been addressed
in the networks case. Again, there are many ways one could set out to study this problem, the
aforementioned ones or the effect growth or shrinking of a network for example. In this paper,
however, we look at a type of robustness that has been studied previously, though in a different
context, in the networks literature, namely the network resilience to the process of removing some
fraction of the graph connections, also known as (bond) percolation.

Percolation. In this paper we consider the case of bond percolation, i.e. the process where edges
between nodes can get removed from the graph, as opposed to site percolation which is the process
that removes nodes (and its accompanying edges) from the graph. In most networks studies one
is interested in the size of a giant component in the network. For this study, however, we will look
at ‘the size of a Turing pattern’, something that has to be defined in more detail later.

For simplicity we only consider percolation process with uniform removal of edges, non-uniform
removal being an interesting future direction. In this model we define an occupation probability
φ which will parametrise the percolation process. This denotes a probability for each edge that it
is present in the percolation network, i.e. when φ = 0 none of the edges are present whereas for
φ = 1 all of them are present. Given an initial network, such as in Figure 1, one can now ask what
happens when φ varies between 0 and 1.
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(a) Solution decomposition at ε = 2.0.
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(b) Solution decomposition at ε = 1.0.
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(c) Solution decomposition at ε = 0.5.
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(d) Solution decomposition at ε = 0.1.

Figure 3. The eigendecomposition of the solution for the Barabási-Albert graph
at σ = 25 and time t = 1000 for various ε within the Turing space. The strength

of eigenvector ψ(r) in the solution is given by |ar| and the eigenvalues are ordered.

Unfortunately analytical calculations are not tractable in this case so we have to resort to
numerical simulations. Suppose that we want to measure some quantity Q(φ) on the network,
we could then fix our φ, generate networks with that φ and calculate the quantity Q. This does,
however, become arduous if we want to calculate Q whilst varying φ continuously between 0 and
1. Therefore we use a trick, common in the algorithmic study of percolation, where we define a
similar quantity function Q(m) which now denotes Q in a network with m out of a total of M
edges present. Note that in a percolation process with occupation probability φ, the probability to
observe a network with m out of M edges is given by the binomial distribution, i.e. this probability
is equal to

(
M
m

)
φm(1− φ)M−m. This allows us then to average over all the possible networks in a

percolation process to write

(15) Q(φ) =

M∑
m=0

(
M

m

)
φm(1− φ)M−mQ(m).

This now means that if we find Q(m) for a finite set of values for m = 0, . . . ,M we can calculate
Q for all values of φ. Note that there are many networks possible for a given value of φ or m
and therefore we apply a Monte Carlo type approach where we find an expected value of Q for
given φ or m by generating many sample networks and calculating the average value of Q over
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these. A simple way to generate a sample graph with m edges given a graph of m+ 1 edges is to
simply remove one edge, rather than generating a network from scratch. Therefore a strategy to
efficiently do this is by starting with a graph with M edges and then one by one remove an edge
and calculate Q(m) until no edges are remaining. This then has to be repeated many times to get
the estimate of Q.

Numerical results. As mentioned before we use a Monte Carlo approach to calculate Turing
pattern robustness on the four different networks depicted in Figure 1. We therefore calculate
15000 samples for each value of m, meaning that we effectively run 15000M simulations of a
system of 40 ODEs. From this we can see why this approach scales badly with the network size,
because the number of edges increases roughly quadratic with network size and also the time to
compute the ODE solution will scale at least linearly with network size.

To look at the size of a Turing pattern we calculate the long-time (t = 1000) solution to the
system of ODEs (5) using the LSODA integration procedure, which is a robust method for problems
of this kind where we observe a mixture of non-stiff reaction and stiff diffusion behaviour. Given
such a long-time solution (u,v) we then calculate the devation from the homogeneous steady state
by considering the vector (u,v)−(u∗,v∗) and calculate its magnitude. There are of course different
ways to define magnitude for a vector but here we consider the l1, l2 and l∞ norms.
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(a) l1 norm.
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(b) l2 norm.
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(c) l∞ norm.

Figure 4. Different norms of Turing pattern for σ = 25 and ε = 0.12 at t = 1000
under a bond percolation process as a function of the bond occupation probability
φ.
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The result of a numerical simulation for ε = 0.12 is shown in Figure 4. We first note that
having equal norm does not necessarily mean that two patterns are equal, the norms can only be
used to make statements about the magnitude of either the whole pattern or just the maximal
value. So even though pattern norm stays roughly equal for moderate values of φ in the case of the
Barabási-Albert graph and the triangular lattice, it might well be the case that the actual form
of the pattern changes. Part of the difference in behaviour under the percolation process can be
explained by the fact that the different graphs have different number of edges. One might expect
that if a graph has more edges it can be more robust to percolation. This can not serve as a full
explanation, however, as the Barabási-Albert graph and triangular lattice show similar behaviour
even though they have different connectivity and number of edges.

In Figure 5 we plot the distribution of Turing pattern l2-norms as seen under the percolation
and this shows the non-uniqueness of Turing patterns. We see a discrete band pattern when the
occupational probability decreases, for which we can not offer an explanation currently.

We also see that for the complete graph there is an initial rise in the size of the Turing pat-
tern before the pattern gets destroyed for low occupational probability. This effect is even more
pronounced if we repeat the experiment for higher value of diffusion, ε = 1.00, as shown in Fig-
ure 6. Here we are initially not in the Turing space, so Turing patterns can not form. If edges
get removed to create a sparser topology this stimulates the creation of Turing patterns. This can
be understood by considering the Fiedler eigenvalue under this percolation process. By removing
nodes the Fiedler eigenvalue will decrease, it gets easier to partition the graph, and therefore the
Turing space grows such that the point ε = 1.00 moves into the Turing space.

5. Discussion

In this paper we looked at the extension of Turing’s classical pattern formation analysis to
different network topologies. Many analogies form between the case of a continuous medium and
that of the network in terms of the Turing conditions and consequently the allowed parameters
that yield self-organising patterns. There are, however, differences between the classical framework
and the networks framework, because of the extra ingredient of network topology. We showed in
Section 3 that even though networks can have an equal number of nodes their Turing space can
vastly differ. The Turing space is fully determined by the graph Laplacian spectrum and therefore
intimately linked to the network connectivity. It was mentioned in [17] that mode selection, i.e.
the fact that Turing patterns can be decomposed on only a small number of eigenvector directions,
was not present in the case of networks. We did, however, show empirically that this depends on
the model parameters chosen and thus the location in Turing space.

Having a network topology raises the question how robust the generation of Turing patterns
is with respect to changes in this topology. This is studied in Section 4 by applying a bond
percolation process to the graphs studied in the paper. We performed an initial calculation for
four networks, with different topologies and the effect of percolation. We saw that percolation
can not just decrease the size of Turing patterns, but also enables the creation of Turing patterns
in certain parts of Turing space. As one can expect we see different behaviour depending on the
topology and a detailed study of the results could be done in future work.

Lastly we mention a few possible extensions of the work in this paper. First would be the effect
of site percolation rather than bond percolation. This should be computationally less intensive as it
scales with the number of nodes N , rather than the number of edges, which is roughly O(N2). The
application of the methods in this paper to larger networks would be interesting as well, because
many network models have properties that only hold in the limit N → ∞ and therefore there
might be a difference in behaviour for networks with large N (compared to N = 20 as done in this
paper). Lastly we mention again the effect of growth on Turing patterns. In the Barabási-Albert
model, for example, one can construct a chain of networks, increasing at every step. One could see
whether the patterns observed during this process change shape and size. Furthermore this adds
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(a) Complete graph.
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(b) Barabási-Albert graph.
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(c) Rectangular lattice.

0.0 0.2 0.4 0.6 0.8 1.0
Occupation probability 

0

2

4

6

8

10

12

14

16

||(
u,

v)
(u

* ,
v

* )
|| 2

0.0

0.2

0.4

0.6

0.8

1.0

(d) Triangular lattice.

Figure 5. Distribution of the l2-norm under percolation as observed by Monte
Carlo simulation. Results show discrete bands of allowed Turing patterns for all
graphs.

another timescale to the problem, namely that of the network growth, it would be interesting to
see whether this effects the outcome as well.
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(b) l2 norm distribution.

l

Figure 6. l2 norm of Turing pattern for σ = 25 and ε = 1.00 at t = 1000 under a
bond percolation process as a function of the bond occupation probability φ on the
complete graph K20. Left: average distribution of the l2 norm. Right : emperical
distribution of the l2 norm. This distribution displays a discrete character for low
values of occupational probability φ.

Appendix A. Code

All numerical results and figures in this paper are generated using Python and the networks
package NetworkX. Python code for much of the work in this paper and to generate the figures
will (soon) be available for personal use from

https://bitbucket.org/CasperBeentjes/turing-patterns-on-networks.

Appendix B. Barabási-Albert model initiation

As mentioned in section 2 it is not specified by the model itself what the initial core of nodes
should be to start the model with. Suppose we want to generate a Barabási-Albert graph with
N nodes starting from an initial core network of m0 nodes and adding a new node at each step
with m connections to the previously existing nodes using preferential attachment. For simplicity
we consider the case that m0 = m, which is the choice made by the Python networks package
NetworkX. Of main interest in this paper is the Laplacian spectrum of the resulting graph and in
Figure 7 we see the effect of the different initial configurations on the spectrum. The difference
in behaviour can be understood from considering what happens when m → N . In the case of
initialising with a complete graph the Barabási-Albert graph will be very similar to a complete
graph and therefore have a Fiedler eigenvalue close to N . In the case of the initialisation of an
empty graph we see that in the limit m → N the graph becomes very similar to a star graph,
which has a known Fiedler eigenvalue of 1 for any size. The behaviour of the largest eigenvalue
seems to be fairly independent of the choice of initial configuration, which can be understood from
the bounds on it which only involve the maximal degree of nodes in the network [18, Chapter 18].

The effects of the initial configuration in the Barabási-Albert model has been studied before
using random initial conditions [8], but this mainly focussed on the power-law behaviour of the
resulting networks. If one were to use a growing Barabási-Albert model to study the influence
of growth on the Turing patterns one should make sure that the initial core does not effect the
results, which is most likely achieved by taking an initial core which is much smaller in size than
the final network size. That way in the limit of many nodes being added the effect of any initial
configuration becomes negligible.

https://bitbucket.org/CasperBeentjes/turing-patterns-on-networks
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Figure 7. The (average) behaviour of the smallest and largest non-zero eigen-
values of the Laplacian for a Barabási-Albert model graph as a function of m for
N = 20, note that 1 ≤ m < N . The different initial configurations are depicted
in different colours, red for an initial complete graph of size m and black for an
initial unconnected graph of size m.
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